山东省济南市2016-2017学年高二下期末数学试题(文)含答案
中学2016-2017学年高二下期末考试数学试卷含解析
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
2017-2018学年山东省济南市高二(下)期末数学试卷(文科)(解析版)
2017-2018学年山东省济南市高二(下)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)的共轭复数为()A.﹣1﹣2i B.﹣1+2i C.1+2i D.1﹣2i2.(5分)已知集合M={0,1,2},N={x|﹣2<x<2,x∈Z},则M∩N为()A.(0,1)B.[0,1]C.{0,1}D.∅3.(5分)函数的定义域是()A.B.C.D.[0,+∞)4.(5分)设命题p:∀n∈N,n2≤2n,则¬p为()A.∃n0∈N,B.∀n∈N,n2≥2nC.∃n0∈N,D.∀n∈N,n2>2n5.(5分)若a>b>0,则()A.B.log2a<log2bC.a2<b2D.6.(5分)“若x>0,y>0且x+y>2,求证,中至少有一个成立.”用反证法证明这个命题时,下列假设正确的是()A.假设,B.假设,C.假设和中至多有一个不小于2D.假设和中至少有一个不小于27.(5分)已知a,b为实数,则“a+b=0”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)设△ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则.类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,内切球半径为R,则V=()A.R(S1+S2+S3+S4)B.C.D.9.(5分)已知x,y取值如表:从所得的散点图分析可知:y与x线性相关,且,则=()A.1.53B.1.33C.1.23D.1.1310.(5分)函数f(x)=的图象大致为()A.B.C.D.11.(5分)已知函数f(x+1)为偶函数,且f(x)在(1,+∞)上单调递增,f(﹣1)=0,则f(x﹣1)>0的解集为()A.(﹣∞,0)∪(4,+∞)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣∞,0)∪(1,+∞)12.(5分)已知函数的图象如图所示,则下列说法正确的是()A.函数f(x)的周期为B.函数f(x)在上单调递增C.函数f(x)的图象关于点对称D.把函数f(x)的图象向右平移个单位,所得图象对应的函数为奇函数二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,则x+y=.14.(5分)曲线在点(0,0)处的切线方程为.15.(5分)已知角a的终边上一点,则=.16.(5分)已知若f(x)=x+a有两个零点,则实数a的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最小值.18.(12分)在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如表:(1)根据上述表格完成下列列联表:(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?(参考公式:,其中n=a+b+c+d)19.(12分)已知函数f(x)=ax3+bx2﹣2x,且当x=1时,函数f(x)取得极值为.(1)求f(x)的解析式;(2)若关于x的方程f(x)=﹣6x﹣m在[﹣2,0]上有两个不同的实数解,求实数m的取值范围.20.(12分)对某种书籍每册的成本费y(元)与印刷册数x(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)w i2﹣6x i y i其中ωi=,.为了预测印刷20千册时每册的成本费,建立了两个回归模型:y=a+bx,y=c+.(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)(2)根据所给数据和(1)中的模型选择,求y关于x的回归方程,并预测印刷20千册时每册的成本费.附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归方程的斜率和截距的最小二乘估计公式分别为:=,=.21.(12分)已知函数f(x)=lnx﹣ax2+1.(1)讨论f(x)的单调性;(2)若a=0,xf(x)>k(x﹣1)在(1,+∞)上恒成立,求整数k的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系中,l是过点P(﹣1,0)且倾斜角为的直线.以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.(1)求直线l的参数方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于两点A,B,求|P A|+|PB|.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+a|﹣|x﹣1|.(1)当a=1时,解不等式f(x)>2;(2)当a=0时,不等式f(x)>t2﹣t﹣7对任意x∈R恒成立,求实数t的取值范围.2017-2018学年山东省济南市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵=,∴复数(i为虚数单位)的共轭复数为﹣1﹣2i.故选:A.2.【解答】解:集合M={0,1,2},N={x|﹣2<x<2,x∈Z}={﹣1,0,1},则M∩N={0,1}.故选:C.3.【解答】解:要使函数有意义,则,即,即,解得x>﹣且x≠0,故函数的定义域为,故选:B.4.【解答】解:由全称命题的否定为特称命题,可得命题p:∀x∈N,n2≤2n,则¬p:∃n0∈N,,故选:C.5.【解答】解:a>b>0,由y=在x>0递减,可得<;由y=log2x在x>0递增,可得log2a>log2b;由y=x2在x>0递增,可得a2>b2;由y=()x在x>0递减,可得()a<()b.故选:D.6.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.假设,,故选:B.7.【解答】解:当a=b=0时,满足a+b=0,但不成立,即充分性不成立若,则a=﹣b,即a+b=0,则必要性不成立,则“a+b=0”是“”的必要不充分条件,故选:B.8.【解答】解:△ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则.类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,内切球半径为R,V=(S1+S2+S3+S4).故选:C.9.【解答】解:由表中数据:=4.=5.25.∵,∴=5.25﹣1.03×4=1.13故选:D.10.【解答】解:令g(x)=lnx﹣1,则g′(x)=>0,由g'(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,所以当x=e时,函数g(x)=0,函数f(x)=对任意的x∈(0,e),(e,+∞),有f(x)是减函数,故排除A、B、C,故选:D.11.【解答】解:∵函数f(x+1)为偶函数,∴f(﹣x+1)=f(x+1),则函数f(x)关于x=1对称,∵f(﹣1)=0,∴f(﹣1)=f(3)=0,当x﹣1≥1,即x≥2时,不等式f(x﹣1)>0等价为f(x﹣1)>f(3),∵f(x)在(1,+∞)上单调递增,∴x﹣1>3,即x>4,当x﹣1<1,即x<2时,不等式f(x﹣1)>0等价为f(x﹣1)>f(﹣1),∵f(x)在(﹣∞,1)上单调递减,∴x﹣1<﹣1,即x<0,综上x>4或x<0,即f(x﹣1)>0的解集为(﹣∞,0)∪(4,+∞),故选:A.12.【解答】解:由图可知,A=2,且,∴sinφ=,∵0<φ<,∴φ=,则2sin()=﹣2,可得sin()=﹣1,∴,k∈Z,则,k∈Z.取k=0,得ω=2.∴f(x)=2sin(2x+).则f(x)的周期为π,A错误;当x∈时,2x+∈[﹣,],f(x)先减后增,B错误;f()=2sin2π=0,函数f(x)的图象关于点对称,故C正确;把函数f(x)的图象向右平移个单位,所得图象对应的函数为f(x)=2sin[2(x﹣)+]=2sin(2x﹣),函数为非奇非偶函数,故D错误.∴说法正确的是C.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:∵==x+xi,∵,∴x+1+xi=yi,∴x+1=0,x=y,∴x=y=﹣1.则x+y=﹣2.故答案为:﹣2.14.【解答】解:曲线,可得f′(x)=,所以f′(0)=1,故切线方程是:y﹣0=1(x﹣0),即y=x,故答案为:y=x.15.【解答】解:点P到原点的距离为r==2,根据三角函数的定义,得sinα=﹣…(2分)∵点P在第四象限,也就是角α在第四象限,可得:cosα=,tanα=﹣.…(4分)∴=cosα+tanα=﹣=.故答案为:.16.【解答】解:作出的图象,如图:由y=e x的导数y′=e x,直线y=x+a与y=e x的切点为(m,e m),可得e m=1,即m=0,可得切点为(0,1),此时a=1,当a>1时,直线y=x+a与曲线y=f(x)有两个交点,则a≥1时,f(x)=x+a有两个零点,故答案为:[1,+∞).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)===.所以,f(x)的最小正周期为.(2)由,得,∴,,∴f(x)在区间上的最小值是﹣1.18.【解答】解:(1)根据表中数据可以得出列联表中的数据如下:(2)计算观测值,因此能在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关.19.【解答】解:(1)f'(x)=3ax2+2bx﹣2,由题意得,,即,解得,∴.(2)由f(x)=﹣6x﹣m(﹣2≤x≤0)有两个不同的实数解,得在[﹣2,0]上有两个不同的实数解,设,由g'(x)=x2﹣3x﹣4,由g'(x)=0,得x=4或x=﹣1,当x∈(﹣2,﹣1)时,g'(x)>0,则g(x)在[﹣2,﹣1]上递增,当x∈(﹣1,0)时,g'(x)<0,则g(x)在[﹣1,0]上递减,由题意得,即,解得,即实数m的取值范围是.20.【解答】解:(1)由散点图可以判断,模型更可靠.(2)令,则建立y关于ω的线性回归方程y=dω+c,则.∴,∴y关于ω的线性回归方程为.因此,y关于x的回归方程为.当x=20时,该书每册的成本费(元).21.【解答】解:(1),当a≤0时,f'(x)>0,则f(x)在(0,+∞)上为增函数,当a>0时,由f'(x)>0,得,则f(x)在上为增函数;由f'(x)<0,得,则f(x)在上为减函数.综上,当a≤0时,f(x)在(0,+∞)上为增函数;当a>0时,f(x)在上为增函数,在上为减函数.(2)由题意,x(lnx+1)>k(x﹣1)恒成立,即,设,则,令h(x)=x﹣lnx﹣2(x>1),则,所以,h(x)在(1,+∞)上为增函数,由h(2)=﹣ln2<0,,,故h(x)在(1,+∞)上有唯一实数根m∈(3,4),使得m﹣lnm﹣2=0,则当x∈(1,m)时,h(x)<0;当x∈(m,+∞)时,h(x)>0,即g(x)在(1,m)上为减函数,(m,+∞)上为增函数,所以g(x)在x=m处取得极小值,为,∴k<m,由3<m<4,得整数k的最大值为3.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【解答】解:(1)直线l的参数方程为(t为参数).由曲线C的极坐标方程ρ=4cosθ,得ρ2=4ρcosθ,把x=ρcosθ,y=ρsinθ,代入得曲线C的直角坐标方程为(x﹣2)2+y2=4.(2)把,代入圆C的方程,得,化简得,设A,B两点对应的参数分别为t1,t2,则,∴t1>0,t2>0,则.[选修4-5:不等式选讲]23.【解答】解:(1)当a=1时,由f(x)>2得:|2x+1|﹣|x﹣1|>2,故有或或,∴x<﹣4或或x>1,∴x<﹣4或,∴f(x)>2的解集为;(2)当a=0时,∴f(x)min=f(0)=﹣1,由﹣1>t2﹣t﹣7得:t2﹣t﹣6<0,∴﹣2<t<3,∴t的取值范围为(﹣2,3).。
山东省济南市2016-2017学年高二第二学期期末考试数学试卷理
2016—2017学年度第二学期期末考试高二数学试题(理科)说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,共20题,第Ⅱ卷为第3页至第4页,全卷共24个题。
