平邑县高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平邑县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. (2011辽宁)设sin (
+θ)=,则sin2θ=(

A .﹣
B .﹣
C .
D .
2. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )
A .3条
B .2条
C .1条
D .0条
3. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )
A .[﹣6,2]
B .[﹣6,0)∪( 0,2]
C .[﹣2,0)∪( 0,6]
D .(0,2]
4. 已知,则的大小关系是( )
1.50.1 1.30.2,2,0.2a
b c ===,,a b c A . B . C . D .a b c <<a c b <<c a b <<b c a
<<
5. 在中,,,,则等于( )
ABC ∆b =3c =30B =
A B .
C D .2
6. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )
A .720
B .270
C .390
D .300
7. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)
+(cos 2θ)
(θ∈R ),则(
+


的最小值是(

A .1
B .﹣1
C .﹣2
D .0
 8. 已知向量,,若,则实数( )
(,1)a t = (2,1)b t =+ ||||a b a b +=-
t =A.
B. C. D. 2-1
-1
2
【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.9. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4

B .4

C .
D .
+
10.设函数的集合
,平面上点的集合
,则在同一直角坐标系中,P 中函数
的图象恰好经过Q 中
两个点的函数的个数是A4B6C8D10
11.已知数列为等差数列,为前项和,公差为,若,则的值为( ){}n a n S d 201717
100201717
S S -=d A .
B .
C .
D .1
20
1
10
102012.函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是(

A .
B .
C .
D .
二、填空题
13.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .
14. 设函数,.有下列四个命题:
()x
f x e =()ln
g x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22
e
m <
-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为
.
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.
15.已知△的面积为,三内角,,的对边分别为,,.若,ABC S A B C 2
2
2
4S a b c +=+则取最大值时

sin cos(4
C B π
-+
C =16.已知函数的一条对称轴方程为,则函数的最大值为2
1()sin cos sin 2f x a x x x =-+6
x π
=()f x ___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数()1
e e
x x f x =-e 的底数,则不等式的解集为________.()()
2240f x f x -+-<18.用“<”或“>”号填空:30.8 30.7. 
三、解答题
19.如图,平面ABB 1A 1为圆柱OO 1的轴截面,点C 为底面圆周上异于A ,B 的任意一点.(Ⅰ)求证:BC ⊥平面A 1AC ;
(Ⅱ)若D 为AC 的中点,求证:A 1D ∥平面O 1BC .
20.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F .(1)求弦AB 的中点M 的轨迹方程
(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.
21.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极
轴建立极坐标系.
(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3
,射线OM :θ=与圆C 的交点为O ,P ,与直线l
的交点为Q ,求线段PQ 的长. 
22.(本题满分15分)
已知抛物线的方程为,点在抛物线上.
C 2
2(0)y px p =>(1,2)R C
(1)求抛物线的方程;
C (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于
(1,1)Q C R A B AR BR :22l y x =+
M N MN AB
,两点,求最小时直线的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
23.解关于x的不等式12x2﹣ax>a2(a∈R).
24.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.
(Ⅰ)求抛物线C的方程
(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)
(ⅰ)记△AOB的面积为f(n),求f(n)的表达式
(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.
平邑县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,
两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,
则sin2θ=2sinθcosθ=﹣.
故选A
【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.
2.【答案】C
【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,
设直线l的方程为:,
则.
即2a﹣2b=ab
直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,
即ab=﹣16,
联立,
解得:a=﹣4,b=4.
∴直线l的方程为:,
即x﹣y+4=0,
即这样的直线有且只有一条,
故选:C
【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.
3.【答案】B
【解析】解:设此等比数列的公比为q,
∵a+b+c=6,
∴=6,
∴b=

当q >0时, =2,当且仅当q=1时取等号,此时b ∈(0,2];
当q <0时,b
=﹣6,当且仅当q=﹣1时取等号,此时b ∈[﹣6,0).
∴b 的取值范围是[﹣6,0)∪( 0,2].故选:B .
【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题. 
4. 【答案】B 【解析】
试题分析:函数在R 上单调递减,所以,且,而,所以
0.2x
y = 1.5
1.30.2
0.2< 1.5 1.300.20.21<<<0.121>。

故选B 。

a c
b <<考点:指数式比较大小。

5. 【答案】C 【解析】

点:余弦定理.6. 【答案】C
解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;
所求方案有: +
+
=390.
故选:C .7. 【答案】 C 【解析】解:∵ =(sin 2θ)
+(cos 2θ)
(θ∈R ),
且sin 2θ+cos 2θ=1,
∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),
即﹣
=cos 2θ•(﹣),
可得
=cos 2θ•

又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,
因此(+)•=2•,设|
|=t ,t ∈[0,2],
可得(+
)•
=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,
∴当t=1时,(
+
)•
的最小值等于﹣2.
故选C .
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题. 
8. 【答案】B 【解析】由知,,∴,解得,故选B.
||||a b a b +=- a b ⊥ (2)110a b t t ⋅=++⨯=
1t =-9. 【答案】 A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB ,若存在θ∈R ,使得xcos θ+ysin θ+1=0成立,则(
cos θ+sin θ)=﹣1,令sin α=,则cos θ=

