自贡市人教版七年级上册数学期末试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自贡市人教版七年级上册数学期末试卷及答案
一、选择题
1.计算32a a ⋅的结果是( )
A .5a ;
B .4a ;
C .6a ;
D .8a .
2.下列因式分解正确的是()
A .2
1(1)(1)x
x x +=+-
B .()am an a m n +=-
C .2
244(2)m
m m +-=-
D .2
2(2)(1)a
a a a --=-+
3.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cm
B .3cm
C .3cm 或 7cm
D .7cm 或 9cm
4.若21(2)0x y -++=,则2015()x y +等于( ) A .-1
B .1
C .20143
D .20143-
5.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )
A .(-1)n -1x 2n -1
B .(-1)n x 2n -1
C .(-1)n -1x 2n +1
D .(-1)n x 2n +1
6.方程3x +2=8的解是( ) A .3
B .103
C .2
D .
12
7.在下边图形中,不是如图立体图形的视图是( )
A .
B .
C .
D .
8.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1
B .﹣1
C .3
D .﹣3 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2
B .(3a ﹣b )2
C .3a ﹣b 2
D .(a ﹣3b )2
10.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )
A .﹣4
B .﹣2
C .4
D .2 11.若2m ab -与162n a b -是同类项,则m n +=( )
A .3
B .4
C .5
D .7
12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏
B .盈利 37.5 元
C .亏损 25 元
D .盈利 12.5 元
二、填空题
13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.已知x=5是方程ax ﹣8=20+a 的解,则a= ________ 15.已知关于x 的一元一次方程
320202020
x
x n +=+①与关于y 的一元一次方程32
32020(32)2020
y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 16.化简:2xy xy +=__________.
17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则
(1)2-⊕=__________.
18.若1
2x y =⎧⎨=⎩
是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.
19.若a 、b 是互为倒数,则2ab ﹣5=_____.
20.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.
21.已知二元一次方程2x-3y=5的一组解为x a
y b
=⎧⎨
=⎩,则2a-3b+3=______. 22.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 23.已知代数式
235x -与2
33
x -互为相反数,则x 的值是_______. 24.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.
三、解答题
25.(1)化简:3x 2﹣
2
2762
x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32
. 26.先化简,再求值:(
)(
)
2
2
3a 4ab 2a ab ---,其中a 2=-,1b 2
=

27.已知方程313
7
52
x
x
-
=+与关于x 的方程3a-8=2(x+a)-a的解相同.
(1)求a 的值;
(2)若a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c)2018的值.
28.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.29.直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.
(1)求∠BOE的度数;
(2)写出图中∠BOE的补角,并说明理由.
30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,
()1若笑脸气球的单价是x元,请用含x的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)
()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.
四、压轴题
31.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.
(1) 若b=-4,则a的值为__________.
(2) 若OA=3OB,求a的值.
(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.
32.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点
C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=
1
2
AE,且此时点E为点A、B的“n节点”,求n的值.
33.阅读下列材料,并解决有关问题:
我们知道,
(0)
0(0)
(0)
x x
x x
x x
>


==

⎪-<

,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|
x x
++-时,可令10
x+=和20
x-=,分别求得1
x=-,2
x=(称1-、2分别为|1|
x+与|2|
x-的零点值).在有理数范围内,零点值1
x=-和2
x=可将全体有理数不重复且不遗漏地分成如下三种情况:
(1)1
x<-;(2)1
-≤2
x<;(3)x≥2.从而化简代数式|1||2|
x x
++-可分为以下3种情况:
(1)当1
x<-时,原式()()
1221
x x x
=-+--=-+;
(2)当1-≤2
x<时,原式()()
123
x x
=+--=;
(3)当x≥2时,原式()()
1221
x x x
=++-=-
综上所述:原式
21(1)
3(12)
21(2)
x x
x
x x
-+<-