请将第Ⅱ卷答案答在答题纸相应位置,考试结束后将答题纸上交。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题,每题5分,共75分)一、 选择题(本大题包括15小题,每小题5分,共75分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1.已知i 是虚数单位,复数2iz 2i=+,则=( )A. 24i 55-+B. 24i 55+C. 24i 55-D. 24i 55--2.10×9×8×…×4可表示为( ) A .610AB .710AC .610CD . 710C3.由直线x 6π=-,x 6π=,y 0=与直线y cos x =所围成的封闭图形的面积为( )A .12 B .1 C D 4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)=( ) A .0.6B .0.4C .0.3D .0.25.对于函数x 2e 2k f (x)ln x x x=+-,若f′(1)=1,则k=( )A .B .C .﹣D .﹣ 6.()5221x 21x ⎛⎫+- ⎪⎝⎭的展开式的常数项是( )A .﹣3B .﹣2C .2D .37.从1~9这9个正整数中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B|A )=( )A .B .C .D .8.某学校组织5个年级的学生外出参观包括甲科技馆在内的5个科技馆,每个年级任选一个科技馆参观,则有且只有两个年级选择甲科技馆的方案有( )A .2354A A ⨯种B .235A 4⨯种C .2354C A ⨯种D .235C 4⨯种9.用数学归纳法证明+++…+≥(n ∈N *),从“n =k (k ∈N *)”到“n=k +1”时,左边需增加的代数式为( )A .B .C .++…+ D . ++…+10.已知函数2f (x)xln x ax =-有两个极值点,则实数a 的取值范围为( )A .(),0-∞B .()0,+∞C .10,2⎛⎫ ⎪⎝⎭D .()0,111.已知函数()xx bf x e +=在区间(﹣∞,2)上为单调递增函数,则实数b 的取值范围是( )A .(﹣1,1)B .[0,1)C .(1,+∞)D .(﹣∞,﹣1]12.六个人从左到右排成一行,最右端只能排甲或乙,最左端不能排乙,则不同的排法种数共有( ) A .192B .216C .240D .28813.设二项式n1x ⎛⎫ ⎪⎝⎭展开式的各项系数的和为P ,所有二项式系数的和为S ,若P+S=272,则n=( ) A .4B .5C .6D .814. 用反证法证明命题:“已知a ,b ∈N ,若ab 可被5整除,则a ,b 中至少有一个能被5整除”时,反设正确的是( )A .a ,b 都不能被5整除B .a ,b 都能被5整除C .a ,b 中有一个不能被5整除D .a ,b 中有一个能被5整除15. 设f (x)是定义在R 上的奇函数,且f (2)0=,当x 0>时,有/()()0-<xf x f x 恒成立,则不等式()0>f x x的解集为。
2017-2018学年山东省济南市高二年级下学期期末考试数学(文)试题-解析版
绝密★启用前山东省济南市2017-2018学年高二年级下学期期末考试数学(文)试题一、单选题1.复数(为虚数单位)的共轭复数为()A. B. C. D.【答案】A【解析】分析:先化简复数,再求其共轭复数.详解:由题得=,所以它的共轭复数为.故答案为:A.点睛:(1)本题主要考查复数的计算和共轭复数,意在考查学生对这些知识的掌握水平和基本计算能力.(2) 复数的共轭复数2.已知集合,,则为()A. B. C. D.【答案】C【解析】分析:先化简集合N,再求.详解:由题得N={-1,0,1},所以={0,1}.故答案为:C.点睛:(1)本题主要考查集合的化简和交集,意在考查学生对这些知识的掌握水平.(2)解答集合问题时,要注意看清集合元素的属性,不要漏了,否则容易出错.3.函数的定义域为()A. B. C. D.【答案】B【解析】分析:由题得2x+1>0且ln(2x+1)≠0,解不等式组即得函数的定义域.详解:由题得2x+1>0且ln(2x+1)≠0,所以x∈,故答案为:B.点睛:(1)本题主要考查函数的定义域的求法,意在考查学生对这些知识的掌握水平.(2)求函数的定义域时,要考虑全面,不要漏了不等式.4.设命题:,则为()A. B.C. D.【答案】C【解析】分析:利用全称命题的否定解答.详解:由全称命题的否定得为:.故答案为:C.点睛:(1)本题的主要考查全称命题的否定,意在考查学生对该知识的掌握水平.(2)全称命题:,全称命题的否定():.5.若,则()A. B. C. D.【答案】D【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,,所以选项A错误.对于选项B,因为,对数函数是增函数,所以,所以选项B 错误.对于选项C,,所以选项C错误.对于选项D,因为,指数函数是减函数,所以,所以选项D正确.故答案为:D.点睛:(1)本题主要考查不等式的性质和函数的性质,意在考查学生对这些知识的掌握水平.(2)比较实数的大小,一般利用作差法和作商法,本题利用的是作差法,注意函数的图像和性质的灵活运用.6.“若,且,求证,中至少有一个成立.”用反证法证明这个命题时,下列假设正确的是()A. 假设,B. 假设,C. 假设和中至多有一个不小于D. 假设和中至少有一个不小于【答案】B【解析】分析:由于中至少有一个成立的否定是,所以应该假设.详解:由于中至少有一个成立的否定是,所以利用反证法证明是应该假设.故答案为:B点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)中至少有一个成立的否定是.7.已知,为实数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】分析:首先需要分析当时,一定有,但如果时,满足,此时无意义,从而得到“”是“”的必要不充分条件,从而得到正确的结果.详解:如果,则一定有,但是如果时,满足,此时无意义,所以“”是“”的必要不充分条件,故选B.点睛:该题考查的是有关充分必要条件的判断,分析得出谁能推出谁是关键,注意必要条件与充分条件的定义,属于简单题目.8.设的三边长分别为,,,面积为,内切圆半径为,则.类比这个结论可知:四面体的四个面的面积分别为,,,,体积为,内切球半径为,则( )A. B.C. D.【答案】C【解析】分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.详解:设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为故答案为:C.点睛:(1)本题主要考查类比推理和几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).9.已知,取值如下表:从所得的散点图分析可知:与线性相关,且,则()A. B. C. D.【答案】D【解析】分析:首先根据题中所给的表中的数据,计算得出样本中心点的坐标,利用回归直线必过样本中心点,代入求得结果.详解:依题意得,,,因为回归直线必过样本中心点,即点,所以有,解得,故选D.点睛:该题考查的是有关回归直线的有关问题,涉及到的知识点有回归直线一定过样本中心点,计算得出相应坐标的平均值,求得样本中心点的坐标,代入求得结果.10.函数的图象大致为()A. B.C. D.【答案】D【解析】分析:先求函数的定义域排除B,再求函数的单调性得解.详解:由题得lnx-1≠0,所以x≠e,所以排除选项B.由题得由于y=lnx-1在定义域内是增函数,所以在上都是减函数,故答案为:D.点睛:(1)本题主要考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)根据函数的解析式找图像,一般先找差异,再验证,可以提高解析效率.11.已知函数为偶函数,且在上单调递增,,则的解集为()A. B.C. D.【答案】A【解析】分析:先根据函数为偶函数,得到函数f(x)的图像关于直线x=1对称,再根据函数的图像和性质得到当x<-1或x>3时,f(x)>0,所以由得x-1<-1或x-1>3,解之即得不等式的解集.详解:因为函数为偶函数,所以函数f(x)的图像关于直线x=1对称.因为,所以.又因为在上单调递增,所以f(x)>0时,x<-1或x>3,因为,所以x-1<-1和x-1>3,所以x<0或x>4.故答案为:A.点睛:(1)本题主要考查函数的图像和性质,考查利用函数的图像和性质解不等式,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解抽象的函数不等式,一般先研究函数的图像和性质,再利用其图像和性质解不等式.12.已知函数的图象如图所示,则下列说法正确的是()A. 函数的周期为B. 函数在上单调递增C. 函数的图象关于点对称D. 把函数的图象向右平移个单位,所得图象对应的函数为奇函数【答案】C【解析】分析:先根据图像求出函数的解析式为,再利用函数的图像和性质逐一分析选项的正误得解.详解:由题得A=2,因为因为,所以,因为,当k=1时,w=2,所以.对于选项A,由于,所以选项A是错误的.对于选项B,从图像可以看出与点相邻的左边的最高点坐标为,所以函数在上是非单调的,所以选项B是错误的.对于选项C,,所以函数的图象关于点对称,所以选项C是正确的.对于选项D,把函数的图像向右平移个单位,所得图象对应的函数为不是奇函数,所以选项D是错误的.故答案为:C.点睛:(1)本题主要考查三角函数解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是求出函数的解析式为.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知(),则_______.【答案】【解析】分析:先化简等式,再根据复数相等的概念得到关于x,y的方程组,解之即得x,y的值,即得x+y的值.详解:由题得所以x+y=-2.故答案为:-2.点睛:(1)本题主要考查复数的化简和复数相等的概念,意在考查学生对这些知识的掌握水平.(2) 复数相等:.14.曲线在点处的切线方程为______.【答案】【解析】分析:先求导,再求切线的斜率,再写出切线的方程.详解:由题得所以切线方程为,故答案为:y=x.点睛:(1)本题主要考查导数的几何意义和切线的求法,意在考虑学生对这些知识的掌握水平.(2)函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是15.已知角的终边上一点,则______.【答案】【解析】分析:先利用三角函数的坐标定义求出,再化简已知,把的值代入即得解.详解:由题得又故答案为:.点睛:(1)本题主要考查三角函数的坐标定义和诱导公式,意在考查学生对这些知识的掌握水平和基本的运算能力.(2)点p(x,y)是角终边上的任意的一点(原点除外),r代表点到原点的距离,则sin=, cos= ,tan=.16.已知若有两个零点,则实数的取值范围是______.【答案】【解析】分析:问题等价于y=f(x)的图象与y=x+a的图象有两个交点,作图可得.详解:作出两个函数的图像如图所示,当直线y=x+a经过点(0,1)时,此时a=1,直线和函数y=f(x)的图像显然有两个交点.当a≥1时,直线和函数y=f(x)的图像显然有两个交点.当直线y=x+a经过点(0,-1)时,此时a=-1,设所以在(1,0)处的切线方程为,刚好是直线y=x+a,所以此时直线和函数的图像只有一个交点,当a<-1时,观察图像得直线和函数的图像只有一个交点,故a≥1时,若有两个零点.故答案为:.点睛:(1)本题主要考查零点问题,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)本题的关键是证明a<1时,直线和函数的图像没有两个零点,证明的关键是证明a=-1时,直线和函数的图像只有一个零点.三、解答题17.已知函数.(1)求的最小正周期;(2)求在区间上的最小值.【答案】(1);(2)【解析】分析:(1)先化简函数解析式得,再求函数的最小正周期.(2)利用三角函数的图像和性质和不等式性质逐步推理出函数在区间上的最小值.详解:(1)所以的最小正周期为.(2)由得,∴,,∴在区间上的最小值是.点睛:(1)本题主要考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合思想方法.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.18.