昌五镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌五镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)关于x、y的方程组的解x、y的和为12,则k的值为()
A.14
B.10
C.0
D.﹣14
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:解方程得:
根据题意得:(2k﹣6)+(4﹣k)=12
解得:k=14.
故答案为:A
【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。

2、(2分)下列变形中不正确的是()
A.由得
B.由得
C.若a>b,则ac2>bc2(c为有理数)
D.由得
【答案】C
【考点】不等式及其性质
【解析】【解答】解:A、由前面的式子可判断a是较大的数,那么b是较小的数,正确,不符合题意;
B、不等式两边同除以-1,不等号的方向改变,正确,不符合题意;
C、当c=0时,左右两边相等,错误,符合题意;
D、不等式两边都乘以-2,不等号的方向改变,正确,不符合题意;
故答案为:C
【分析】A 由原不等式可直接得出;B 、C、D 都可根据不等式的性质②作出判断(注意:不等式两边同时除以或除以同一个负数时,不等号的方向改变。

);
3、(2分)下图中与是内错角的是()
A. B.
C. D.
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】观察图形可知:A答案中的两个角是内错角
故应选:A。

【分析】根据三线八角的定义,内错角形如Z形图,即可得出答案。

4、(2分)如图,如果AB∥CD,CD∥EF,那么∠BCE等于()
A. ∠1+∠2
B. ∠2-∠1
C. 180°-∠2+∠1
D. 180°-∠1+∠2
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵B∥CD
∴∠1=∠BCD
∵CD∥EF,
∴∠2+∠DCE=180°
∠DCE=180°-∠2
∵∠BCE=∠BCD+ ∠DCE
∴∠BCE=180°-∠2+∠1
故答案为:C
【分析】根据两直线平行内错角相等即同旁内角互补,可得出∠1=∠BCD,∠2+∠DCE=180°,再根据∠BCE=∠BCD+ ∠DCE,即可得出结论。

5、(2分)下列各式中是二元一次方程的是()
A.x+3y=5
B.﹣xy﹣y=1
C.2x﹣y+1
D.
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;
B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;
C. 2x﹣y+1,不是方程,不符合题意;
D. ,不是整式方程,不符合题意,
故答案为:A.
【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。

6、(2分)如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDA 的度数等于()
A. 70°
B. 100°
C. 110°
D. 120°
【答案】A
【考点】平行线的性质
【解析】【解答】解:∵DE∥AC,
∴∠CDE=∠C=50°,
又∠CDA+∠CDE+∠BDE=180°,
∴∠CDA=180°﹣50°﹣60°=70°,
故选A.
【分析】根据两直线平行,内错角相等,求出∠CDE的度数,再根据平角的定义,可得出∠CDA+∠CDE+∠BDE=180°,然后代入计算即可求解。

7、(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。

8、(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】解一元一次不等式,一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先求出不等式的解集,再求其中的最小整数.解一元一次不等式基本步骤:移项、合并同类项、系数化为1.
9、(2分)若一个数的平方根是±8,那么这个数的立方根是()
A. 4
B. ±4
C. 2
D. ±2
【答案】A
【考点】平方根,立方根及开立方
【解析】【解答】解:一个数的平方根是±8,则这个数是64,则它的立方根是4.
故答案为:A
【分析】根据平方根的定义,这个数应该是(±8)2=64,再根据立方根的定义求出64的立方根即可。

10、(2分)若整数同时满足不等式与,则该整数x是()
A.1
B.2
C.3
D.2和3
【答案】B
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.
故答案为:B.
【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.
11、(2分)下列不是二元一次方程组的是()
A. .
B. .
C. .
D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:由定义可知:是分式方程.故答案为:C.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。

判断即可。

12、(2分)下图是《都市晚报》一周中各版面所占比例情况统计.本周的《都市晚报》一共有206版.体育新闻约有()版.
A. 10版
B. 30版
C. 50版
D. 100版
【答案】B
【考点】扇形统计图,百分数的实际应用
【解析】【解答】观察扇形统计图可知,体育新闻约占全部的15左右,206×15%=30.9,选项B符合图意. 故答案为:B.
【分析】把本周的《都市晚报》的总量看作单位“1”,从统计图中可知,财经新闻占25%,体育新闻和生活共占25%,体育新闻约占15%,据此利用乘法计算出体育新闻的版面,再与选项对比即可.
二、填空题
13、(1分)如图,图中,∠B的同旁内角除了∠A还有________.
【答案】∠ACB,∠ECB
【考点】同位角、内错角、同旁内角
【解析】【解答】解:∠B的同旁内角有∠A,∠ACB,∠ECB.故答案为:∠ACB,∠ECB.
【分析】同旁内角是指在两条直线的内部,在第三条直线的同侧。

根据同旁内角的意义可知,∠B的同旁内角除了∠A还有∠ACB,∠ECB。

14、(1分)不等式组的最小整数解是________.
【答案】3
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:先求出一元一次不等式组的解集,再根据x是整数得出最小整数解.
解答:

解不等式①,得x 1,
解不等式②,得>2,
所以不等式组的解集为>2,
所以最小整数解为3.
故答案为:3.
【分析】先求出一元一次不等式组的解集,再根据x是整数得出最小整数解.同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
15、(1分)若整数x满足|x|≤3,则使为整数的x的值是________(只需填一个).
【答案】2
【考点】实数的运算
【解析】【解答】解:∵|x|≤3,∴﹣3≤x≤3,∴当x=﹣2时,= =3,x=3时,=
=2.
故,使为整数的x的值是﹣2或3(填写一个即可).
故答案为:﹣2或3.(填写一个即可)
【分析】由已知可求出x的取值范围,满足这个范围的数由,,,0;但是还要能是被开方数开方.
满足这样的数只有两个-2,3.
16、(1分)两个无理数,它们的和为1,这两个无理数可以是________(只要写出两个就行)
【答案】答案不唯一,例如π,1-π
【考点】无理数的认识
【解析】【解答】答案不唯一,例如π,1-π
【分析】写出两个无理数,让它们的和为1即可.
17、(1分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,
则∠AED′的度数是________.
【答案】50
【考点】平行线的性质,翻折变换(折叠问题)
【解析】【解答】∵AD∥BC,∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°.
【分析】根据平行线的性质可得,∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,所以∠AED′=180°-2∠FED=50°.
18、(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
三、解答题
19、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。

20、(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。

21、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
22、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
23、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情
况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。

排球25
篮球50
乒乓球75
足球100
其他50
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。

24、(5分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.
【答案】解:∵AB∥EF,
∴∠FRG=∠APR,
∵∠FRG=110°,
∴∠APR=110°,
又∵PS⊥GH,
∴∠SPR=90°,
∴∠APS=∠APR-∠SPR=20°,
∵AB∥CD,
∴∠PSQ=∠APS=20°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得内错角∠FRG=∠APR=110°,再由垂直性质得∠SPR=90°,从而求得∠APS=20°;由平行线的性质得内错角∠PSQ=∠APS=20°.
25、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值. 【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

26、(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。

正有理数、0、负有理数统称有理数。

非负整数包括正整数和0;无理数是无限不循环的小数。

将各个数准确填在相应的括号里。

相关文档
最新文档