=-≤<

⎪-≥

通过以上阅读,请你类比解决以下问题:
(1)填空:|2|
x+与|4|
x-的零点值分别为;
(2)化简式子324
x x
-++.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】
此题考查同底数幂的乘法运算,即(0)m
n
m n
a a a a +⋅=>,所以此题结果等于325a a +=,
选A ;
2.D
解析:D 【解析】 【分析】
分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】
解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、2
2(2)(1)a
a a a --=-+,正确;
故选:D . 【点睛】
此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.
3.C
解析:C 【解析】 【分析】
应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】
①如图1所示,当点C 在点A 与B 之间时,
∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=
1
2
AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cm
M 是线段AC 的中点,
∴AM=
1
2
AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
4.A
解析:A 【解析】
(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015
=(1﹣2)
2015
=﹣1.
故选A
5.C
解析:C 【解析】 【分析】
观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】
观察可知,奇数项系数为正,偶数项系数为负,
∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】
本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.
6.C
解析:C 【解析】 【分析】
移项、合并后,化系数为1,即可解方程. 【详解】
解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.
解析:C 【解析】 【分析】
直接利用简单组合体的三视图进而判断得出答案. 【详解】
解:A 选项为该立体图形的俯视图,不合题意;
B 选项为该立体图形的主视图,不合题意;
C 选项不是如图立体图形的视图,符合题意;
D 选项为该立体图形的左视图,不合题意. 故选:C . 【点睛】
此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.
8.B
解析:B 【解析】 【分析】
将1x =-代入2ax x -=,即可求a 的值. 【详解】
解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.
9.B
解析:B 【解析】
用代数式表示“a 的3倍与b 的差的平方”结果是:2
(3)a b -.
故选B.
10.C
解析:C 【解析】 【分析】
由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可. 【详解】
3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1) =4;
【点睛】
代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.
11.C
解析:C 【解析】 【分析】
根据同类项的概念求得m 、n 的值,代入m n +即可. 【详解】
解:∵2m ab -与162n a b -是同类项, ∴2m=6,n-1=1, ∴m=3,n=2, 则325m n +=+=. 故选:C . 【点睛】
本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.
12.D
解析:D 【解析】 【分析】
设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则
(120%)100y -=,用售价减去进价即可.
【详解】
解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元.. 故选:D 【点睛】
本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.
二、填空题 13.-2. 【解析】 【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
解:∵单项式2xmy3与﹣5ynx是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案
解析:-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2x m y3与﹣5y n x是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案为:﹣2.
【点睛】
本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.
14.7
【解析】
试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解析:7
【解析】
试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.
解:把x=5代入方程ax﹣8=20+a
得:5a﹣8=20+a,
解得:a=7.
故答案为7.
考点:方程的解.
15.y=﹣.
【解析】
【分析】
根据题意得出x=﹣(3y﹣2)的值,进而得出答案.
【详解】
解:∵关于x的一元一次方程①的解为x=2020,
∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020, 解
解析:y =﹣
2018
3
. 【解析】 【分析】
根据题意得出x=﹣(3y ﹣2)的值,进而得出答案. 【详解】
解:∵关于x 的一元一次方程320202020
x
x n +=+①的解为x =2020, ∴关于y 的一元一次方程32
32020(32)2020
y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣
2018
3
. 故答案为:y =﹣2018
3
. 【点睛】
此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.
16.. 【解析】 【分析】
由题意根据合并同类项法则对题干整式进行化简即可. 【详解】 解: 故填. 【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
解析:3xy . 【解析】 【分析】
由题意根据合并同类项法则对题干整式进行化简即可. 【详解】
解:23.xy xy xy += 故填3xy . 【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
17.8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为;
所以
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解
解析:8
【解析】
【分析】
根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.
【详解】
解:因为22a b b ab ⊕=-;
所以2(1)222(1)28.-⊕=-⨯-⨯=
故填8.
【点睛】
本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.3
【解析】
【分析】
把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.
【详解】
解:把代入方程组得:,
①+②得:3(a +b )=9,
则a +b =3,
故答案为:3.