在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:(1)根据上述表格完成下列列联表:(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?(参考公式:,其中)【答案】(1)见解析;(2)见解析【解析】分析:(1)根据题表中数据可以得到列联表;(2)计算的值,与临界值比较,即可得出结论.详解:(1)根据表中数据可以得出列联表中的数据如下:(2)计算观测值,因此能在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关.点睛:该题考查的是有关统计以及独立检验的问题,在解题的过程中,涉及到的知识点有列联表的补充以及独立检验的问题,注意认真分析题意,提炼相应的数据,填入对应的位置,得到相应的结果,计算的值,与临界值比较大小,得到结果.19.已知函数,且当时,取得极值为.(1)求的解析式;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.【答案】(1)(2)【解析】分析:(1)先根据导数几何意义得,再与函数值联立方程组解得的解析式;(2)先化简方程得,再利用导数研究函数在上单调性,结合函数图像确定条件,解得结果.详解:(1),由题意得,,即,解得,∴.(2)由有两个不同的实数解,得在上有两个不同的实数解,设,由,由,得或,当时,,则在上递增,当时,,则在上递减,由题意得,即,解得,点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20.对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.为了预测印刷20千册时每册的成本费,建立了两个回归模型:,.(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)(2)根据所给数据和(1)中选择的模型,求关于的回归方程,并预测印刷20千册时每册的成本费.附:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:,.【答案】(1)见解析.(2),1.6.【解析】分析:(1)根据散点呈曲线趋势,选模型更可靠. (2)根据公式求得,根据求得,最后求自变量为20 对应得函数值.详解:(1)由散点图可以判断,模型更可靠.(2)令,则,则.∴,∴关于的线性回归方程为.因此,关于的回归方程为.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.21.已知函数.(1)讨论的单调性;(2)若,在上恒成立,求整数的最大值.【答案】(1)见解析(2)3【解析】分析:(1)先求导得到,再对a分类讨论求的单调性.(2)先化简分离参数得到,再构造函数设利用导数求其最小值,即得解.详解:(1)当时,,则在上为增函数,当时,由,得,则在上为增函数;由,得,则在上为减函数.综上,当时,在上为增函数;当时,在上为增函数,在上为减函数.(2)由题意,恒成立,即,设,则,令(),则,所以在上为增函数,由,,,故在上有唯一实数根,使得,则当时,;当时,,即在上为减函数,上为增函数,所以在处取得最小值,为,∴,由,得整数的最大值为3.点睛:(1)本题主要考查利用导数求函数的单调性和最值,考查利用导数解决不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题有两个关键,其一是分离参数,其二是构造函数设利用导数求其最小值.22.选修4-4:坐标系与参数方程在直角坐标系中,是过点且倾斜角为的直线.以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的参数方程与曲线的直角坐标方程;(2)若直线与曲线交于两点,,求.【答案】(1) (为参数);.(2) .【解析】分析:(1)先根据倾斜角写直线的参数方程,根据,将曲线极坐标方程化为直角坐标方程,(2)将直线的参数方程代入曲线的直角坐标方程,根据参数几何意义以及韦达定理得.详解:(1)直线的参数方程为(为参数).由曲线的极坐标方程,得,把,,代入得曲线的直角坐标方程为.(2)把代入圆的方程得,化简得,设,两点对应的参数分别为,,则,∴,,则.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23.[选修4-5:不等式选讲]已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.【答案】(1).(2).【解析】分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先根据分段函数性质求,再解一元二次不等式得实数的取值范围.详解:(1)当时,由得:,故有或或,∴或或,∴或,∴的解集为.(2)当时,∴,由得:,∴,∴的取值范围为.点睛:含绝对值不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
山东省济南市2017-2018学年高二年级下学期期末考试数学(文)试题(解析版)
高二教学质量抽测考试文科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数(为虚数单位)的共轭复数为()A. B. C. D.【答案】A【解析】分析:先化简复数,再求其共轭复数.详解:由题得=,所以它的共轭复数为.故答案为:A.点睛:(1)本题主要考查复数的计算和共轭复数,意在考查学生对这些知识的掌握水平和基本计算能力.(2) 复数的共轭复数2. 已知集合,,则为()A. B. C. D.【答案】C【解析】分析:先化简集合N,再求.详解:由题得N={-1,0,1},所以={0,1}.故答案为:C.点睛:(1)本题主要考查集合的化简和交集,意在考查学生对这些知识的掌握水平.(2)解答集合问题时,要注意看清集合元素的属性,不要漏了,否则容易出错.3. 函数的定义域为()A. B. C. D.【答案】B【解析】分析:由题得2x+1>0且ln(2x+1)≠0,解不等式组即得函数的定义域.详解:由题得2x+1>0且ln(2x+1)≠0,所以x∈,故答案为:B.点睛:(1)本题主要考查函数的定义域的求法,意在考查学生对这些知识的掌握水平.(2)求函数的定义域时,要考虑全面,不要漏了不等式.4. 设命题:,,则为()A. ,B. ,C. ,D. ,【答案】C【解析】分析:利用全称命题的否定解答.详解:由全称命题的否定得为:.故答案为:C.点睛:(1)本题的主要考查全称命题的否定,意在考查学生对该知识的掌握水平.(2)全称命题:,全称命题的否定():.5. 若,则()A. B. C. D.【答案】D【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,,所以选项A错误.对于选项B,因为,对数函数是增函数,所以,所以选项B错误.对于选项C,,所以选项C错误.对于选项D,因为,指数函数是减函数,所以,所以选项D正确.故答案为:D.点睛:(1)本题主要考查不等式的性质和函数的性质,意在考查学生对这些知识的掌握水平.(2)比较实数的大小,一般利用作差法和作商法,本题利用的是作差法,注意函数的图像和性质的灵活运用.6. “若,且,求证,中至少有一个成立.”用反证法证明这个命题时,下列假设正确的是()A. 假设,B. 假设,C. 假设和中至多有一个不小于2D. 假设和中至少有一个不小于2【答案】B【解析】分析:由于中至少有一个成立的否定是,所以应该假设.详解:由于中至少有一个成立的否定是,所以利用反证法证明是应该假设.故答案为:B点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)中至少有一个成立的否定是.7. 已知,为实数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】分析:首先需要分析当时,一定有,但如果时,满足,此时无意义,从而得到“”是“”的必要不充分条件,从而得到正确的结果.详解:如果,则一定有,但是如果时,满足,此时无意义,所以“”是“”的必要不充分条件,故选B.点睛:该题考查的是有关充分必要条件的判断,分析得出谁能推出谁是关键,注意必要条件与充分条件的定义,属于简单题目.8. 设的三边长分别为,,,面积为,内切圆半径为,则.类比这个结论可知:四面体的四个面的面积分别为,,,,体积为,内切球半径为,则()A. B.C. D.【答案】C【解析】分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.详解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为故答案为:C.点睛:(1)本题主要考查类比推理和几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).从所得的散点图分析可知:与线性相关,且,则()A. B. C. D.【答案】D【解析】分析:首先根据题中所给的表中的数据,计算得出样本中心点的坐标,利用回归直线必过样本中心点,代入求得结果.详解:依题意得,,,因为回归直线必过样本中心点,即点,所以有,解得,故选D.点睛:该题考查的是有关回归直线的有关问题,涉及到的知识点有回归直线一定过样本中心点,计算得出相应坐标的平均值,求得样本中心点的坐标,代入求得结果.10. 函数的图象大致为()A. B.C. D.【答案】D【解析】分析:先求函数的定义域排除B,再求函数的单调性得解.详解:由题得lnx-1≠0,所以x≠e,所以排除选项B.由题得由于y=lnx-1在定义域内是增函数,所以在上都是减函数,故答案为:D.点睛:(1)本题主要考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)根据函数的解析式找图像,一般先找差异,再验证,可以提高解析效率.11. 已知函数为偶函数,且在上单调递增,,则的解集为()A. B.C. D.【答案】A【解析】分析:先根据函数为偶函数,得到函数f(x)的图像关于直线x=1对称,再根据函数的图像和性质得到当x<-1或x>3时,f(x)>0,所以由得x-1<-1或x-1>3,解之即得不等式的解集.详解:因为函数为偶函数,所以函数f(x)的图像关于直线x=1对称.因为,所以.又因为在上单调递增,所以f(x)>0时,x<-1或x>3,因为,所以x-1<-1和x-1>3,所以x<0或x>4.故答案为:A.点睛:(1)本题主要考查函数的图像和性质,考查利用函数的图像和性质解不等式,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解抽象的函数不等式,一般先研究函数的图像和性质,再利用其图像和性质解不等式.12. 已知函数的图象如图所示,则下列说法正确的是()A. 函数的周期为B. 函数在上单调递增C. 函数的图象关于点对称D. 把函数的图象向右平移个单位,所得图象对应的函数为奇函数【答案】C【解析】分析:先根据图像求出函数的解析式为,再利用函数的图像和性质逐一分析选项的正误得解.详解:由题得A=2,因为因为,所以,因为,当k=1时,w=2,所以.对于选项A,由于,所以选项A是错误的.对于选项B,从图像可以看出与点相邻的左边的最高点坐标为,所以函数在上是非单调的,所以选项B是错误的.对于选项C,,所以函数的图象关于点对称,所以选项C是正确的.对于选项D,把函数的图像向右平移个单位,所得图象对应的函数为不是奇函数,所以选项D是错误的.故答案为:C.点睛:(1)本题主要考查三角函数解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是求出函数的解析式为.二、填空题(本大题共4小题,每小题5分,共20分)13. 已知,则__________.【答案】【解析】分析:先化简等式,再根据复数相等的概念得到关于x,y的方程组,解之即得x,y的值,即得x+y的值. 详解:由题得所以x+y=-2.故答案为:-2.点睛:(1)本题主要考查复数的化简和复数相等的概念,意在考查学生对这些知识的掌握水平.(2) 复数相等:.14. 曲线在点处的切线方程为__________.【答案】【解析】分析:先求导,再求切线的斜率,再写出切线的方程.详解:由题得所以切线方程为,故答案为:y=x.点睛:(1)本题主要考查导数的几何意义和切线的求法,意在考虑学生对这些知识的掌握水平.(2)函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是15. 已知角的终边上一点,则__________.