参考文献——精选推荐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考⽂献
1. Baladin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011;10:569–81.
2. Yi W, Lu L, Dian-Lin Z, Pan ZW, Xie SS. Linear specific heat of carbon nanotubes. Phys Rev B 1999;59:R9015.
3. Hone J, Whitney M, Piskoti C, Zettl A. Thermal conductivity of single walled carbon nanotubes. Phys Rev B
1999;59:R2514–6.
4. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, et al. Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A: Mater Sci Process 2002;74:339–43.
5. Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, et al. Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 2002;66:165440.
6. Zhang HL, Li JF, Zhang BP, Yao KF, Liu WS, Wang H. Electrical and thermal properties of carbon nanotube bulk materials: experimental studies for 328–958 K temperature range. Phys Rev B 2007;75:20540
7.
7. Yu CH, Shi L, Yao Z, Li DY, Majumdar A. Thermal conductance and thermopower of a single-wall carbon nanotubes. Nano Lett 2005;5:1842–6.
8. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 2001;87:215502.
9. Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 2006;6:96–100.
10. Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 2005;95:065502. 11. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, et al. Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 2010;9:555–8. 12. Zhong WR, Zhang MP, Ai BQ, Zheng DQ. Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett 2011;98:113107.
13. Otieno G, Koos AA, Dillon F, Wallwork A, Grobert N, Todd RI. Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass
composites made by sol–gel processing. Carbon 2010;48:2212–7.
14. Thomas BJC, Shaffer MSP, Boccaccini AR. Sol–gel route to carbon nanotube borosilicate glass composites. Compos Part A-Appl Sci Manuf 2009;40:837–45. 15. Ning J, Zhang J, Pan Y, Guo J. Fabrication and thermal property of carbon nanotube/SiO2 composites. J Mater Sci Lett 2003;22:1019–21.
16. Sivakumar R, Guo S, Nishimurab T, Kagawaa Y. Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater2007;57:265–8.
17. Wang HL, Zhou XG, Yu HJ, Zhao S, Luo Z. Property and microstructure of CNTs/AlN ceramics. Key Eng Mater
2010;43:4–435, 48–49.
18. Datye A, Wu KH, Kulkarni S, Lin HT, Vleugels J, Wenzhi L, et al. Aluminium nitride multi-walled nanotube (MWCNT) nanocomposite by direct in situ growth of CNTs on aluminium nitride particles. Ceram Eng Sci Proc 2010;30:189–204.
19. Ahmad K, Pan W. Electrical, mechanical, and thermal properties of multiwalled carbon nanotube reinforced alumina composite. Ceram Eng Sci Proc 2009;29:49–59.
20. Kumari L, Zhang T, Du GH, Li WZ, Wang QW, Datye A, et al. Thermal properties of CNT–Alumina nanocomposites. Comp Sci Technol 2008;68:2178–83.
21. Tian WB, Kan YM, Zhang GJ, Wang PL. Effect of carbon nanotubes on the properties of ZrB2–SiC ceramics. Mater Sci Eng A 2008;487: 568–73.
22. Osendi MI, Gautheron F, Miranzo P, Belmonte M. Dense and homogenous silicon nitride composites containing carbon nanotubes. J Nanosci Nanotechnol 2009;9:6188–94.
23. Corral EL, Wang H, Garay J, Munir Z, Barrera EV. Effect of single-walled carbon nanotubes on thermal and electrical
properties of silicon nitride processed using spark plasma sintering. J Eur Ceram Soc 2011;31: 391–400.
24. Koszor O, Lindemann A, Davin F, Balazsi C. Observation of thermo-physical and tribological properties of CNT reinforced Si3N4. Key Eng Mater 2009;409:354–7.
25. Zhan GD, Mukherjee AK. Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical and thermal properties. Int J Appl Ceram Technol 2004;1:161–71.
26. De Pablos A, Osendi MI, Miranzo P. Effect of microstructure on the thermal conductivity of hot pressed silicon nitride materials. J Am Ceram Soc 2002;85:200–6.
27. González-Julián J, Iglesias Y, Caballero AC, Belmonte M, Garzón L, Ocal C, et al. Multi-scale electrical response of silicon nitride/multi-walled carbon nanotubes composites. Comp Sci Technol 2011;71:60–6.
28. Ramirez C, Garzón L, Miranzo P, Osendi MI, Ocal C. Nanoscale electrical response of new graphene nanoplatelets (GNPs)–Si3N4 composites. Carbon 2011;49:3873–80.
29. González-Julián J, Schneider J, Miranzo P, Osendi MI, Belmonte M. Enhanced tribological performance of silicon nitride-based materials by adding carbon nanotubes. J Am Ceram Soc 2011;94:2542–8.
30. Belmonte M, González-Julián J, Ramirez C, Schneider J, Osendi MI, Miranzo P. Comportamiento frente al desgaste de materiales compuestos de nitruro de silicio/nanoestructuras de carbono. In: Proceedings, VI Congreso Iberico de Tribologia 2011. 2011. p. 5–14.
31. Malek O, Gonzalez-Julian J, Vleugels J, Vanderauwera W, Lauwers B, Belmonte M. Carbon nanofillers for machining insulating ceramics. Mater Today 2011;14(10):496–501.
32. Gazzara CP, Messier DR. Determination of phase content of Si3N4 by X-ray diffraction analysis. Am Ceram Soc Bull 1977;56:777–80.
33. Donaldson AB, Taylor RE. Thermal diffusivity measurement by a radial heat flow method. J Appl Phys 1975;46:4584–9
34. Roine A. Outokumpu HSC Chemistry for Windows V. 5.11. Outokumpu Research: Pori, Finland; 2002.
35. Brito ME, Toriyama M, Kanzaki S. High thermal conductivity in silicon nitride with anisotropic microstructure. J Am Ceram Soc 1996;79: 2485–8.
36. Belmonte M, Gónzalez-Julián J, Miranzo P, Osendi MI. Spark plasma sintering: a powerful tool to develop new silicon nitride-based materials. J Eur Ceram Soc 2010;30:2937–46.
37. Hirosaki N, Ogata S, Kocer C, Kitagawa H, Nakamutra Y. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4. Phys Rev B 2002;65:134110.
38. Hirao K, Watari K, Hayashi H, Kitayama M. High thermal conductivity silicon nitride ceramic. MRS Bull 2001;26:451–5.
39. Giusca CE, Tison Y, Silva SRP. Evidence for metal-semiconductor transitions in twisted and collapsed double-walled carbon nanotubes by scanning tunneling microscopy. Nano Lett 2008;8:3350–6.
40. Shi MT, Pettes L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv Funct Mater 2009;19:3918–25. 41. Sinha S, Barjami S, Iannacchione G, Schwab A, Muench G. Off-axis thermal properties of carbon nanotube films. J Nanopart Res 2005;7: 651–7.
42. Li B, Jung HY, Wang H, Kim YL, Kim T, Hahm MG, et al. Ultrathin SWNT films with tunable, anisotropic transport properties. Adv Funct Mater 2011;21:1810–5.
43. Afanasov IM, Savchenko DV, Ionov SG, Rusakov DA, Seleznev AN, Avdeev VV. Thermal conductivity and mechanical properties of expanded graphite. Inorg Mater 2009;45:486–90.
44. Bonnissela M, Luob L, Tondeurb D. Compacted exfoliated natural graphite as heat conduction medium. Carbon 2001;39:2151–61。