朝阳市数学七年级上学期期末数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
朝阳市数学七年级上学期期末数学试题
一、选择题
1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项
B .225
m n 的系数是2
C .单项式﹣x 3yz 的次数是5
D .3x 2﹣y +5xy 5是二次三项式 2.当x 取2时,代数式(1)
2
x x -的值是( ) A .0
B .1
C .2
D .3
3.若34(0)x y y =≠,则( ) A .34y 0x +=
B .8-6y=0x
C .3+4x y y x =+
D .
43
x y = 4.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5
h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒 B .4秒 C .5秒 D .6秒 5.一个角是这个角的余角的2倍,则这个角的度数是( )
A .30
B .45︒
C .60︒
D .75︒
6.对于方程
12132
x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+
7.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a -
8.如图是由下列哪个立体图形展开得到的?( )
A .圆柱
B .三棱锥
C .三棱柱
D .四棱柱
9.点()5,3M 在第( )象限. A .第一象限
B .第二象限
C .第三象限
D .第四象限
10.如果方程组223x y x y +=⎧⎨-=⎩的解为5
x y =⎧⎨=⎩
,那么“口”和“△”所表示的数分别是( )
A .14,4
B .11,1
C .9,-1
D .6,-4
11.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )
A .a+b >0
B .ab >0
C .a ﹣b <o
D .a÷b >0
12.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )
A .棱柱
B .圆锥
C .圆柱
D .棱锥
13.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若
x y
m m =,则x y = D .若x y =,则
x y m m
= 14.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④ B .①②③
C .②③④
D .①③④
15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD
∠的度数为( )
A .100
B .120
C .135
D .150
二、填空题
16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.
17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)
…………
18.若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期
交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-
20.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为
5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.
21.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
22.若1
2x y =⎧⎨=⎩
是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.
23.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 24.如果向东走60m 记为60m +,那么向西走80m 应记为______m.
25.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.
26.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 27.化简:2x+1﹣(x+1)=_____.
28.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为
AM AB 、的中点,则PQ 的长为____________.
29.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______. 30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.
三、压轴题
31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.
(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;
(2)当线段CE 运动到点A 在C 、E 之间时,
①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;
(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.
32.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .
(1)如图1,若点F 与点G 重合,求∠MEN 的度数;
(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 33.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.
(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求
α.
34.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)
(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;
(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且
3DOE AOE ∠∠=,3COF BOF ∠=∠,7
2
EOF COD ∠=∠,求EOF ∠的度数;
(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若
3MOI POI ∠=∠,则t = 秒.
35.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),
COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,
请补全图形并加以说明.
36.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.
观察下列按照一定规律堆砌的钢管的横截面图:
用含n的式子表示第n个图的钢管总数.
(分析思路)
图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.
如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)
(解决问题)
(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.
S=1+2 S=2+3+4 _____________ ______________
(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并计算第n个图的钢管总数.
37.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺
(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平
分∠BOC时,如图2.
①求t值;
②试说明此时ON平分∠AOC;
(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;
(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.
38.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据同类项的定义,单项式和多项式的定义解答. 【详解】
A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.
B .225
m n
的系数是25,故本选项错误.
C .单项式﹣x 3yz 的次数是5,故本选项正确.
D .3x 2﹣y +5xy 5是六次三项式,故本选项错误. 故选C . 【点睛】
本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.
2.B
解析:B 【解析】 【分析】
把x 等于2代入代数式即可得出答案. 【详解】 解:
根据题意可得: 把2x =代入
(1)
2
x x -中得: (1)21
==122x x -⨯, 故答案为:B. 【点睛】
本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.
3.D
解析:D 【解析】 【分析】
根据选项进行一一排除即可得出正确答案. 【详解】
解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错; D 中、
43
x y
=,交叉相乘得到34x y =,故D 对.
故答案为:D. 【点睛】
本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.