【答案】【解析】分析:先利用三角函数的坐标定义求出,再化简已知,把的值代入即得解.详解:由题得又故答案为:.(1)本题主要考查三角函数的坐标定义和诱导公式,意在考查学生对这些知识的掌握水平和基本的运算能力.(2)点睛:点p(x,y)是角终边上的任意的一点(原点除外),r代表点到原点的距离,则sin=, cos= ,tan=.16. 已知,若有两个零点,则实数的取值范围是__________.【答案】【解析】分析:问题等价于y=f(x)的图象与y=x+a的图象有两个交点,作图可得.详解:作出两个函数的图像如图所示,当直线y=x+a经过点(0,1)时,此时a=1,直线和函数y=f(x)的图像显然有两个交点.当a≥1时,直线和函数y=f(x)的图像显然有两个交点.当直线y=x+a经过点(0,-1)时,此时a=-1,设所以在(1,0)处的切线方程为,刚好是直线y=x+a,所以此时直线和函数的图像只有一个交点,当a<-1时,观察图像得直线和函数的图像只有一个交点,故a≥1时,若有两个零点.故答案为:.点睛:(1)本题主要考查零点问题,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)本题的关键是证明a<1时,直线和函数的图像没有两个零点,证明的关键是证明a=-1时,直线和函数的图像只有一个零点.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知函数.(1)求的最小正周期;(2)求在区间上的最小值.【答案】(1);(2)【解析】分析:(1)先化简函数解析式得,再求函数的最小正周期.(2)利用三角函数的图像和性质和不等式性质逐步推理出函数在区间上的最小值.详解:(1)所以的最小正周期为.(2)由得,∴,,∴在区间上的最小值是.点睛:(1)本题主要考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力数形结合思想方法.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.18. 在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:(1)根据上述表格完成下列列联表:(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?(参考公式:,其中)【答案】(1)见解析;(2)见解析【解析】分析:(1)根据题表中数据可以得到列联表;(2)计算的值,与临界值比较,即可得出结论.详解:(1)根据表中数据可以得出列联表中的数据如下:(2)计算观测值,因此能在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关.点睛:该题考查的是有关统计以及独立检验的问题,在解题的过程中,涉及到的知识点有列联表的补充以及独立检验的问题,注意认真分析题意,提炼相应的数据,填入对应的位置,得到相应的结果,计算的值,与临界值比较大小,得到结果.19. 已知函数,且当时,函数取得极值为.(1)求的解析式;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.【答案】(1);(2)【解析】分析:(1)先根据导数几何意义得,再与函数值联立方程组解得的解析式;(2)先化简方程得,再利用导数研究函数在上单调性,结合函数图像确定条件,解得结果.详解:(1),由题意得,,即,解得,∴.(2)由有两个不同的实数解,得在上有两个不同的实数解,设,由,由,得或,当时,,则在上递增,当时,,则在上递减,由题意得,即,解得,点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.为了预测印刷20千册时每册的成本费,建立了两个回归模型:,.(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)(2)根据所给数据和(1)中选择的模型,求关于的回归方程,并预测印刷20千册时每册的成本费.附:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:,.【答案】(1)更可靠;(2)【解析】分析:(1)根据散点呈曲线趋势,选模型更可靠. (2)根据公式求得,根据求得,最后求自变量为20 对应得函数值.详解:(1)由散点图可以判断,模型更可靠.(2)令,则,则.∴,∴关于的线性回归方程为.因此,关于的回归方程为.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.21. 已知函数.(1)讨论的单调性;(2)若,在上恒成立,求整数的最大值.【答案】(1)见解析;(2)3【解析】分析:(1)先求导得到,再对a分类讨论求的单调性.(2)先化简分离参数得到,再构造函数设利用导数求其最小值,即得解.详解:(1)当时,,则在上为增函数,当时,由,得,则在上为增函数;由,得,则在上为减函数.综上,当时,在上为增函数;当时,在上为增函数,在上为减函数.(2)由题意,恒成立,即,设,则,令(),则,所以在上为增函数,由,,,故在上有唯一实数根,使得,则当时,;当时,,即在上为减函数,上为增函数,所以在处取得最小值,为,∴,由,得整数的最大值为3.点睛:(1)本题主要考查利用导数求函数的单调性和最值,考查利用导数解决不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题有两个关键,其一是分离参数,其二是构造函数设利用导数求其最小值.22. 在直角坐标系中,是过点且倾斜角为的直线.以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的参数方程与曲线的直角坐标方程;(2)若直线与曲线交于两点,,求.【答案】(1)(为参数),;(2)【解析】分析:(1)先根据倾斜角写直线的参数方程,根据,将曲线极坐标方程化为直角坐标方程,(2)将直线的参数方程代入曲线的直角坐标方程,根据参数几何意义以及韦达定理得.详解:(1)直线的参数方程为(为参数).由曲线的极坐标方程,得,把,,代入得曲线的直角坐标方程为.(2)把代入圆的方程得,化简得,设,两点对应的参数分别为,,则,∴,,则.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23. 已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.【答案】(1);(2)【解析】分析:(1)先根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先根据分段函数性质求,再解一元二次不等式得实数的取值范围.详解:(1)当时,由得:,故有或或,∴或或,∴或,∴的解集为.(2)当时,∴,由得:,∴,∴的取值范围为.点睛:含绝对值不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
2015-2016学年山东省济南市高二(下)期末数学试卷(文科)(解析版)
2015-2016学年山东省济南市高二(下)期末数学试卷(文科)一、选择题(共50分)1.(5分)若集合M={x|x>2},n={x|1<x≤3},则N∩(∁R M)等于()A.(1,2]B.[﹣2,2]C.(1,2)D.[2,3]2.(5分)已知复数z满足(3+i)z=4﹣2i,则复数z=()A.1﹣i B.1+i C.2+i D.2﹣i3.(5分)设函数f(x)=x4+x﹣1,则f′(1)+f′(﹣1)等于()A.﹣2B.﹣4C.4D.24.(5分)已知函数f(x)为R上的奇函数,当x>0时,则f(x)=,则f(﹣4)等于()A.﹣4B.﹣2C.2D.不存在5.(5分)设函数f(x)=,若f(x0)>1,则x0的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)∪(2,+∞)D.(﹣∞,﹣2)∪(0,+∞)6.(5分)在△ABC中,若,则△ABC的形状一定是()A.等腰三角形B.钝角三角形C.等边三角形D.直角三角形7.(5分)已知与是非零向量且满足(﹣6)⊥,(2﹣3)⊥,则与的夹角是()A.B.C.D.8.(5分)若函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,则()A.a>﹣2B.a≥﹣2C.a<﹣2D.a≤﹣29.(5分)已知函数f(x)=sin2(ωx)﹣(ω>0)的最小正周期为,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()A.B.C.D.10.(5分)设函数f(x)在R上存在导函数f′(x),对于任意的实数x,有f(x)=3x2﹣f(﹣x),当x∈(﹣∞,0)时,f′(x)+<3x,若f(m+3)﹣f(﹣m)≤9m+,则实数m的取值范围是()A.[﹣,+∞)B.[﹣,+∞)C.[﹣1,+∞)D.[﹣2,+∞)二、填空题(共25分)11.(5分)命题“∀x∈R,lg(x2+1)﹣x>0“的否定为.12.(5分)1﹣2sin267.5°=.13.(5分)若=,=(,则λ的值为.14.(5分)函数f(x)=e x+x2﹣x在区间[﹣1,1]上的值域为.15.(5分)设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B,则cos B的值为.三、解答题16.(12分)已知指数函数f(x)=a x(a>0,且a≠1)过点(﹣2,9)(1)求函数f(x)的解析式(2)若f(2m﹣1)﹣f(m+3)<0,求实数m的取值范围.17.(12分)设p:函数f(x)=lg(ax2﹣x+)的定义域为R;q:2x﹣4x对一切实数x恒成立.如果命题“p且q“为假命题,求实数a的取值范围.18.(12分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)的解析式;(2)求图中a,b的值及函数f(x)的递减区间.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=sin B,c=6,B=30°.(1)求b的值;(2)求△ABC的面积.20.(13分)设向量=(1,2cosθ),=(m,﹣4),θ∈(﹣,).(1)若m=﹣4,且A、B、C三点共线,求θ的值;(2)若对任意m∈[﹣1,0],•≤10恒成立,求sin(θ﹣)的最大值.21.(14分)已知曲线f(x)=在x=0处的切线方程为y=x+b.(1)求a,b的值;(2)若对任意x∈(,),f(x)<恒成立,求m的取值范围.2015-2016学年山东省济南市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共50分)1.【解答】解:集合M={x|x>2},n={x|1<x≤3},∴∁R M={x|x≤2},∴N∩(∁R M)={x|1<x≤2}=(1,2].故选:A.2.【解答】解:∵(3+i)z=4﹣2i,∴z====1﹣i,故选:A.3.【解答】解:函数的导数f′(x)=4x3+1,则f′(1)+f′(﹣1)=4+1﹣4+1=2,故选:D.4.【解答】解:∵当x>0时,f(x)=,∴f(4)=2.又∵函数y=f(x)是定义域为R的奇函数,∴f(﹣x)=﹣f(x)则f(﹣4)=﹣f(4)=﹣2故选:B.5.【解答】解:若x0≤0,f(x0)>1即为﹣2>1,即>3,可得﹣x0>1,即x0<﹣1;若x0>0,f(x0)>1即为x0﹣1>1,解得x0>2.综上可得,x0的取值范围是(﹣∞,﹣1)∪(2,+∞).故选:C.6.【解答】解:在△ABC中,∵,∴=,∴由正弦定理可得:===,可得:a2=b2,∴a=b.故选:A.7.【解答】解:根据条件:,;∵;∴,;∴;∴;∴;∴的夹角为.故选:B.8.【解答】解:∵f(x)=x2+alnx,∴f′(x)=(x>0).设g(x)=2x2+a,∵函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,∴g(1)=2+a<0,∴a<﹣2.故选:C.9.【解答】解:∵f(x)=sin2(ωx)﹣=﹣=﹣cos2ωx,∴=,解得:ω=2,∴f(x)=﹣cos4x,∵将函数f(x)图象沿x轴向右平移a个单位(a>0),得到的新函数为g(x)=﹣cos (4x﹣4a),∴cos4a=0,∴4a=kπ+,k∈Z,当k=0时,a的最小值为.故选:D.10.【解答】解:∵f(x)=3x2﹣f(﹣x),∴f(x)﹣x2+f(﹣x)﹣x2=0,设g(x)=f(x)﹣x2,则g(x)+g(﹣x)=0,∴函数g(x)为奇函数.