【易错题】九年级数学下期末第一次模拟试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【易错题】九年级数学下期末第一次模拟试卷(含答案)
一、选择题
1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )
A .120°
B .110°
C .100°
D .70°
2.通过如下尺规作图,能确定点D 是BC 边中点的是( )
A .
B .
C .
D .
3.将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A .23(2)3y x =++
B .23(2)3y x =-+
C .23(2)3y x =+-
D .23(2)3y x =-- 4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
A .7分
B .8分
C .9分
D .10分
5.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94
B .95分
C .95.5分
D .96分
6.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18 7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形
C .对角线相等的四边形是矩形
D .对角线互相平分的四边形是平行四边形
8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )
A .14cm
B .4cm
C .15cm
D .3cm
9.下列计算正确的是( )
A .a 2•a=a 2
B .a 6÷a 2=a 3
C .a 2b ﹣2ba 2=﹣a 2b
D .(﹣
32a )3=﹣39
8a
10.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )
A .∠2=20°
B .∠2=30°
C .∠2=45°
D .∠2=50° 11.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
A .140
B .120
C .160
D .100
12.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )
A .5米
B .6米
C .8米
D .(5)米
二、填空题
13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x
=
(0x >)及22k
y x =(0x >)
的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则
12k k =﹣________.
14.一列数123,,,a a a ……n a ,其中123121
111
1,,,,
111n n a a a a a a a -=-===---L L ,则1232014a a a a ++++=L L __________. 15.已知62x =
+,那么222x x -的值是_____.
16.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 17.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.
18.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___. 19.3x +x 的取值范围是_____.
20.已知M 、N 两点关于y 轴对称,且点M 在双曲线1
2y x
=
上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 .
三、解答题
21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
22.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x(元)
8595105115
日销售量y(个)17512575m
日销售利润w
(元)
87518751875875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元
(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?
24.解不等式组
341
51
2
2
x x
x
x
≥-


⎨-
-
⎪⎩>
,并把它的解集在数轴上表示出来
25.已知n边形的内角和θ=(n-2)×180°.
(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;
(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x. 26.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:BC是⊙O的切线;
(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;
(3)若BE=8,sinB=
5
13
,求DG的长,
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.
【详解】如图,∵∠1=70°,
∴∠3=180°﹣∠1=180°﹣70°=110°,
∵a∥b,
∴∠2=∠3=110°,
故选B.
【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
2.A
解析:A
【解析】
【分析】
作线段BC的垂直平分线可得线段BC的中点.
【详解】
作线段BC的垂直平分线可得线段BC的中点.
由此可知:选项A符合条件,
故选A.
【点睛】
本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.
3.A
解析:A
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】
将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .
4.B
解析:B 【解析】 【分析】
根据平均数的定义进行求解即可得. 【详解】
根据折线图可知该球员4节的得分分别为:12、4、10、6, 所以该球员平均每节得分=124106
4
+++=8,
故选B . 【点睛】
本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.
5.B
解析:B 【解析】 【分析】
根据中位数的定义直接求解即可. 【详解】
把这些数从小到大排列为:89分,90分,95分,95分,96分,96分, 则该同学这6次成绩的中位数是:=95分;
故选:B . 【点睛】
此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
6.B
解析:B 【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.
3+6>6,符合条件.成立.
∴C=3+6+6=15.
故选B.
考点:等腰三角形的性质.
7.D
解析:D
【解析】
【分析】
根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.
【详解】
对角线互相垂直且平分的四边形是菱形,故A是假命题;
对角线互相垂直平分且相等的四边形是正方形,故B是假命题;
对角线相等且平分的四边形是矩形,故C是假命题;
对角线互相平分的四边形是平行四边形,故D是真命题.
故选D.
【点睛】
本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
8.A
解析:A
【解析】
运用直角三角形的勾股定理,设正方形D的边长为x,则
22222
(65)(5)10
x
+++=,x=(负值已舍),故选A
9.C
解析:C
【解析】
【分析】
根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.
【详解】
A、原式=a3,不符合题意;
B、原式=a4,不符合题意;
C、原式=-a2b,符合题意;
D、原式=-27
8a
,不符合题意,
故选C.
【点睛】
此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.
10.D
解析:D 【解析】 【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,
∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
11.B
解析:B 【解析】 【分析】
设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可. 【详解】
解:设商品的进价为x 元,售价为每件0.8×
200元,由题意得 12.A
解析:A 【解析】
试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠
D=90°可得:米,则BC=BD -CD=8-3=5米.
考点:直角三角形的勾股定理
二、填空题
13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比
解析:【解析】 【分析】
根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为21
2
k ,然后两个三角形面积作差即可求出结果. 【详解】
解:根据反比例函数k 的几何意义可知:AOP ∆的面积为
112k ,BOP ∆的面积为21
2
k ,
∴AOB ∆的面积为121122
k k -,∴1211
422k k -=,∴128k k -=.
故答案为8. 【点睛】
本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.
14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:
2011
2
【解析】 【分析】
分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:1234123
1111
1,,2,1,1211a a a a a a a =-=
=====----… 由此可以看出三个数字一循环,
2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+1
2+2)+(-1)=20112
. 故答案为
2011
2
. 考点:规律性:数字的变化类.
15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4 【解析】 【分析】
将所给等式变形为x =
【详解】
∵x =