4.C
解析:C 【解析】 【分析】
根据题意直接把高度为102代入即可求出答案. 【详解】
由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25
∴∴4.5<t<5
∴与t 最接近的整数是5.故选C.
【点睛】
本题考查的是估算问题,解题关键是针对其范围的估算.
5.C
解析:C 【解析】 【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】
解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
6.D
解析:D 【解析】 【分析】
方程两边同乘以6即可求解. 【详解】
12132
x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D.
【点睛】
本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.
7.B
解析:B
【解析】
【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.
【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,
点A 表示的数是a ,所以B 表示的数为-a ,
又因为BC AB =,所以点C 表示的数为3a -.
故选B.
【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
8.C
解析:C
【解析】
【分析】
三棱柱的侧面展开图是长方形,底面是三角形.
【详解】
解:由图可得,该展开图是由三棱柱得到的,
故选:C .
【点睛】
此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
9.A
解析:A
【解析】
【分析】
根据平面直角坐标系中点的坐标特征判断即可.
【详解】
∵5>0,3>0,
∴点()5,3M 在第一象限.
故选A.
【点睛】
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标
特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0. 10.B
解析:B
【解析】
【分析】
把
5
x
y
=
⎧
⎨
=
⎩
x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.
【详解】
把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,
把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,
故选B.
【点睛】
本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.
11.C
解析:C
【解析】
【分析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,
∴a+b<0,ab<0,a﹣b<0,a÷b<0.
故选:C.
12.C
解析:C
【解析】
【分析】
根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.
【详解】
解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,
故选:C.
【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
13.D
解析:D
【解析】
【分析】
等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即
可.
【详解】
A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;
B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;
C. 等式
x y m m
=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m
=不成立,故D 选项错误; 故选:D .
【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.
14.B
解析:B
【解析】
【分析】
根据圆锥、圆柱、球、五棱柱的形状特点判断即可.
【详解】
圆锥,如果截面与底面平行,那么截面就是圆;
圆柱,如果截面与上下面平行,那么截面是圆;
球,截面一定是圆;
五棱柱,无论怎么去截,截面都不可能有弧度.
故选B .
15.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB 平分∠COD ,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C .
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
二、填空题
16.14
【解析】
因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,
因为mn=17cm,所以x+4x+=1
解析:14
【解析】
因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,
因为M,N分别是AC,DB的中点,所以CM=1
2
AC x
=,DN=
17
22
BD x
=,
因为mn=17cm,所以x+4x+7
2
x=17,解得x=2,所以BD=14,故答案为:14.
17.【解析】
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,
解析:83
n-
【解析】
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.
【详解】
解:由题知:右上和右下两个数的和等于中间的数,
∴第4个正方形中间的数字m=14+15=29;
∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,
∴第n个正方形的中间数字:4n-2+4n-1=8n-3.
故答案为:29;8n-3
【点睛】
本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.
18.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.
解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()239n m =-=,故答案为:9.
19.810
【解析】
【分析】
根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.
【详解】
解:由题意五笔交易后余额为860+200-4-64-82-100=810元,
故填810.
【点睛
解析:810
【解析】
【分析】
根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.
【详解】
解:由题意五笔交易后余额为860+200-4-64-82-100=810元,
故填810.
【点睛】
本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.
20.【解析】
【分析】
根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.
【详解】
解:算出一个正方形方框的面积为:,
桌面被这些方框盖住部分的面积则为:
故填:.
【点睛】
本题结合求
解析:60200a -
【解析】
【分析】
根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.
【详解】
解:算出一个正方形方框的面积为:22
(10)a a --,
桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦
a .
故填:60200
【点睛】
本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 21.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人),
故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.
22.3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】
解:把代入方程组得:,
①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.
【
解析:3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.
