盐源县高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐源县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=
,则f (﹣1)的值为( )
A .1
B .2
C .3
D .4
2. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )
A .1
B .
C .
D .
3. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2
4. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )
A .2
B .1
C .
D .
5. 圆01222
2=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .12
2
+ D .122+ 6. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )
A .∀x ≤0,都有x 2﹣x >0
B .∀x >0,都有x 2﹣x ≤0
C .∃x >0,使得x 2﹣x <0
D .∃x ≤0,使得x 2﹣x >0
7. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 8. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10
C .8
D .6
9. “
”是“A=30°”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也必要条件
10.sin3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin3cos8.5<< B .cos8.5sin3sin1.5<< C.sin1.5cos8.5sin3<<
D .cos8.5sin1.5sin3<<
11.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正
确的是( ) A .f (x )为奇函数 B .f (x )为偶函数
C .f (x )+1为奇函数
D .f (x )+1为偶函数
12.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717
100201717
S S -=,则d 的值为( ) A .
120 B .110 C .10 D .20 二、填空题
13.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
= .
14.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周
期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=
,现给出以下三个命题:
①若 m=,则a 5=2;
②若 a 3=3,则m 可以取3个不同的值;
③若 m=
,则数列{a n }是周期为5的周期数列.
其中正确命题的序号是 .
15.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .
16.设全集
______.
17.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 . 18.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .
三、解答题
19.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.
(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;
(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.
20.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值集合A
(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.
21.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
22.已知函数.
(1)求f(x)的周期.
(2)当时,求f(x)的最大值、最小值及对应的x值.
23.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;
(1) 求实验室这一天的最大温差;
(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?
24.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:
(1)集合A,B;(2)(∁U A)∩B.
盐源县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:由题意可得f (﹣1)=f (﹣1+3)=f (2)=log 22=1
故选:A
【点评】本题考查分度函数求值,涉及对数的运算,属基础题.
2. 【答案】C 【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大
为
.
因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为
.
因此可知:A ,B ,D 皆有可能,而<1,故C 不可能.
故选C .
【点评】正确求出满足条件的该正方体的正视图的面积的范围为
是解题的关键.
3. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →
,
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩
⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53
,
∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53,故选C.
4. 【答案】 C
【解析】解:作出不等式对应的平面区域,(阴影部分) 由z=2x+y ,得y=﹣2x+z ,
平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小. 即2x+y=1,
由
,解得
,
即C (1,﹣1),
∵点C 也在直线y=a (x ﹣3)上, ∴﹣1=﹣2a ,
解得a=
.
故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
5. 【答案】B 【解析】
试题分析:化简为标准形式()()1112
2
=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半
径,22
2
11=--=
d ,半径为1,所以距离的最大值是12+,故选B.
考点:直线与圆的位置关系 1 6. 【答案】C
【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:
∃x >0,使得x 2
﹣x <0,
故选:C .
【点评】本题主要考查含有量词的命题 的否定,比较基础.
7. 【答案】B 【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样. 8. 【答案】C
【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2
=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)
抛物y 2
=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,
∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .
【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
9. 【答案】B 【解析】解:“A=30°”⇒“”,反之不成立.
故选B
【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.
10.【答案】B 【解析】
试题分析:由于()cos8.5cos 8.52π=-,因为8.522
π
ππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,
∴cos8.5sin3sin1.5<<. 考点:实数的大小比较. 11.【答案】C
【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1
∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C
【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.
12.【答案】B 【解析】
试题分析:若{}n a 为等差数列,
()
()111212n
n n na S d a n n
n -+
==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭
为等差数列公差为2d ,
2017171
100,2000100,201717210
S S d d ∴
-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式.
二、填空题
13.【答案】 ﹣5 .
【解析】解:求导得:f ′(x )=3ax 2
+2bx+c ,结合图象可得 x=﹣1,2为导函数的零点,即f ′(﹣1)=f ′(2)=0,
故
,解得
故==﹣5
故答案为:﹣5
14.【答案】 ①② .
