高考物理生活中的圆周运动的技巧及练习题及练习题(含答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理生活中的圆周运动的技巧及练习题及练习题(含答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求
(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;
(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).
【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3
时,
22111
()22A A m v m M v -+ 【解析】 【分析】
(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】
(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:
0=A A B B m v m v - 由能量关系:22
11=22
P A A B B E m v m v -
解得v A =2m/s ;v B =4m/s
(2)设B 经过d 点时速度为v d ,在d 点:2d
B B v m g m R
=
由机械能守恒定律:22d 11=222
B B B B m v m v m g R +⋅ 解得R=0.32m
(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:
=()A A A m v m M v +由能量关系:()2
211122
A A A A m gL m v m M v μ=
-+ 解得μ1=0.2
讨论:
(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为
110A Q m gL μμ== (J )
(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为
()
221111
22
A A Q m v m M v =
-+,解得Q 2=2J
2.如图所示,BC 为半径r 2
25
=
m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过
9
8
s 再次回到C 点。
(g =10m/s 2)求:
(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多大? (2)小球第一次过C 点时轨道对小球的支持力大小为多少?
(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。
【答案】(1)2m/s (2)20.9N (3)2N 【解析】 【详解】
(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0
gt v =
解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ︒+︒
=
=g sin45°+μg cos45°=22
小球沿斜面向下滑动的加速度: a 24545mgsin mgcos m
μ︒-︒
=
=g sin45°﹣μg cos45°=2m/s 2
设小球沿斜面向上和向下滑动的时间分别为t 1、t 2,
由位移关系得:12
a 1t 121
2=a 2t 22
又因为:t 1+t 29
8
=s
解得:t 138
=
s ,t 234=s
小球从C 点冲出的速度:v C =a 1t 1=32m/s
在C 点由牛顿第二定律得:N ﹣mg =m 2
C
v r
解得:N =20.9N
(3)在B 点由运动的合成与分解有:v B 0
45v sin =
=︒
22m/s 因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。
设细管对小球作用力大小为F
由牛顿第二定律得:F =m 2B
v r
解得:F =52N
由牛顿第三定律知小球对细管作用力大小为52N ,
3.如图所示,在光滑的圆锥体顶部用长为
的细线悬挂一质量为
的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴
线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知
,
重力加速度g 取
若北小球运动的角速度
,求此时细线对小球的拉力大小。
【答案】
【解析】 【分析】
根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
【详解】
若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:
此时小球做圆周运动的半径为:
解得小球运动的角速度大小
为:代入数据得:
若小球运动的角速度为:
小球对圆锥体有压力,设此时细线的拉力大小为F ,小球受圆锥面的支持力为,则
水平方向上有: 竖直方向上有:
联立方程求得:
【点睛】
解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。
4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,
E 点是半径为0.32R m =的竖直圆轨道的最高点,D
F 部分水平,末端F 点与其右侧的水
平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取2
10/g m s =.求:
(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;
(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.
【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()
221521k k W k +-=+
【解析】
(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20
A A v m g m R
=①,
设碰撞前A 的速度为1v .由机械能守恒定律得:220111222
A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;
设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得
()122A A m v m m v =+④;
解得:211
41/13
A A
B m v v m s m m =
=⨯=++⑤;
由能量转化与守恒定律可得:()22
121122
A A
B Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,
由动能定理得:()()221
2
A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214
/1A A B m v v m s m m k
=
=++⑩;
(i )如果A 、B 能从传送带右侧离开,必须满足()()2
21
2
A B A B m m v m m gL μ+>+,
解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,
(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()22211
22
A B A B W m m v m m v =
+-+, 解得()
2215
21k k W k +-=
+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.
5.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:
(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;
(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】
(1)物块从A 到B 运动过程中,根据动能定理得:22101122
B mgL mv mv μ-=- 解得:11/B v m s =
(2)物块从B 到C 运动过程中,根据机械能守恒得:22
11·222
B C mv mv mg R =+ 解得:9/C v m s =
(3)物块从B 到D 运动过程中,根据动能定理得:2
2102
B mgL mv μ-=- 解得:230.25L m =
对整个过程,由能量守恒定律有:2
0102
Q mv =- 解得:Q=72J 【点睛】
选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.