解析:3
【解析】
【分析】
把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.
【详解】
解:把
1
2
x
y
=


=

代入方程组得:
27
22
a b
b a
+=


+=


①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
19.-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒
解析:-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.
20.11cm.
【解析】
【分析】
根据点为线段的中点,可得,再根据线段的和差即可求得的长.
【详解】
解:∵,且,,
∴,
∵点为线段的中点,
∴,
∵,
∴.
故答案为:.
【点睛】
本题考查了两点
解析:11cm .
【解析】
【分析】
根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.
【详解】
解:∵DC DB BC =-,且8DB =,5CB =,
∴853DC =-=,
∵点D 为线段AC 的中点,
∴3AD =,
∵AB AD DB =+,
∴3811()AB cm =+=.
故答案为:11cm .
【点睛】
本题考查了两点间的距离,解决本题的关键是掌握线段的中点.
21.8
【解析】
【分析】
根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.
【详解】
把代入方程2x-3y=5得
2a-3b=5,
所以2a-3b+3=5+3=8,
故答案为:8
解析:8
【解析】
【分析】
根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.
【详解】
把x a y b =⎧⎨=⎩
代入方程2x-3y=5得
2a-3b=5,
所以2a-3b+3=5+3=8,
故答案为:8.
【点睛】
本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.
22.18×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原
解析:18×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:118000=1.18×105,
故答案为1.18×105.
23.【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.
【详解】
∵与互为相反数

解得:
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键
解析:27 8
【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.【详解】
∵23
5
x-