∵x∈(﹣∞,0)时,f′(x)+<3x,g′(x)=f′(x)﹣3x<﹣,故函数g(x)在(﹣∞,0)上是减函数,故函数g(x)在(0,+∞)上也是减函数,若f(m+3)﹣f(﹣m)≤9m+,则f(m+3)﹣(m+3)2≤f(﹣m)﹣m2,即g(m+3)<g(﹣m),∴m+3≥﹣m,解得:m≥﹣,故选:B.二、填空题(共25分)11.【解答】解:因为全称命题的否定是特称命题,所以命题:“∀x∈R,lg(x2+1)﹣x>0“的否定为:∃x∈R,lg(x2+1)﹣x≤0.故答案为:∃x∈R,lg(x2+1)﹣x≤0.12.【解答】解:1﹣2sin267.5°=cos(2×67.5°)=cos135°=﹣cos45°=,故答案为:.13.【解答】解:因为=,=(,所以=+=+==﹣=(λ+1),所以﹣=λ+1,解得λ=﹣.故答案为:﹣.14.【解答】解:函数的导数f′(x)=e x+2x﹣1,由f′(x)=e x+2x﹣1<0得x<0,由f′(x)=e x+2x﹣1>0,得x>0,即当x=0时,函数取得极小值同时也是最小值f(0)=1,f(1)=e+1﹣1=e,f(﹣1)=e﹣1+1+1=2+<f(1),∴函数的最大值为e,j即函数的值域为[1,e],故答案为:[1,e].15.【解答】解:∵A=2B,,b=3,c=1,∴可得:,可得:a=6cos B,∴由余弦定理可得:a=6×,∴a=2,∴cos B==.故答案为:.三、解答题16.【解答】解:(1)将点(﹣2,9)代入到f(x)=a x得a﹣2=9,解得a=,∴f(x)=(2)∵f(2m﹣1)﹣f(m+3)<0,∴f(2m﹣1)<f(m+3),∵f(x)=为减函数,∴2m﹣1>m+3,解得m>4,∴实数m的取值范围为(4,+∞)17.【解答】解:∵p:函数f(x)=lg(ax2﹣x+)的定义域为R,∴ax2﹣x+>0恒成立,a=0时不满足,舍去;a≠0时,,解得a>3.对于命题q:g(x)=2x﹣4x=+,∴,解得a.若命题“p且q“为真命题,则p与q都为真命题,于是,解得a>3.由于“p且q“为假命题,则p与q至少一个为假命题,∴a≤3.∴实数a的取值范围是(﹣∞,3].18.【解答】解:由图象知A=2,=﹣(﹣)=,则T=π,即=π,则ω=2,即f(x)=2sin(2x+φ),∵f(﹣)=2sin[2×(﹣)+φ]=﹣2,即sin(﹣+φ)=﹣1,∵|φ|<,∴﹣<φ<,∴﹣<φ﹣<﹣,则φ﹣=﹣,即φ=,∴f(x)=2sin(2x+).(2)∵函数的周期T=﹣a=π,∴a=﹣,b=f(0)=2sin=2×=1..由+2kπ≤2x+≤+2kπ(k∈Z)得:+kπ≤x≤+kπ(k∈Z),即函数的单调递减区间为[+kπ,+kπ],(k∈Z)19.【解答】解:(1)由正弦定理可得:,可得:a=,…2分由余弦定理可得:b2=a2+c2﹣2ac cos B,即b2=3b2+36﹣2×,…4分整理可得:b2﹣9b+18=0,解得:b=6或3…6分(2)当b=6时,a=6,所以S=ac sin B=9…9分当b=3时,a=3,所以S=ac sin B=…12分20.【解答】解:(1)若m=﹣4,向量=(1,2cosθ),=(﹣4,﹣4),θ∈(﹣,),由A、B、C三点共线,可得∥BC,即=,求得cosθ=,θ=±.(2)若对任意m∈[﹣1,0],•=(1+m,2cosθ﹣4)•(m,﹣4)=m(m+1)+16﹣8cosθ=m2+m+16﹣8cosθ≤10恒成立,∵m2+m≤0,∴16﹣8cosθ≤10恒成立,求得cosθ≥.故sin(θ﹣)=﹣sin(﹣θ)=﹣cosθ≤﹣,故sin(θ﹣)的最大值为﹣.21.【解答】解:(1)由题意得:f′(x)=,∵曲线y=f(x)在x=0处的切线方程是y=b+b,∴f′(0)=a=1,即a=1,又f(0)=0,从而b=0;(2)由(1)得:f(x)=<对任意x∈(,)恒成立,∴m>3x2﹣6x对任意x∈(,)恒成立,从而m≥﹣,而不等式整理为:m<+3x2﹣6x,令g(x)=+3x2﹣6x,则g′(x)=(x﹣1)(+6),令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,∴g(x)在(,1)递减,在(1,)递增,∴g(x)min=g(1)=e﹣3,∴m的范围是[﹣,e﹣3).。
山东省济南2016-2017学年高二下期末考试数学试题(文)含答案
济南 2016—2017学年度第二学期期末考试高二数学试题(文科)说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,共20题,第Ⅱ卷为第3页至第4页,全卷共24个题。
请将第Ⅱ卷答案答在答题纸相应位置,考试结束后将答题纸上交。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题,每题5分,共75分)一、选择题(本大题包括15小题,每小题5分,共75分,每小题给出的四个选项中,只.有一项...是符合题目要求的,请将正确选项填涂在答题卡上). 1.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( ) A .{0,1,2,6,8} B .{3,7,8} C .{1,3,7,8} D .{1,3,6,7,8}2.已知f (x )=⎩⎪⎨⎪⎧2x -1 x ≥2 ,-x 2+3x x <2 ,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .4 3.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 4.幂函数8622)44()(+-+-=m mx m m x f 在),0(+∞为减函数,则m 的值为A 、1或3B 、1C 、3D 、25.已知3log ,3,)21(21213===c b a ,则,,a b c 之间的大小关系为A .a b c >>B .b a c >>C .b c a >>D .a c b >>6.函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(﹣∞,-1)和 (0,1) 7.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12C .-2D .28.若函数()x xf x k a a -=⋅-(a >0且1a ≠)在(),-∞+∞上既是奇函数又是增函数,则()log ()a g x x k =+图像是 ( )D 9.10.已知函数f (x )=(2x -x 2)e x ,则( )A .f (2)是f (x )的极大值也是最大值B .f (2)是f (x )的极大值但不是最大值C .f (-2)是f (x )的极小值也是最小值D .f (x )没有最大值也没有最小值11.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是( ) 12.函数a x a x x f 21)1(2)(2-+-+=在]21,(-∞上为减函数,则)1(f 的取值范围是( ) A 、]3,(-∞ B 、]1,(--∞ C 、),1[+∞ D 、),3[+∞13.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .6个B .4个C .2个D .0个14.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .(-∞,0]∪[4,+∞)D .[0,4]15. 若f (x )和g (x )都是定义在R 上的奇函数,且F (x )=f (g (x ))+2在(0,+∞)上有最大值8,则在(-∞,0)上,F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值—4第Ⅱ卷(非选择题,共75分)二、填空题:(本大题共5小题,每小题5分,共25分。
山东省济南市2016-2017学年高二数学下学期期中试题 理(含解析)
2016-2017学年度第二学期期中模块考试高二期中数学(理科)试题一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 复数的虚部是()A. 2B.C.D. -1【答案】D【解析】,∴虚部为-1.故选D.点睛:复数代数形式运算问题的常见类型及解题策略:①复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位的看作一类同类项,不含的看作另一类同类项,分别合并即可.②复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.③利用复数相等求参数..2. 古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A. 36B. 45C. 99D. 100【答案】A【解析】三角形数都可写成1+2+…+n=的形式,正方形数都可写成n2的形式①由于16=无正整数解,所以16不是三角形数。
②由于25=无正整数解,所以25不是三角形数。
③由36=解得n=8,所以36是三角形数。
又36=62,所以36也是正方形数。
符合要求④由于49=无正整数解,所以49不是三角形数。
综上所述,既是三角形数又是正方形数的是36故选A.3. A、B、C、D、E、F六人并排站成一排,如果A、B必须相邻且B在A的左边,那么不同的排法种数为()A. 720B. 240C. 120D. 60【答案】C【解析】根据题意,分2步进行分析:、A. B必须相邻且B在A的右边,视A,B为一个元素,且只有一种排法;②、将A,B与其他4个元素,共5个元素全排列,即=120种排法,则符合条件的排法有1×120=120种;故选:C.4. 已知空间四边形ABCD的对角线为AC、BD,设G是CD的中点,则等于( )A. B. C. D.【答案】A【解析】 ,选A.5. 曲线在点处的切线方程为( )A. y=3x-4B.C. y=-4x+3D. y=4x-5【答案】B【解析】∵曲线y=2x3−x2+1,∴y′=6x2−2x,∴切线方程的斜率为:k=y′|x=1=6−2=4,又因为曲线y=2x3−x2+1过点(1,2)∴切线方程为:y−2=4(x−1),即y=4x−2,故选:B.6. 已知向量,若则()A. -5B. 0C. 5D. -7【答案】D【解析】∵,∴存在实数k使得=k,∵,解得k=-,x=−1,y=−6.则x+y=−7.故选:D.7. 函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极值点...有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题分析:函数在点处连续且,若在点附近左侧,右侧,则点为函数的极大值点,满足定义的点有个,故选B. 考点:函数极值点的特征.8. 若,则=()A. B. C. D.【答案】B【解析】试题分析:法一(注重导数概念的应用的解法):因为,所以,选B;法二(注重导数定义中各变量的联系的解法):因为,所以(其中:),故选B.考点:导数的概念.9. 下列求导运算正确的是()A. B.C. D.【答案】B【解析】[ln(2x+1)]′=•(2x+1)′=,(3x)′=3x ln3,(x2cosx)′=2xcosx-x2sinx,于是可得A,C,D错误故选:B10. 若的展开式中,的系数是系数的7倍,则的值为()A. 5B. 5C. 7D. 8【答案】C【解析】试题分析:的展开式的通项公式为,依题意的系数是系数的倍,即,.考点:二项式定理.11. 为使高三同学在高考复习中更好的适应全国卷,进一步提升成绩,济南外国语学校计划聘请北京命题组专家利用周四下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有()A. 36种B. 30种C. 24种D. 6种【答案】B【解析】由于每科一节课,每节至少有一科,必有两科在同一节,先从4个中任选2个看作整体,然后做3个元素的全排列,共=6种方法,再从中排除数学、理综安排在同一节的情形,共=6种方法,故总的方法种数为:6×6﹣6=30,故选:B.点睛:n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题。
山东省济南2016-2017学年高二下学期期末考试数学(文)试题-含答案