【详解】
解:把12x y =⎧⎨=⎩
代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,
则a +b =3,
故答案为:3.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
23.【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解析:62.0510-⨯
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000205=62.0510-⨯
故答案为62.0510-⨯
【点睛】
此题考查科学记数法,难度不大
24.-80
【解析】
【分析】
在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
解:如果向东走60m 记为,那么向西走80m 应记为.
故答案为.
【点睛】
本题考查正数和负数
解析:-80
【解析】 【分析】 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.
故答案为80-.
【点睛】
本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.
25.2+
【解析】
【分析】
先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.
【详解】
∵数轴上点A ,B 表示的数分别是1,–,
∴AB=1–(–)=1+,
则点C 表示的数为1+1+
解析:2+2
【解析】
【分析】
先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.
【详解】
∵数轴上点A ,B 表示的数分别是1,–2,
∴AB=1–(–2)=1+2,
则点C 表示的数为1+1+2=2+2,
故答案为2
【点睛】
本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.
26.1或-7
【解析】
【分析】
设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.
【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解
解析:1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.
【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解得x=1或-7.
【点睛】
本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.
27.x
【解析】
【分析】
首先去括号,然后再合并同类项即可.
【详解】
解:原式=2x+1﹣x﹣1=x,
故答案为:x.
【点睛】
此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.
解析:x
【解析】
【分析】
首先去括号,然后再合并同类项即可.
【详解】
解:原式=2x+1﹣x﹣1=x,
故答案为:x.
【点睛】
此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.
28.6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1
解析:6cm
【解析】【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=1
2
AM=2cm,
AQ=1
2
AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,
∵P,Q分别为AM,AB的中点,
∴AP=1
2
AM=2cm,AQ=
1
2
AB=8cm,
∴PQ=AQ-AP=6cm;
故答案为:6cm.
【点睛】
本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.
29.5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得
∴
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
解析:5
【解析】
【分析】
把方程的解代入方程即可得出m的值.
【详解】
把1
x=代入方程,得
141
m⨯-=
∴5
m=
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
30.11
【解析】
【分析】
对整式变形得,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已
解析:11
【解析】
【分析】
对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴423a b -+=2(2)324311a b -+=⨯+=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.
三、压轴题
31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或
487或527 【解析】
【分析】
(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;
(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案
(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解
【详解】
(1)数轴上A 、B 两点对应的数分别是-4、12,
∴AB=16,
∵CE=8,CF=1,∴EF=7,
∵点F 是AE 的中点,∴AF=EF=7,
,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,
故答案为16,6,2;
(2)∵点F 是AE 的中点,∴AF=EF ,
设AF=EF=x,∴CF=8﹣x ,
∴BE=16﹣2x=2(8﹣x ),
∴BE=2CF.
故答案为①162x -②2BE CF =;
(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,
=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,
解得:t=1或3;
②当6<t ≤8时,P 对应数()33126t 22
t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12
t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527
; 故答案为t=1或3或
487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健
32.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.
【解析】
【分析】
(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.
(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.
(3)分两种情形分别讨论求解.
【详解】
(1)∵EN 平分∠AEF ,EM 平分∠BEF
∴∠NEF =12∠AEF ,∠MEF =12
∠BEF ∴∠MEN =∠NEF +∠MEF =
12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°
∴∠MEN =12
×180°=90° (2)∵EN 平分∠AEF ,EM 平分∠BEG
∴∠NEF=1
2
∠AEF,∠MEG=
1
2
∠BEG
∴∠NEF+∠MEG=1
2
∠AEF+
1
2
∠BEG=
1
2
(∠AEF+∠BEG)=
1
2
(∠AEB﹣∠FEG)
∵∠AEB=180°,∠FEG=30°
∴∠NEF+∠MEG=1
2
(180°﹣30°)=75°
∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°
(3)若点G在点F的右侧,∠FEG=2α﹣180°,
若点G在点F的左侧侧,∠FEG=180°﹣2α.
【点睛】
考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.