2
3
3
x-互为相反数
∴232
30 53
-⎛⎫
+-=

⎝⎭
x
x
解得:
27
8 x=
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.8cm或4cm
【解析】
【分析】
分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.
【详解】
①当C点在AB之间时,如图所示,
AC=AB-BC=6cm-2c
解析:8cm或4cm
【解析】
【分析】
分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.
【详解】
①当C点在AB之间时,如图所示,
AC=AB-BC=6cm-2cm=4cm
②当C在AB延长线时,如图所示,
AC=AB+BC=6cm+2cm=8cm
综上所述,A、C两点间的距离是8cm或4cm
故答案为:8cm或4cm.
【点睛】
本题考查线段的和差计算,分情况讨论是解题的关键.
三、解答题
25.(1)
112
x 2;(2)a 2+2ab +2,12. 【解析】
【分析】 (1)根据合并同类项法则计算;
(2)根据去括号法则、合并同类项法则把原式化简,代入计算得到答案.
【详解】
解:(1)原式=(3﹣
72+6)x 2=112
x 2; (2)原式=2a 2﹣2ab ﹣7﹣a 2+4ab +9 =a 2+2ab +2,
当a =﹣5,b =
32时,原式=(﹣5)2+2×(﹣5)×32+2=12. 【点睛】
本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.
26.2a 2ab -,6.
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:原式2223a 4ab 2a 2ab a 2ab =--+=-
当a 2=-,1b 2
=时, 原式()1422422=-⨯-⨯
=+ 6=.
【点睛】
本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
27.(1)4a =-;(2)1.
【解析】
【分析】
(1)先求出方程313752
x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.
【详解】
(1)313752
x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,
(2)∵a ,b 互为相反数,
∴a+b=0,
∵c 是倒数等于本身的数,
∴c=±1;
∴()
()20182018011a b c +-=±= 【点睛】
本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.
28.-4.
【解析】
【分析】
首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.
【详解】
解:原式=﹣a 2b+3ab 2﹣a 2b ﹣4ab 2+2a 2b =(﹣1﹣1+2)a 2b+(3﹣4)ab 2=﹣ab 2, 当a =1,b =﹣2时,
原式=﹣1×(﹣2)2=﹣4.
【点睛】
考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.
29.(1)30°;(2)∠BOE 的补角有∠AOE 和∠DOE .
【解析】
【分析】
(1)根据OC 平分∠BOF ,OE 平分∠COB .可得∠BOE =∠EOC =
12∠BOC ,∠BOC =∠COF ,进而得出,∠EOF =3∠BOE =90°,求出∠BOE ;
(2)根据平角和互补的意义,通过图形中可得∠BOE +∠AOE =180°,再根据等量代换得出∠BOE +∠DOE =180°,进而得出∠BOE 的补角.
【详解】
解:(1)∵OC 平分∠BOF ,OE 平分∠COB .
∴∠BOE =∠EOC =12
∠BOC ,∠BOC =∠COF , ∴∠COF =2∠BOE ,
∴∠EOF =3∠BOE =90°,
∴∠BOE =30°,
(2)∵∠BOE +∠AOE =180°
∴∠BOE 的补角为∠AOE ;
∵∠EOC +∠DOE =180°,∠BOE =∠EOC ,
∴∠BOE +∠DOE =180°,∴∠BOE 的补角为∠DOE ;
答:∠BOE的补角有∠AOE和∠DOE;
【点睛】
考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.
30.()1(42-8x)元,(28-4x)元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】
【分析】
(1)若笑脸气球的单价是x元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x)元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;
(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】
解:(1)若笑脸气球的单价是x元,则爱心气球的单价是(14-3x)元,根据题意得
第②束气球的总价格是:x+3(14-3x)=x+42-9x=42-8x(元);
第③束气球的总价格是:2x+2(14-3x)=2x+28-6x=28-4x(元);
(2)由题意得42-8x=28-4x-2,
解得x=4,
14-3x=2.
答:笑脸气球的单价是4元,爱心气球的单价是2元.
【点睛】
本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.
四、压轴题
31.(1)10;(2)
21
2
±;(3)
28
8.
5
±±,
【解析】
【分析】
(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.
(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.
(3)画数轴,结合数轴分四种情况讨论计算即可.
【详解】
(1)解:若b=-4,则a的值为 10
(2)解:当A在原点O的右侧时(如图):
设OB=m,列方程得:m+3m=14,
解这个方程得,
7
m
2 ,
所以,OA=21
2
,点A在原点O的右侧,a的值为
21
2
.
当A在原点的左侧时(如图),
a=-21 2
综上,a的值为±21
2
.
(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5
.
当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.
当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5
.
当点A在原点的左侧,点B在点C的左侧时,图略,c=8.
综上,点c的值为:±8,±28 5
.
【点睛】
本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.
32.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.
【解析】
【分析】
(1)根据“n节点”的概念解答;
(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;
(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在
AB延长线上时,根据BE=1
2
AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.
【详解】
(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,
∴n=AC+BC=2+6=8.

2)如图所示:
∵点D 是数轴上点A 、
B 的“5节点”,
∴AC+BC=5,
∵AB=4,
∴C 在点A 的左侧或在点A 的右侧,
设点D 表示的数为x ,则AC+BC=5,
∴-2-x+2-x=5或x-2+x-(-2)=5,
x=-2.5或2.5,
∴点D 表示的数为2.5或-2.5;
故答案为-2.5或2.5;
(3)分三种情况:
①当点E 在BA 延长线上时,
∵不能满足BE=12
AE , ∴该情况不符合题意,舍去; ②当点E 在线段AB 上时,可以满足BE=
12AE ,如下图,
n=AE+BE=AB=4;
③当点E 在AB 延长线上时,
∵BE=
12
AE , ∴BE=AB=4, ∴点E 表示的数为6,
∴n=AE+BE=8+4=12,
综上所述:n=4或n=12.
【点睛】
本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.
33.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩
【解析】
【分析】
(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,
(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.
【详解】
解:(1)2x =-和4x =,
(2)由30x -=得3,x =由40x +=得4x =-,
①当4x <-时,原式()()32435x x x =---+=--,
②当4-≤3x <时,原式()()32411x x x =--++=+,
③当x ≥3时,原式()()32435x x x =-++=+,
综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩
, 【点睛】
本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。

相关文档
最新文档