2016-2017学年度第二学期期末模块考试高二数学(文)试题(2017.07)考试时间:120分钟 满分150分第I 卷(选择题,共60分)一.选择题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合1{|21,R}x M x x -=<∈, 2{|log 1,R}N x x x =<∈,则M N ⋂等于( )A. [)3,4B. (]2,3 C. ()1,2 D. ()0,12.复数()()()1a i i a R --∈的实部与虚部相等,则实数a =( ) A. 1- B. 0 C. 1 D. 2 3.若点()4,a 在12y x =的图像上,则6atan π的值为 ( ) A. 0B.C. 1D. 4.若不等式2223122x axx a -+⎛⎫<⎪⎝⎭恒成立,则实数a 的取值范围是( )A. ()0,1B. 3,4⎛⎫+∞⎪⎝⎭C. 30,4⎛⎫⎪⎝⎭D. 3,4⎛⎫-∞ ⎪⎝⎭5.已知条件1:22x p >,条件3:01x q x -<-,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要 6.两圆2cos ,2sin ρθρθ==的公共部分面积是( ) A.142π-B. 2C. 12π- D. 2π7.下列四个命题中,①若2a b +≥,则a , b 中至少有一个不小于1的逆命题; ②存在正实数a , b ,使得()lg lg lg a b a b +=+;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”; ④在ABC ∆中, A B <是sin sin A B <的充分不必要条件.真命题的个数是( )A. 3B. 2C. 1D. 08.下列参数方程与普通方程210x y +-=表示同一曲线的方程是( ) A. 2{cos x sint y t ==(t为参数) B. 2{1tan x tan y φφ==-(φ为参数)C. {x y t==t 为参数) D. 2{sin x cos y θθ==(θ为参数)9.曲线C 的极坐标方程是2sin ρθ=,则曲线C 上的点到直线l : {32x y t =+=-+(t 为参数)的最短距离是( ) A. 4 B. 3 C.2 D. 110.不等式152x x ---<的解集是( ) A. (-∞,4) B. (-∞,1) C. (1,4) D. (1,5)11.已知,,a b c R ∈,那么下列命题中正确的是 ( ) A. 若a b >,则22bc ac > B. 若cbc a >,则C. 若330a b ab ><且,则11a b > D. 若220a b ab >>且,则11a b <12.若x , y , a R +∈恒成立,则a 的最小值是( )A.B. C. 2 D.12第二部分(非选择题 共90分)二、填空题共4小题,每小题5分,共20分. 13.计算52lg2lglg258+-= ______. 14.函数()()log 11(01)a f x x a a =-+>≠且恒过定点________. 15.定义在上的偶函数在上是增函数,若,则的解集是______.16.过点(-1,0).与函数f ()=e (e 是自然对数的底数)图像相切的直线方程是________.三、解答题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.[)[).,0)(,,1)2()(2)1(,1,2)(10.(172的取值范围求实数恒成立若对任意的最小值时,求当分)已知函数a x f x x f a x xax x x f >+∞∈-=+∞∈++=18.(10分)已知函数()121f x x x =--+. (1)解不等式()4f x ≥;(2)若关于x 的不等式()221a a x f x +++>恒成立,求实数a 的取值范围.19.(12分)某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如22⨯列联表所示(单位:人). (1)求m ,n ;(2)你有多大把握认为“教学方式与成绩有关系”? 参考公式及数据22()()()()()n ad bc K a b c d a c b d -=++++, 其中d c b a n +++=为样本容量.20.(12分)若以直角坐标系xOy 的O 为极点, Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是26cos sin θρθ=.(1)若曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l的参数方程为32{x ty =+=(t 为参数)当直线l与曲线C 相交于,A B 两点,求AB .21.(12分)已知函数()()()ln f x x a ax a R =++∈.(1)当1a =-时,求函数()y f x =的极值; (2)讨论函数()y f x =的单调性。
2016-2017学年山东省济南一中高二(下)期末数学试卷(理科)(解析版)
A.0.6
B.0.4
C.0.3
D.0.2
5.(5 分)对于函数 f(x)= +lnx﹣ ,若 f′(1)=1,则 k=( )
A. 6.(5 分)(x2+2)(
B.
C.﹣
)5 的展开式的常数项是( )
D.﹣
A.﹣3
B.﹣2
C.2
D.3
7.(5 分)从 1~9 这 9 个正整数中任取 2 个不同的数,事件 A 为“取到的 2 个数之和为偶
2016-2017 学年山东省济南一中高二(下)期末数学试卷(理科)
一、选择题(本大题包括 15 小题,每小题 5 分,共 75 分,每小题给出的四个选项中,只 有一项是符合题目要求的,请将正确选项填涂在答题卡上).
1.(5 分)已知 i 是虚数单位,复数 z= ,则 =( )
A.﹣ + i
B. + i
数”,事件 B 为“取到的 2 个数均为偶数”,则 P(B|A)=( )
A.
B.
C.
D.
8.(5 分)某学校组织 5 个年级的学生外出参观包括甲科技馆在内的 5 个科技馆,每个年级
任选一个科技馆参观,则有且只有两个年级选择甲科技馆的方案有( )
A.A ×A 种
B.A ×43 种
C.C ×A 种
D.C ×43 种
C. ﹣ i
D.﹣ ﹣ i
2.(5 分)10×9×8×…×4 可表示为(
A.A
B.A
) C.C
D.C
3.(5 分)由直线 x=﹣ ,x= ,y=0 与直线 y=cosx 所.
4.(5 分)已知随机变量 ξ 服从正态分布 N(0,σ2),且 P(ξ<2)=0.8,则 P(0<ξ<2) =( )
山东省济南市2016-2017学年高二数学下学期期末试卷文(含解析)
山东省济南市2016-2017学年高二(下)期末试卷数学(文科)一、选择题:本大题共10个小题,每题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0 D.对任意的x∈R,x3﹣x2+1>02.双曲线=1的焦距为()A.2 B.4 C.2 D.43.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln24.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A.B.C.D.5.下列命题中是存在性命题的是()A.∀x∈R,x2>0 B.∃x∈R,x2≤0C.平行四边形的对边平行 D.矩形的任一组对边相等6.2×2列联表中a,b的值分别为()A.94,96 B.52,50 C.52,54 D.54,527.复数6+5i共轭复数的虚部为()A.﹣5i B.5i C.﹣5 D.58.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数9.抛物线y=﹣x2的准线方程是()A.B.y=2 C.D.y=﹣210.双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x二、填空题(共5小题,每小题5分,满分25分)11.已知双曲线的离心率是,则n= .12.(m2+m+1)+(m2+m﹣4)i=3﹣2i,(m∈R)⇒m=1是z1=z2的条件.13.已知抛物线经过点P(4,﹣2),则其标准方程是.14.用类比推理的方法填表:15.不等式x2﹣3x+2≤0成立的充要条件是.三、解答题(共6小题,满分75分)16.已知i是虚数单位,复数,若z2+az+b=1+i,求实数a,b的值.17.将命题“两个全等三角形的面积相等”改为“若p,则q”的形式,再写出它的逆命题、否命题、逆否命题.18.已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.(1)求a、b的值;(2)求f(x)的单调区间.19.求下列各曲线的标准方程(1)实轴长为12,离心率为,焦点在x轴上的椭圆;(2)焦点是双曲线16x2﹣9y2=144的左顶点的抛物线.20.函数在x=1处的导数是.21.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=x3﹣x+8(0<x≤120)已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?2016-2017学年山东省济南市深泉高级技工学校高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0 D.对任意的x∈R,x3﹣x2+1>0【考点】2J:命题的否定.【分析】根据命题“对任意的x∈R,x3﹣x2+1≤0”是全称命题,其否定是对应的特称命题,从而得出答案.【解答】解:∵命题“对任意的x∈R,x3﹣x2+1≤0”是全称命题∴否定命题为:存在x∈R,x3﹣x2+1>0故选C.2.双曲线=1的焦距为()A.2B.4C.2D.4【考点】KC:双曲线的简单性质.【分析】直接利用双曲线方程,求出c,即可得到双曲线的焦距.【解答】解:双曲线=1,可知a2=10,b2=2,c2=12,∴c=2,2c=4.双曲线=1的焦距为:4.故选:D.3.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C. D.ln2【考点】65:导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.4.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】根据椭圆的长轴长是短轴长的2倍可知a=2b,进而可求得c关于a的表达式,进而根据求得e.【解答】解:已知椭圆的长轴长是短轴长的2倍,∴a=2b,椭圆的离心率,故选D.5.下列命题中是存在性命题的是()A.∀x∈R,x2>0 B.∃x∈R,x2≤0C.平行四边形的对边平行 D.矩形的任一组对边相等【考点】2I:特称命题.【分析】根据特称命题的定义进行判断即可.【解答】解:A含有全称量词∀,为全称命题,B含有特称命题∃,为存在性命题,满足条件.C含有隐含有全称量词所有,为全称命题,D含有隐含有全称量词所有,为全称命题,故选:B.6.2×2列联表中a,b的值分别为()A.94,96 B.52,50 C.52,54 D.54,52【考点】BN:独立性检验的基本思想.【分析】根据所给的列联表,根据表中最后一列和最后一行是由本行和本列两个数据之和,列出关于a.b的方程,解方程即可.【解答】解:∵根据所给的列连表可以得到a+21=73,∴a=73﹣21=52∵b+46=73+27∴b=54综上可知a=52,b=54故选C.7.复数6+5i共轭复数的虚部为()A.﹣5i B.5i C.﹣5 D.5【考点】A2:复数的基本概念.【分析】由于复数6+5i共轭复数为 6﹣5i,而 6﹣5i 的虚部等于﹣5,由此得出结论.【解答】解:复数6+5i共轭复数为 6﹣5i,而 6﹣5i 的虚部等于﹣5,∴复数6+5i共轭复数的虚部为﹣5.故选C.8.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数【考点】FC:反证法.【分析】“自然数a,b,c中恰有一个偶数”的反面是:a,b,c中至少有两个偶数或都是奇数.即可得出.【解答】解:用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设是:a,b,c中至少有两个偶数或都是奇数.故选:D.9.抛物线y=﹣x2的准线方程是()A.B.y=2 C.D.y=﹣2【考点】K8:抛物线的简单性质.【分析】先把抛物线转换为标准方程x2=﹣8y,然后再求其准线方程.【解答】解:∵,∴x2=﹣8y,∴其准线方程是y=2.故选B.10.双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【考点】KC:双曲线的简单性质.【分析】化方程为标准方程,可得a,b,代入y=可得渐近线方程.【解答】解:化已知双曲线的方程为标准方程,可知焦点在y轴,且a=3,b=2,故渐近线方程为y==故选A二、填空题(共5小题,每小题5分,满分25分)11.已知双曲线的离心率是,则n= ﹣12或24 .【考点】KC:双曲线的简单性质.