【解析】解:对于①由a n+1=,且a 1=m=<1,
所以,
>1,
,
,∴a 5=2 故①正确;
对于②由a 3=3,若a 3=a 2﹣1=3,则a 2=4,若a 1﹣1=4,则a 1=5=m .
若
,则
.
若a 1>1a 1=,若0<a 1≤1则a 1=3,不合题意. 所以,a 3=2时,m 即a 1的不同取值由3个. 故②正确;
若a
1=m=>1,则a2=
,所a3=
>1,a4=
故在a1=
时,数列{a
n }是周期为3的周期数列,③错;
故答案为:①②
【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目
15.【答案】﹣12.
【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,
∴==,
解得x=﹣6,y=6,
x﹣y=﹣6﹣6=﹣12.
故答案为:﹣12.
【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.
16.【答案】{7,9}
【解析】∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},
∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},
故答案为:{7,9}。
17.【答案】2.
【解析】解:∵一组数据2,x,4,6,10的平均值是5,
∴2+x+4+6+10=5×5,
解得x=3,
∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,
∴此组数据的标准差S==2.
故答案为:2.
【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.
18.【答案】(0,)∪(64,+∞).
【解析】解:∵f(x)是定义在R上的偶函数,
∴f(log8x)>0,等价为:f(|log8x|)>f(2),
又f(x)在[0,+∞)上为增函数,
∴|log8x|>2,∴log8x>2或log8x<﹣2,
∴x>64或0<x<.
即不等式的解集为{x|x>64或0<x<}
故答案为:(0,)∪(64,+∞)
【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,
由茎叶图知:
分数在[50,60)之间的频数为2,
∴全班人数为.
(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;
频率分布直方图中[80,90)间的矩形的高为.
(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,
在[80,100)之间的试卷中任取两份的基本事件为:
(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,
其中,至少有一个在[90,100)之间的基本事件有7个,
故至少有一份分数在[90,100)之间的概率是.
20.【答案】
【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,
则(|x﹣10|+|x﹣20|)min<10a+10,
根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,
即(|x﹣10|+|x﹣20|)min=10,
所以,10<10a+10,解得a>0,
所以,实数a的取值集合为A=(0,+∞);
(2)∵a,b∈(0,+∞)且a≠b,
∴不妨设a>b>0,则a﹣b>0且>1,
则>1恒成立,即>1,
所以,a a﹣b>b a﹣b,
将该不等式两边同时乘以a b b b得,
a a
b b>a b b a,即证.
【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.
21.【答案】
【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,
等价于a≥x2﹣x在x∈[2,4]恒成立,
而函数g(x)=x2﹣x在x∈[2,4]递增,
其最大值是g(4)=4,
∴a≥4,
若p为真命题,则a≥4;
f(x)=x2﹣ax+1在区间上是增函数,
对称轴x=≤,∴a≤1,
若q为真命题,则a≤1;
由题意知p、q一真一假,
当p真q假时,a≥4;当p假q真时,a≤1,
所以a的取值范围为(﹣∞,1]∪[4,+∞).
22.【答案】
【解析】解:(1)∵函数.
∴函数f(x)=2sin(2x+).
∴f(x)的周期T==π
即T=π
(2)∵
∴,
∴﹣1≤sin(2x+)≤2
最大值2,2x=,此时,
最小值﹣1,2x=此时
【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.
23.【答案】
【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,
当t+=时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃。
(2)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),
由10﹣2sin(t+)>11,求得sin(t+)<﹣,即≤t+<,
解得10<t<18,即在10时到18时,需要降温。
24.【答案】
【解析】解:(1)由,解得0≤x≤3
A=[0,3],
由B={y|y=2x,1≤x≤2}=[2,4],
(2))∁U A=(﹣∞,0)∪[3,+∞),
∴(∁U A)∩B=(3,4]。