∴x -=
∴(
2
2
x =,
∴226x -+=,
∴24x -=, 故答案为:4
【点睛】
本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.
16.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角
解析:110°或70°.
【解析】
试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.
考点:1.等腰三角形的性质;2.分类讨论.
17.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达
解析:20
【解析】
【分析】
根据图象横坐标的变化,问题可解.
【详解】
由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5
∴矩形MNPQ的面积是20.
【点睛】
本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.
18.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式
解析:1
4

【解析】【分析】
【详解】
试题分析:画树状图如下:
∴P(两次摸到同一个小球)=
4
16
=
1
4
.故答案为
1
4

考点:列表法与树状图法;概率公式.
19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式
解析:x≥﹣3
【解析】
【分析】
直接利用二次根式的定义求出x的取值范围.
【详解】
.3
x 在实数范围内有意义,
则x+3≥0,
解得:x≥﹣3,
则x的取值范围是:x≥﹣3.
故答案为:x≥﹣3.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)
2+4ab=11a+b=∴y=-x2x∴顶点坐标为
解析:(±11,11
2
).
【解析】
【详解】
∵M、N两点关于y轴对称,
∴M坐标为(a,b),N为(-a,b),分别代入相应的函数中得,b=1
2a
①,a+3=b②,
∴ab=
12,(a+b )2=(a-b )2+4ab=11,a+b=
∴y=-12
x 2,
∴顶点坐标为(2b a -=244ac b a -=112),即(112
). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.
三、解答题
21.答案见解析
【解析】
试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;
(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论.
试题解析:(1)由题意知:
当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;
∴22? (01){157?(1)
x x y x x 甲<<=+>,=163y x +乙; (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <
12; 令y 甲=y 乙,即22x=16x+3,解得:x=
12; 令y 甲>y 乙,即22x >16x+3,解得:12
<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4;
令y 甲=y 乙,即15x+7=16x+3,解得:x=4;
令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12
时,选甲、乙两家快递公司快递费一样多;当0<x <
12
或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型. 22.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.
【解析】
分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;
(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;
(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.
详解;(1)设y 关于x 的函数解析式为y=kx+b ,
8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩
, 即y 关于x 的函数解析式是y=-5x+600,
当x=115时,y=-5×115+600=25,
即m 的值是25;
(2)设成本为a 元/个,
当x=85时,875=175×(85-a ),得a=80,
w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,
∴当x=100时,w 取得最大值,此时w=2000,
(3)设科技创新后成本为b 元,
当x=90时,
(-5×90+600)(90-b )≥3750,
解得,b≤65,
答:该产品的成本单价应不超过65元.
点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.
23.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.
【解析】
【分析】
(1)依题意可求出产品质量在第五档次的每件的利润.
(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.
【详解】
(1)10+2×(5-1)=18(元).
答:该档次蛋糕每件利润为18元.
(2)设烘焙店生产的是第x 档次的产品,
根据题意得:[10+2(x -1)]×
[76-4(x -1)]=1024, 整理得:x 2﹣16x +48=0,
解得:x 1=4,x 2=12(不合题意,舍去).
答:该烘焙店生产的是四档次的产品.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.
24.-1<x≤1
【解析】
【分析】
分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无
解了”求解不等式组.
【详解】 解:341
{5122
x x x x ≥--->①② 解不等式①可得x≤1,
解不等式②可得x >-1
在数轴上表示解集为:
所以不等式组的解集为:-1<x≤1.
【点睛】
本题考查了解不等式组,熟练掌握计算法则是解题关键.
25.(1)甲对,乙不对,理由见解析;(2)2.
【解析】
试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.
∵θ=360°,∴(n-2)×180°=360°,
解得n=4.
∵θ=630°,∴(n-2)×180°=630°,
解得n=.
∵n 为整数,∴θ不能取630°.
(2)由题意得,(n-2)×180+360=(n+x-2)×180,
解得x=2.
考点:多边形的内角和.
26.(1)证明见解析;xy 3013 【解析】
【分析】
(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;
(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.
【详解】
(1)如图,连接OD ,
∵AD 为∠BAC 的角平分线,
∴∠BAD=∠CAD ,
∵OA=OD ,
∴∠ODA=∠OAD ,
∴∠ODA=∠CAD ,
∴OD ∥AC ,
∵∠C=90°,
∴∠ODC=90°,
∴OD ⊥BC ,
∴BC 为圆O 的切线;
(2)连接DF ,由(1)知BC 为圆O 的切线,
∴∠FDC=∠DAF ,
∴∠CDA=∠CFD ,
∴∠AFD=∠ADB ,
∵∠BAD=∠DAF ,
∴△ABD ∽△ADF , ∴AB AD AD AF
=,即AD 2=AB•AF=xy ,
则;
(3)连接EF ,在Rt △BOD 中,sinB=
513OD OB =, 设圆的半径为r ,可得
5813r r =+, 解得:r=5,
∴AE=10,AB=18,
∵AE 是直径,
∴∠AFE=∠C=90°,
∴EF ∥BC ,
∴∠AEF=∠B ,
∴sin ∠AEF=513
AF AE =, ∴AF=AE•sin ∠AEF=10×
513=5013, ∵AF ∥OD , ∴501013513
AG AF DG OD ===,即DG=1323AD ,
∴AD=
503013·18
13
AB AF=⨯=,
则DG=133033013 231323
⨯=.
【点睛】
圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。

相关文档
最新文档