【分析】分类讨论当n﹣12>0,且n>0时,双曲线的焦点在y轴,当n﹣12<0,且n<0时,双曲线的焦点在x轴,由题意分别可得关于n的方程,解方程可得.【解答】解:双曲线的方程可化为当n﹣12>0,且n>0即n>12时,双曲线的焦点在y轴,此时可得=,解得n=24;当n﹣12<0,且n<0即n<12时,双曲线的焦点在x轴,此时可得=,解得n=﹣12;故答案为:﹣12或2412.(m2+m+1)+(m2+m﹣4)i=3﹣2i,(m∈R)⇒m=1是z1=z2的充分不必要条件.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据复数相等的条件,利用充分条件和必要条件的定义进行判断.【解答】解:当m=1,则z1=(m2+m+1)+(m2+m﹣4)i=3﹣2i,此时z1=z2,充分性成立.若z1=z2,则,解得m=﹣2或m=1,显然m=1是z1=z2的充分不必要条件.故m=1是z1=z2的充分不必要条件.故答案为:充分不必要.13.已知抛物线经过点P(4,﹣2),则其标准方程是x2=﹣8y或y2=x .【考点】K8:抛物线的简单性质.【分析】根据题意,分析可得抛物线开口向下或向右,分2种情况讨论,求出抛物线的方程,综合可得答案.【解答】解:根据题意,抛物线经过点P(4,﹣2),则抛物线开口向下或向右,若抛物线开口向下,设其标准方程为x2=﹣2py,将P(4,﹣2)代入可得(4)2=﹣2p×(﹣2),解可得﹣2p=﹣8,则此时抛物线的标准方程为:x2=﹣8y,若抛物线开口向右,设其标准方程为y2=2px,将P(4,﹣2)代入可得(﹣2)2=2p×4,解可得2p=1,则此时抛物线的标准方程为:y2=x,综合可得:抛物线的标准方程为:x2=﹣8y或y2=x;故答案为:x2=﹣8y或y2=x.14.用类比推理的方法填表:【考点】F3:类比推理;8G:等比数列的性质.【分析】由于表格左右均为等差数列的性质,表格右边均为等比数列的性质,左边的加法可类比推理到右边的乘法,而左边的乘法可类比到右边的乘方.【解答】解:由等差数列的性质,a3+a4=a2+a5,与等比数列的性质b3•b4=b2•b5,可得等差数列的加法性质可类比推断出等比数列的乘法性质,则a1+a2+a3+a4+a5=5a3=a3+a3+a3+a3+a3,类比推断出在等比数列中b1b2b3b4b5=b3•b3•b3•b3•b3=b35故答案为:b1b2b3b4b5=b3515.不等式x2﹣3x+2≤0成立的充要条件是1≤x≤2 .【考点】2L:必要条件、充分条件与充要条件的判断.【分析】利用一元二次不等式的解法可得解出不等式即可得出.【解答】解:不等式x2﹣3x+2≤0,解得1≤x≤2.∴不等式x2﹣3x+2≤0成立的充要条件是1≤x≤2.故答案为:1≤x≤2.三、解答题(共6小题,满分75分)16.已知i是虚数单位,复数,若z2+az+b=1+i,求实数a,b的值.【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简求得z,代入z2+az+b=1+i,再由复数相等的条件求得a,b的值.【解答】解:====.将z=1﹣i代入z2+az+b=1+i,得(1﹣i)2+a(1﹣i)+b=1+i,即(a+b)﹣(a+2)i=1+i.由复数相等的定义可知,∴.17.将命题“两个全等三角形的面积相等”改为“若p,则q”的形式,再写出它的逆命题、否命题、逆否命题.【考点】25:四种命题间的逆否关系.【分析】确定命题的条件和结论,然后改写成“若p,则q”的形式,然后利用逆命题、否命题、逆否命题与原命题的关系写出相应的命题.【解答】解:若两个三角形全等,则它们的面积相等,逆命题为:若两个三角形的面积相等,则它们全等,否命题为:若两个三角形不全等,则它们的面积不相等,逆否命题为:若两个三角形的面积不相等,则它们不全等,18.已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.(1)求a、b的值;(2)求f(x)的单调区间.【考点】6C:函数在某点取得极值的条件;6B:利用导数研究函数的单调性.【分析】(1)由函数f(x)=2x3+3ax2+3bx+8,知f′(x)=6x2+6ax+3b,再由f(x)在x=1及x=2处取得极值,能求出a、b的值.(2)由(1)知f′(x)=6x2﹣18x+12,由f′(x)=6x2﹣18x+12>0,得x>2,或x<1;由f′(x)=6x2﹣18x+12<0,得1<x<2.由此能求出f(x)的单调区间.【解答】解:(1)∵函数f(x)=2x3+3ax2+3bx+8,∴f′(x)=6x2+6ax+3b,∵f(x)在x=1及x=2处取得极值,∴,解得a=﹣3,b=4.(2)∵a=﹣3,b=4,∴f′(x)=6x2﹣18x+12,由f′(x)=6x2﹣18x+12>0,得x>2,或x<1;由f′(x)=6x2﹣18x+12<0,得1<x<2.∴f(x)的单调增区间为(﹣∞,1),(2,+∞),f(x)的单调减区间为(1,2).19.求下列各曲线的标准方程(1)实轴长为12,离心率为,焦点在x轴上的椭圆;(2)焦点是双曲线16x2﹣9y2=144的左顶点的抛物线.【考点】KK:圆锥曲线的轨迹问题.【分析】(1)设出椭圆的标准方程,利用实轴长为12,离心率为,即可求得几何量,从而可得椭圆的标准方程;(2)确定双曲线的左顶点坐标,设出抛物线方程,即可得到结论.【解答】解:(1)设椭圆的标准方程为(a>b>0)∵实轴长为12,离心率为,∴a=6,∴c=4,∴b2=a2﹣c2=20∴椭圆的标准方程为;(2)由已知,双曲线的标准方程为,其左顶点为(﹣3,0)设抛物线的标准方程为y2=﹣2px(p>0),其焦点坐标为(﹣,0),∴=3,∴p=6∴抛物线的标准方程为y2=﹣12x.20.函数在x=1处的导数是0 .【考点】64:导数的加法与减法法则.【分析】利用导数的加法法则与除法法则对给出的函数进行求导,然后在导函数中把x换1即可求得函数在x=1处的导数.【解答】解:由,得:=.所以,y′|x=1=1﹣1=0.故答案为0.21.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=x3﹣x+8(0<x≤120)已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【考点】6D:利用导数研究函数的极值;5D:函数模型的选择与应用.【分析】(I)把用的时间求出,在乘以每小时的耗油量y即可.(II)求出耗油量为h(x)与速度为x的关系式,再利用导函数求出h(x)的极小值判断出就是最小值即可.【解答】解:(I)当x=40时,汽车从甲地到乙地行驶了小时,要耗油(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.(II)当速度为x千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,依题意得,.令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120)时,h'(x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.。
山东省济南2016-2017学年高二下学期期末考试数学(理)试题-含答案
2016-2017学年度第二学期期末模块考试高二理科数学试题(2017.07)考试时间120分钟 满分150分第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}2,0,1A =-, {|1B x x =<-或0}x >,则A B ⋂=( ) A. {}2- B. {}1 C. {}2,1- D. {}2,0,1- 2.若1225ai ii -=-(i 为虚数单位),则实数a 的值为( ) A. 1 B. -1 C. 1± D. 23.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据)11y x ,(,)22y x ,(,)33y x ,(,)44y x ,(,)55y x ,(.根据收集到的数据可知1x +2x +3x +4x +5x =150,由最小二乘法求得回归直线方程为9.5467.0ˆ+=x y,则1y +2y +3y +4y +5y 的值为( )A .75B .155.4C .375D .466.2 4.函数cos 2y x =在点,04π⎛⎫⎪⎝⎭处的切线方程为( ) A.420x y π-+= B.420x y π++= C.420x y π--= D.420x y π+-=5.已知向量),2,4(),3,1,2(x b a -=-=,使a ⊥b 成立的与使//a b 成立的分别为( )A .10,63- B .-10,63-6 C .-6,10,63- D .6,-10,63-6.在二项式8)1(xx -的展开式中,含5x 的项的系数是( )A .28-B .28C .-8D .8 7. 济南气象台预测,7月12日历城区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设A 为下雨,B 为刮风,则(|)P A B =( )A .12 B .34 C .25 D .388.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”( )A .1%B .99%C .2.5%D .97.5%9.用数学归纳法证明2321242n n n +=++++ ,则当1+=k n 时左端应在k n =的基础上增加 ( )A .12+kB .()21+kC .()2)1(124+++k k D .()()()()22221321+++++++k k k k10.在2017年某校的零起点小语种保送面试中,我校共获得了5个推荐名额,其中俄语2名,日语2名,西班牙语1名,并且日语和俄语都要求必须有男生参加考试。
山东省济南高二下学期期末考试数学(理)试题Word版含答案
2016-2017学年度第二学期期末模块考试高二理科数学试题(2017.07)考试时间120分钟 满分150分第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}2,0,1A =-, {|1B x x =<-或0}x >,则A B ⋂=( ) A. {}2- B. {}1 C. {}2,1- D. {}2,0,1- 2.若1225ai ii -=-(i 为虚数单位),则实数a 的值为( ) A. 1 B. -1 C. 1± D. 23.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据)11y x ,(,)22y x ,(,)33y x ,(,)44y x ,(,)55y x ,(.根据收集到的数据可知1x +2x +3x +4x +5x =150,由最小二乘法求得回归直线方程为9.5467.0ˆ+=x y,则1y +2y +3y +4y +5y 的值为( )A .75B .155.4C .375D .466.2 4.函数cos 2y x =在点,04π⎛⎫⎪⎝⎭处的切线方程为( ) A.420x y π-+= B.420x y π++= C.420x y π--= D.420x y π+-=5.已知向量),2,4(),3,1,2(x b a -=-=,使a ⊥b 成立的x 与使//a b 成立的x 分别为( ) A .10,63- B .-10,63-6 C .-6,10,63- D .6,-10,63- 6.在二项式8)1(xx -的展开式中,含5x 的项的系数是( )A .28-B .28C .-8D .8 7. 济南气象台预测,7月12日历城区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设A 为下雨,B 为刮风,则(|)P A B =( ) A .12 B .34 C .25 D .388.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得2K =()21051030204555503075⨯⨯-⨯⨯⨯⨯≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”( )A .1%B .99%C .2.5%D .97.5%9.用数学归纳法证明2321242n n n +=++++ ,则当1+=k n 时左端应在k n =的基础上增加 ( )A .12+kB .()21+kC .()2)1(124+++k k D .()()()()22221321+++++++k k k k10.在2017年某校的零起点小语种保送面试中,我校共获得了5个推荐名额,其中俄语2名,日语2名,西班牙语1名,并且日语和俄语都要求必须有男生参加考试。
