北师大版高中数学必修四陕西省西安第一章正弦函数的性质教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时 正弦函数的性质
教学思路
【创设情境,揭示课题】
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y =sinx 在R 上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
【探究新知】
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题: 正弦函数的定义域是什么? 正弦函数的值域是什么? 它的最值情况如何? 它的正负值区间如何分? ƒ(x)=0的解集是多少? 师生一起归纳得出:
定义域:y=sinx 的定义域为R
值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)
再看正弦函数线(图象)验证上述结论,所以y =sinx 的值域为[-1,1]
3.最值:1︒对于y =sinx 当且仅当x =2k π+2π
,k ∈Z 时 ymax =1
当且仅当时x =2k π-2π
, k ∈Z 时 ymin =-1
2︒当2k π<x <(2k+1)π (k ∈Z)时 y =sinx >0 当(2k-1)π<x <2k π (k ∈Z)时 y =sinx <0
4.周期性:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的; 2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 也可以说明 结论:y =sinx 的最小正周期为2π 5.奇偶性
sin(-x)=-sinx (x ∈
R)是奇函数 6.单调性
增区间为[-2π+2k π, 2π
+2k π](k ∈Z ),其值从-1增至1;
减区间为[2π
+2k π, 23π
+2k π](k ∈Z ),其值从1减至-1。
【巩固深化,发展思维】
例题讲评
例1.利用五点法画出函数y=sinx-1的简图,根据函数图像和解析式讨论它的性质。
解:(略,见教材P26)
2.课堂练习
教材P27的练习1、2、3
二、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
三、布置作业:习题1—4第3、4、5、6、7题.
四、课后反思。