33.(1)80°;(2)140°
【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=1
2
∠AOC+
1
2
∠BOD -∠BOC=
1
2
(∠AOC+∠BOD )-∠BOC.
∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,
∴∠MON=1
2
(∠AOB+∠BOC+∠BOD )-∠BOC=
1
2
(∠AOD+∠BOC )-∠BOC,
∵∠AOD=α,∠MON=60°,∠BOC=20°,
∴60°=
12
(α+20°)-20°, ∴α=140°.
【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.
34.(1)40º;(2)84º;(3)7.5或15或45
【解析】
【分析】
(1)利用角的和差进行计算便可;
(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;
(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.
【详解】
解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°
∴COD AOD BOC AOB ∠=∠+∠-∠
160120=︒-︒
40=︒
(2)3DOE AOE ∠=∠,3COF BOF ∠=∠
∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒
则3COF y ∠=︒,
44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒
EOF EOD FOC COD ∠=∠+∠-∠
()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒
72
EOF COD ∠=∠ 7120()(44120)2
x y x y ∴-+=+- 36x y ∴+=
120()84EOF x y ∴︒+︒︒∠=-=
(3)当OI 在直线OA 的上方时,
有∠MON=∠MOI+∠NOI=1
2
(∠AOI+∠BOI))=
1
2
∠AOB=
1
2
×120°=60°,
∠PON=1
2
×60°=30°,
∵∠MOI=3∠POI,
∴3t=3(30-3t)或3t=3(3t-30),
解得t=15
2
或15;
当OI在直线AO的下方时,
∠MON═1
2
(360°-∠AOB)═
1
2
×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°-6120
2
t-
)或180°-3t=3(
6120
2
t-
-60°),
解得t=30或45,
综上所述,满足条件的t的值为15
2
s或15s或30s或45s.
【点睛】
此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.
35.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12
AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】
(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =
1122
AOB AOD ∠∠- =()12AOB AOD ∠∠- =
12
BOD ∠ =01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠, ∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12
AOB AOD ∠∠+ =12α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =()12
AOB AOD ∠∠+ =()013602
BOD ∠- =()
013602
α- =011802α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
36.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析
【解析】
【分析】
先找出前几项的钢管数,在推出第n项的钢管数.
【详解】
(1)3456;45678
S S
=+++=++++
(2)方法不唯一,例如:
12
S=+1233
S=+++123444
S=+++++12345555
S=+++++++(3)方法不唯一,例如:
()()
12 (2)
S n n n n
=++++++
()()
()()
=.....12.....
1
11
2
n n n n
n n n n
+++++++
=+++
()
3
1
2
n n
=+
【点睛】
此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.
37.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】
【分析】
(1)根据角平分线的性质以及余角补角的性质即可得出结论;
(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;
(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.
【详解】
(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,
∴∠COM=∠BOM=75°.
∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;
②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.
(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,
∴β=α+60°;
(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,
∴30°+8t=5t+45°,∴t=5.
即t=5时,射线OC第一次平分∠MON.
【点睛】
本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
38.(1)45°;(2)45°;(3)45°或135°.
【解析】
【分析】
(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;
(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;
(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.
【详解】
(1)如图,∠AOC=90°﹣∠BOC=20°,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=∠AOC=10°,∠COE=1
2
∠BOC=35°,
∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:
∠DOE=∠COD+∠COE=1
2
∠AOC+
1
2
∠COB=
1
2
(∠AOC+∠COB)=1
2
∠AOB=45°;
(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,
分两种情况:如图3所示,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=1
2
∠AOC,∠COE=
1
2
∠BOC,
∴∠DOE=∠COD﹣∠COE=1
2
(∠AOC﹣∠BOC)=45°;
如图4所示,∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=1
2
∠AOC,∠COE=
1
2
∠BOC,
∴∠DOE=∠COD+∠COE=1
2
(∠AOC+∠BOC)=1
2
×270°=135°.
【点睛】
此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。