6.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。
(1)当轻绳与OM 的夹角θ=37°时,求轻绳上张力F 。
(2)当轻绳与OM 的夹角θ=37°时,求物块B 的动能E kB 。
(3)若缓慢增大直角杆转速,使轻绳与OM 的夹角θ由37°缓慢增加到53°,求这个过程中直角杆对A 和B 做的功W A 、W B 。
【答案】(1)25N F =(2) 2.25J kB E = (3)0A W = ,B 61J 12
W = 【解析】 【详解】
(1)因A 始终处于平衡状态,所以对A 有
1cos F m g θ=
得25N F =
(2)设B 质量为2m 、速度为v 、做圆周运动的半径为r ,对B 有
2
2sin v F m r
θ=
sin r L θ= 221
2
kB E m v =
得21sin 2cos kB m gL E θ
θ
=
2.25J kB E =
(3)因杆对A 的作用力垂直于A 的位移,所以0A W =
由(2)中的21sin 2cos kB m gL E θθ
=知,当53θ=︒时,B 的动能为kB 16J 3E '
= 杆对B 做的功等于A 、B 组成的系统机械能的增量,故B kB kB 1W E E m gh '
=-+ ①
其中cos37cos53h L L ︒︒=- ② 得B 61J 12
W =
7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
保持细管竖直用手轻轻摇动细管,稳定后A 在水平面内做匀速圆周运动而B 保持静止状态。
某时刻B 静止在地面上且对地面的压力恰好为零。
已知重力加速度为g ,不计一切阻力。
求:
()1该时刻连接A 的轻绳与竖直方向的夹角θ; ()2该时刻A 的线速度大小v ;
()3从该时刻起轻摇细管使B 升高到离地高度为/2l 处保持静止,求B 上升过程中手对
A 、
B 系统做的功。
【答案】()1?
60o
;()32?2
gl
;()938mgl 。
【解析】 【分析】
(1)对B 根据平衡求绳子的拉力;对A 球分析,由力的平衡条件可求绳与竖直方向夹角θ; (2)对A 水平方向做圆周运动,利用牛顿第二定律列式求解;
(3)由力的平衡条件和牛顿第二定律并结合功能关系列式联立可求整个过程中人对A 、B 系统做的功。
【详解】
(1)B 对地面刚好无压力,故此时绳子的拉力为2T mg = 对A 受力分析如图所示:
在竖直方向合力为零,故cos T mg θ= 代入数据解得:60θ=o
(2)A 球水平方向做圆周运动,由牛顿第二定律得:2
sin sin v T m l θθ
=代入数据解得:
32
gl
v =
(3)当B 上升
2l 时,拉A 的绳长为32
l
,此时对水平方向上有: 2
1sin 3sin 2
v T m
l θθ= 联立解得:13
2
v gl =A 相对于原来的高度下降的距离:cos 24l l h V θ=
=B 物体重力势能的增加量:122
l
E mg mgl =⋅=V A 物体重力势能的减少量:244
l mgl
E mg =⋅
=V A 物体动能的增加量2231113
228
E mv mv mgl =
-=V 对系统运用功能关系可得手对系统做的功:1229
8
W E E E mgl =-+=V V V 【点睛】
本题综合考查共点力平衡、牛顿第二定律和功能关系,对于圆锥摆问题,关键分析小球的受力情况,确定其向心力,运用牛顿第二定律和圆周运动的知识结合解答。
8.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
取重力加速度g =10m/s 2。
求: (1)小球在C 处受到的向心力大小;
(2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。
【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】
(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为
2.5
3.5 3.511035N F mg mg mg =+==⨯⨯=向
(2)在C 点,由
2
=c v F r
向
代入数据得
2
1 3.5J 2
c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有
0kx mg =
解得
00.1m mg
x k
=
= 设最大速度位置为零势能面,由机械能守恒定律有
201
()2
c km p mg r x mv E E ++=+
得
201
()3 3.50.56J 2
km c p E mg r x mv E =++-=+-=
(3)滑块从A 点运动到C 点过程,由动能定理得
2132
c mg r mgs mv μ⋅-=
解得BC 间距离
0.5m s =
小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的
过程中,设物块在BC 上的运动路程为s ',由动能定理有
212
c mgs mv μ-=-' 解得
0.7m s '=
故最终小滑动距离B 为0.70.5m 0.2m -=处停下.