山东省济南市历城区2016-2017学年高二数学下学期期末考试试题 理(含解析)
2016-2017学年度第二学期期末模块考试高二理科数学试题考试时间120分钟满分150分第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合,或,则()A. B. C. D.【答案】C【解析】,或,.故选C.2. 若(为虚数单位),则实数的值为()A. 1B. -1C.D. 2【答案】B【解析】由题意可得:,则:,解得:.本题选择B选项.3. 为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据,,,,.根据收集到的数据可知++++=150,由最小二乘法求得回归直线方程为,则++++的值为()A. 75B. 155.4C. 375D. 466.2【答案】C【解析】,代入得:.又++++.故选C.4. 函数在点处的切线方程为()A. B. C. D.【答案】D【解析】试题分析:时,所以切线方程为考点:导数的几何意义5. 已知向量,使成立的x与使成立的x分别为()A. B. - 6 C. -6, D. 6,-【答案】A【解析】向量,若,则,解得.若,则,解得.故选A.6. 在二项式的展开式中,含的项的系数是()A. B. 28 C. 8 D. 8【答案】B【解析】二项式的展开式中,通项公式为.令,解得,故含的项的系数是,故选B.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.7. 济南气象台预测,7月12日历城区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,则()A. B. C. D.【答案】B【解析】由题意P(A)=,P(B)=,P(AB)=,∴,故选B.8. 某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:由上表中数据计算得= 6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”()A. 1%B. 99%C. 2.5%D. 97.5%【答案】D【解析】试题解析:由题根据二列联表得出;= 6.109,对应参考值得,则有,即有97.5%的把握认为文化程度与月收入有关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第二学期期末模块考试高二数学(文)试题(2017.07)考试时间:120分钟 满分150分第I 卷(选择题,共60分)一.选择题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1{|21,R}x M x x -=<∈, 2{|log 1,R}N x x x =<∈,则M N ⋂等于( ) A. [)3,4 B. (]2,3 C. ()1,2 D. ()0,12.复数()()()1a i i a R --∈的实部与虚部相等,则实数a =( ) A. 1- B. 0 C. 1 D. 2 3.若点()4,a 在12y x =的图像上,则6atanπ的值为 ( ) A. 0B.C. 1D. 4.若不等式2223122x axx a -+⎛⎫<⎪⎝⎭恒成立,则实数a 的取值范围是( )A. ()0,1B. 3,4⎛⎫+∞⎪⎝⎭C. 30,4⎛⎫⎪⎝⎭D. 3,4⎛⎫-∞ ⎪⎝⎭5.已知条件1:22xp >,条件3:01x q x -<-,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要 6.两圆2cos ,2sin ρθρθ==的公共部分面积是( ) A.142π-B. 2C.12π- D. 2π 7.下列四个命题中,①若2a b +≥,则a , b 中至少有一个不小于1的逆命题; ②存在正实数a , b ,使得()lg lg lg a b a b +=+;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”; ④在ABC ∆中, A B <是sin sin A B <的充分不必要条件.真命题的个数是( )A. 3B. 2C. 1D. 08.下列参数方程与普通方程210x y +-=表示同一曲线的方程是( )A. 2{cos x sint y t ==(t 为参数)B. 2{1tan x tan y φφ==-(φ为参数)C. {x y t==t 为参数) D. 2{sin x cos y θθ==(θ为参数)9.曲线C 的极坐标方程是2sin ρθ=,则曲线C 上的点到直线l : {32x y t ==-+(t 为参数)的最短距离是( ) A. 4 B. 3 C.2 D. 110.不等式152x x ---<的解集是( )A. (-∞,4)B. (-∞,1)C. (1,4)D. (1,5)11.已知,,a b c R ∈,那么下列命题中正确的是 ( )A. 若a b >,则22bc ac > B. 若cbc a >,则C. 若330a b ab ><且,则11a b > D. 若220a b ab >>且,则11a b <12.若x , y , a R +∈a 的最小值是( )A.B. C. 2 D.12第二部分(非选择题 共90分)二、填空题共4小题,每小题5分,共20分. 13.计算52lg2lglg258+-= ______. 14.函数()()log 11(01)a f x x a a =-+>≠且恒过定点________. 15.定义在上的偶函数在上是增函数,若,则的解集是______.16.过点(-1,0).与函数f (x )=e x(e 是自然对数的底数)图像相切的直线方程是________.三、解答题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.[)[).,0)(,,1)2()(2)1(,1,2)(10.(172的取值范围求实数恒成立若对任意的最小值时,求当分)已知函数a x f x x f a x xax x x f >+∞∈-=+∞∈++=18.(10分)已知函数()121f x x x =--+. (1)解不等式()4f x ≥;(2)若关于x 的不等式()221a a x f x +++>恒成立,求实数a 的取值范围.19.(12分)某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如22⨯列联表所示(单位:人). (1)求m ,n ;(2)你有多大把握认为“教学方式与成绩有关系”? 参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++, 其中d c b a n +++=为样本容量.20.(12分)若以直角坐标系xOy 的O 为极点, Ox 为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程是26cos sin θρθ=.(1)若曲线C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l的参数方程为32{x ty =+=(t 为参数)当直线l 与曲线C 相交于,A B 两点,求AB.21.(12分)已知函数()()()ln f x x a ax a R =++∈. (1)当1a =-时,求函数()y f x =的极值;(2)讨论函数()y f x =的单调性。
22.(14分)已知函数f(x)=x -xa-2lnx . (1)若f (x )是单调增函数,求实数a 的范围;(2)若存在一个x 0∈[1,e ],使f (x 0)>0成立,求实数a 的取值范围.参考答案一.选择题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1. D2.B3.D4.B5.B6.C7.B8.B9.D10.A11.C12.B第二部分(非选择题 共90分)二填空题共4小题,每小题5分,共20分. 13.-1 14.()2,115. 16.y =x +1三、解答题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.22)2(2)()1.(17min ->=a x f18.(1)][(),26,-∞-⋃+∞(2)()(),31,-∞-⋃+∞. 解:(1)()4f x ≥可化为2114x x --+≥,即2114,{1x x x -+++≥<-或2114,{112x x x -+--≥-≤≤或2114,{12x x x ---≥>解得2x ≤-或6x ≥,所以不等式()4f x ≥的解集为(],2-∞-⋃ [)6,+∞.(2)22a a ++ ()1x f x +>恒成立22a a ⇔+> ()max1222x x--+,1222x x --+≤ 12223x x -++=(当1x ≤-时取等号),()max12223x x∴--+=;由223a a +>,解得3a <-或1a >,即a 的取值范围是(),3-∞-⋃ ()1,+∞. 19.解:⑴ 301545=-=m , 1005050=+=n . ⑵有99.5%的把握认为“教学方式与成绩”有关系.【解析】第一问中利用22⨯列联表求解301545=-=m , 1005050=+=n第二问中,利用22100(35301520)50505545K ⨯⨯-⨯=⨯⨯⨯,得到值因为27.879K >,从而说明有99.5%的把握认为“教学方式与成绩”有关系 解:⑴ 301545=-=m , 1005050=+=n .⑵22100(35301520)50505545K ⨯⨯-⨯=⨯⨯⨯ 9.091≈ ………因为27.879K >, 所以0.005P = ……所以有99.5%的把握认为“教学方式与成绩”有关系. 20.解:(1)∵26cos sin p θθ=,∴22sin 6cos ρθρθ=, ∴曲线C 的直角坐标系方程为26y x =,曲线为以3,02⎛⎫⎪⎝⎭为焦点,开口向右的抛物线. (2)直线l的参数方程可化为3122{x t y =+=,代入26y x =得24120t t --=.解得122,6t t =-=.∴128AB t t =-=.21.(1)略解: ()()22f x f ⎡⎤==-⎣⎦极大值,无极小值.(2)函数()f x 的定义域为(),a -+∞,∴()21ax a f x x a++=+'.(i)当0a ≥时, ()0f x '>,所以函数()f x 在(),a -+∞上为增函数; (ii)当0a <时,令()0f x '=,解得1x a a a=-->-,当()0f x '>时,解得1a x a a-<<--,函数()f x 为增函数;当()0f x '<时,解得1x a a >--,函数()f x 为减函数.综上所述:(i )当0a ≥时,函数()f x 在(),a -+∞上单调递增;(ii)当0a <时,函数()f x 在1,a a a ⎛⎫---⎪⎝⎭上单调递增,在1,a a ⎛⎫--+∞ ⎪⎝⎭上单调递减. 22. (1)[1,+∞);(2)(-∞,e 2-2e ).试题解析:(1)由题知f(x)的定义域为(0,+∞),且f '(x)=1+-,x>0.因为f(x)在区间(0,+∞)上单调递增,所以,对任意的x∈(0,+∞),都有f '(x)=1+-≥0,即对任意的x∈(0,+∞),都有a≥-x2+2x=-(x-1)2+1.因为函数y=-(x-1)2+1在区间(0,+∞)上的最大值为1,所以a≥1.所以实数a的范围是[1,+∞).(2)“存在一个x0∈[1,e],使f(x0)>0成立”等价于“f(x)在区间[1,e]上的最大值是正数”.因为f '(x)=1+-==,所以①若a≥1,当x∈[1,e]时,f '(x)≥0,当且仅当x=1,a=1时,f '(x)=0,所以f(x)在区间[1,e]上单调递增,所以当x=e时,f(x)取得最大值f(e)=e--2.由e--2>0,得a<e2-2e.因为e2-2e>1,所以1≤a<e2-2e.②若a<1,则由f '(x)=0,得x=1±.(i)若1+≥e,即a≤-e2+2e,则当x∈[1,e]时,f '(x)≤0,从而f(x)在区间[1,e]上单调递减,所以,当且仅当x=1时,f(x)取得最大值f(1)=1-a.由1-a>0,得a<1,又a≤-e2+2e,所以a≤-e2+2e.(ii)若1+<e,即a>-e2+2e,则当x∈[1,1+)时,f '(x)<0;当x∈(1+,e]时,f '(x)>0;从而f(x)在区间[1,e]上的最大值是f(1)或f(e).由f(1)=1-a>0,得a<1;由f(e)=e--2>0,得a<e2-2e.所以-e2+2e<a<e2-2e.由(i) (ii)知,-e2+2e<a<e2-2e.由①②可知,实数a的范围是(-∞,e2-2e).。