则方程等价为sin (α+θ)=﹣1,即sin (α+θ)=﹣

∵存在θ∈R ,使得xcos θ+ysin θ+1=0成立,∴|﹣
|≤1,即x 2+y 2≥1,
则对应的区域为单位圆的外部,由
,解得
,即B (2,2
),
A (4,0),则三角形OA
B 的面积S=×
=4

直线y=x 的倾斜角为

则∠AOB=
,即扇形的面积为

则P (x ,y )构成的区域面积为S=4﹣,
故选:
A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强. 
10.【答案】B
【解析】本题考查了对数的计算、列举思想
a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时
b =0,b =1符合;a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;
a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时
b =-1,b =1符合;共6个11.【答案】B 【解析】
试题分析:若为等差数列,
,则为等差数列公差为, {}n a ()
()111212n
n n na S d a n n
n -+
==+-⨯n S n ⎧⎫⎨⎬⎩⎭
2d ,故选B. 2017171
100,2000100,201717210
S S d d ∴
-=⨯==考点:1、等差数列的通项公式;2、等差数列的前项和公式.12.【答案】B
【解析】解:根据选项可知a ≤0
a 变动时,函数y=2|x|的定义域为[a ,b],值域为[1,16],∴2|b|=16,b=4故选B .
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
二、填空题
13.【答案】(0,1)
【解析】
考点:本题考查函数的单调性与导数的关系
14.【答案】①②④
【解析】
15.【答案】
4
π【解析】
考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1
【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及ab 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为2b 2a 正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.111sin ,,(),2224abc ab C ah a b c r R
++16.【答案】1【
解析】
17.【答案】()32-,
【解析】∵,∴,即函数为奇函数,()1e ,e x x f x x R =-
∈()()11x x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭()f x 又∵恒成立,故函数在上单调递增,不等式可转化为()0x x
f x e e -=+>'()f x R ()()2240f x f x -+-<,即,解得:,即不等式的解集为
()()224f x f x -<-224x x -<-32x -<<()()
2240f x f x -+-<,故答案为.()32-,
()32-,18.【答案】 > 
【解析】解:∵y=3x是增函数,
又0.8>0.7,
∴30.8>30.7.
故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题.
三、解答题
19.【答案】
【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点
∴BC⊥AC …
又圆柱OO1中,AA1⊥底面圆O,
∴AA1⊥BC,即BC⊥AA1…
而AA1∩AC=A
∴BC⊥平面A1AC …
(Ⅱ)取BC中点E,连结DE、O1E,
∵D为AC的中点
∴△ABC中,DE∥AB,且DE=AB …
又圆柱OO1中,A1O1∥AB,且
∴DE∥A1O1,DE=A1O1
∴A1DEO1为平行四边形…
∴A1D∥EO1…
而A1D⊄平面O1BC,EO1⊂平面O1BC
∴A1D∥平面O1BC …
【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.
20.【答案】
【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,
两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,
∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,
∴=,
∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),
∴,
化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣
(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)
由已知OA⊥OB得:x1x2+y1y2=0,
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①

所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②
联立①②得:k2+1=0无解
所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
21.【答案】
【解析】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.
(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.
可得普通方程:直线l,射线OM.
联立,解得,即Q.
联立,解得或.
∴P.
∴|PQ|==2.
22.【答案】(1);(2).
2
4y x =20x y +-=【解析】(1)∵点在抛物线上,,…………2分(1,2)R C 22212p p =⨯⇒=即抛物线的方程为;…………5分C 2
4y x =
23.【答案】
【解析】解:由12x2﹣ax﹣a2>0⇔(4x+a)(3x﹣a)>0⇔(x+)(x﹣)>0,
①a>0时,﹣<,解集为{x|x<﹣或x>};
②a=0时,x2>0,解集为{x|x∈R且x≠0};
③a<0时,﹣>,解集为{x|x<或x>﹣}.
综上,当a>0时,﹣<,解集为{x|x<﹣或x>};
当a=0时,x2>0,解集为{x|x∈R且x≠0};
当a<0时,﹣>,解集为{x|x<或x>﹣}.
24.【答案】
【解析】解:(Ⅰ)依题意得|QF|=y Q+=+=1,解得p=1,
∴抛物线C的方程为x2=2y;
(Ⅱ)(ⅰ)∵直线l与抛物线C交于A、B两点,
∴直线l的斜率存在,
设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,
联立方程组,化简得:x2﹣2kx﹣4=0,
此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,
由韦达定理,得:x1+x2=2k,x1x2=﹣4,
∴S△AOB=|OM|•|x1﹣x2|
=×2
=
=2(*)
又∵A点横坐标为n,∴点A坐标为A(n,),
又直线过点M(0,2),故k==﹣,
将上式代入(*)式,可得:
f(n)=2
=2
=2
=n+(n∈N*);
(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:
设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),
使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,
化简得:m﹣n=﹣=,
又∵m≠n,即m﹣n≠0,
∴1=,即mn=4,解得m=1,n=4或m=4,n=1,
此时A点坐标为(1,),(4,8).
【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.。

相关文档
最新文档