【点睛】
经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
9.某工地某一传输工件的装置可简化为如图所示的情形,AB 为一段足够长的曲线轨道,BC 为一段足够长的水平轨道,CD 为一段圆弧轨道,圆弧半径r =1m ,三段轨道均光滑。
一长为L =2m 、质量为M =1kg 的平板小车最初停在BC 轨道的最左端,小车上表面刚好与AB 轨道相切,且与CD 轨道最低点处于同一水平面。
一可视为质点、质量为m =2kg 的工件从距AB 轨道最低点h 高处沿轨道自由滑下,滑上小车后带动小车也向右运动,小车与CD 轨道左端碰撞(碰撞时间极短)后即被粘在C 处。
工件只有从CD 轨道最高点飞出,才能被站在台面DE 上的工人接住。
工件与小车的动摩擦因数为μ=0.5,取g =10m/s 2,
(1)若h =2.8m ,则工件滑到圆弧底端B 点时对轨道的压力为多大?
(2)要使工件能被站在台面DE 上的工人接住,求h 的取值范围.
【答案】(1)(2)
【解析】(1)工件从起点滑到圆弧轨道底端B 点,设到B 点时的速度为v B ,根据动能定理:
工件做圆周运动,在B 点,由牛顿第二定律得:
由①②两式可解得:N =40N
由牛顿第三定律知,工件滑到圆弧底端B 点时对轨道的压力为N ′=N =40N
(2)①由于BC 轨道足够长,要使工件能到达CD 轨道,工件与小车必须能达共速,设工件刚滑上小车时的速度为v 0,工件与小车达共速时的速度为v 1,假设工件到达小车最右端才与其共速,规定向右为正方向,则对于工件与小车组成的系统,由动量守恒定律得:
mv0=(m+M)v1
由能量守恒定律得:
对于工件从AB轨道滑下的过程,由机械能守恒定律得:
代入数据解得:h1=3m.
②要使工件能从CD轨道最高点飞出,h1=3m为其从AB轨道滑下的最大高度,设其最小高度为h′,刚滑上小车的速度为v′0,与小车达共速时的速度为v′1,刚滑上CD轨道的速度为
v′2,规定向右为正方向,由动量守恒定律得:
mv′0=(m+M)v′1…⑥
由能量守恒定律得:
工件恰好滑到CD轨道最高点,由机械能守恒定律得:
工件在AB轨道滑动的过程,由机械能守恒定律得:
联立。
⑥⑦⑧⑨,代入数据解得:h′=m
综上所述,要使工件能到达CD轨道最高点,应使h满足:m<h⩽3m.
【名师点睛】(1)工件在光滑圆弧上下滑的过程,运用机械能守恒定律或动能定理求出工件滑到圆弧底端B点时的速度.在B点,由合力提供向心力,由牛顿第二定律求出轨道对工件的支持力,从而得到工件对轨道的压力.
(2)由于BC轨道足够长,要使工件能到达CD轨道,工件与小车必须能达共速,根据动量守恒定律、能量守恒定律求出滑上小车的初速度大小,根据机械能守恒求出下滑的高度
h=3m,要使工件能从CD轨道最高点飞出,h=3m为其从AB轨道滑下的最大高度,结合动量守恒定律和能量守恒定律、机械能守恒定律求出最小高度,从而得出高度的范围.
10.如图所示,半径R=1m的光滑半圆轨道AC与高h=8R的粗糙斜面轨道BD放在同一竖直平面内,BD部分水平长度为x=6R.两轨道之间由一条光滑水平轨道相连,水平轨道与斜轨道间有一段圆弧过渡.在水平轨道上,轻质弹簧被a、b两小球挤压(不连接),处于静止状态.同时释放两个小球,a球恰好能通过半圆轨道最高点A,b球恰好能到达斜面轨道最高点B.已知a球质量为m1=2kg,b球质量为m2=1kg,小球与斜面间动摩擦因素为
μ=1
3
,重力力加速度为g=10m/s2.(sin37°=0.6,cos37°=0.8)求:
(1)a 球经过C 点时对轨道的作用力
(2)释放小球前弹簧的弹性势能Ep .
【答案】(1)120N ,方向竖直向下.(2)150J .
【解析】试题分析:(1)a 球恰好通过最高点A 时有:得 10m/s A v Rg ==
a 球从C 到A 过程由动能定理有:
解得:
在C 点,对a 球受力分析有:
解得轨道对a 球的作用力大小为:
(2)b 球从D 点恰好到达最高点B 过程中,位移
由动能定理:
求得
所以小球释放前弹性势能为
考点:动能定理;牛顿第二定律的应用。