普兰店区第三中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普兰店区第三中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 2. 已知函数y=2sinx 的定义域为[a ,b],值域为[﹣2,1],则b ﹣a 的值不可能是( )
A .
B .π
C .2π
D .
3. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )
A .54
B .162
C .54+18
D .162+18
4. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
5. 在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( ) A .锐角 B .直角 C .钝角 D .不存在
6.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()
A.()B.(,] C.()D.(]
7.数列{a n}的首项a1=1,a n+1=a n+2n,则a5=()
A.B.20 C.21 D.31
8.已知集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z},若P∩Q≠∅,则b的最小值等于()A.0 B.1 C.2 D.3
9.已知函数f(x)=m(x﹣)﹣2lnx(m∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)<g (x0)成立,则实数m的范围是()
A.(﹣∞,] B.(﹣∞,)C.(﹣∞,0] D.(﹣∞,0)
10.如图所示,程序执行后的输出结果为()
A.﹣1 B.0 C.1 D.2
11.若,,且,则λ与μ的值分别为()
A.B.5,2 C.D.﹣5,﹣2
12.若函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,则有()
A.a>1且b<1 B.a>1且b>0 C.0<a<1且b>0 D.0<a<1且b<0
二、填空题
13.将边长为1
的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记
,
则S 的最小值是 .
14.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .
15.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:
).
16.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,
{,0x x x f x x lnx x a
+≤=->在其定义域上恰有两
个零点,则正实数a 的值为______. 17.
的展开式中
的系数为 (用数字作答).
18.曲线y=x+e x 在点A (0,1)处的切线方程是 .
三、解答题
19.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记n
n a n b 1
4+=
,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.
20.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)
在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.
21.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点
P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.
22.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)
(Ⅰ)求四棱锥C﹣FDEO的体积
(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.
23.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.
24.已知,其中e是自然常数,a∈R (Ⅰ)讨论a=1时,函数f(x)的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.
普兰店区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】B 【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样. 2. 【答案】C
【解析】解:函数y=2sinx 在R 上有﹣2≤y ≤2 函数的周期T=2π
值域[﹣2,1]含最小值不含最大值,故定义域[a ,b]小于一个周期 b ﹣a <2π 故选C
【点评】本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是熟悉三角函数y=2sinx 的值域[﹣2,2],而在区间[a ,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.
3. 【答案】D
【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组
成,
故表面积S=3×6×6+3××6×6+×=162+18,
故选:D
4. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C.
5. 【答案】A
【解析】解:在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2
)sinC=0有两个不等的实根,
即(sinA ﹣sinC )x 2+2sinB x+(sinA+sinC )=0 有两个不等的实根,∴△=4sin 2B ﹣4 (sin 2A ﹣sin 2
C )>0,
由正弦定理可得 b 2+c 2﹣a 2
>0,再由余弦定理可得 cosA=
>0,
故A 为锐角,
故选A.
6.【答案】A
【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),
∴函数f(x)关于x=m对称,
若φ∈(,),
则sinφ>cosφ,
则由f(sinφ)=f(cosφ),
则=m,
即m==(sinφ×+cosαφ)=sin(φ+)
当φ∈(,),则φ+∈(,),
则<sin(φ+)<,
则<m<,
故选:A
【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.
7.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
8.【答案】C
【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,
可得b的最小值为:2.
故选:C.
【点评】本题考查集合的基本运算,交集的意义,是基础题.
9.【答案】B
【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,
∴mx<2lnx,即<在[1,e]上有解,
令h(x)=,则h′(x)=,
∵1≤x≤e,∴h′(x)≥0,
∴h(x)max=h(e)=,
∴<h(e)=,
∴m<.
∴m的取值范围是(﹣∞,).
故选:B.
【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.
10.【答案】B
【解析】解:执行程序框图,可得
n=5,s=0
满足条件s<15,s=5,n=4
满足条件s<15,s=9,n=3
满足条件s<15,s=12,n=2
满足条件s<15,s=14,n=1
满足条件s<15,s=15,n=0
不满足条件s<15,退出循环,输出n的值为0.
故选:B.
【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.11.【答案】A
【解析】解:由,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
12.【答案】B
【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a>1,a0﹣b﹣1<0,
即a>1,b>0,
故选:B
二、填空题
13.【答案】.
【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),
∴S===,当且仅当t=即t=2时等号成
立;
故答案为:.
14.【答案】7+
【解析】解:如图所示,
设∠APB=α,∠APC=π﹣α.
在△ABP与△APC中,
由余弦定理可得:AB2=AP2+BP2﹣2AP•BPcosα,
AC2=AP2+PC2﹣2AP•PCcos(π﹣α),
∴AB2+AC2=2AP2+,
∴42+32=2AP2+,
解得AP=.
∴三角形ABP 的周长=7+.
故答案为:7+
.
【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.
15.【答案】 【解析】【知识点】空间几何体的三视图与直观图 【试题解析】该几何体是半个圆柱。
所以
故答案为:
16.【答案】e
【解析】考查函数()()20{
x x x f x ax lnx
+≤=-,其余条件均不变,则:
当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有ln x
a x =
有且只有一个实根。
令()()2
ln 1ln ,'x x g x g x x x -==, 当x >e 时,g ′(x )<0,g (x )递减; 当0<x <e 时,g ′(x )>0,g (x )递增。
即有x =e 处取得极大值,也为最大值,且为
1
e
, 如图g (x )的图象,当直线y =a (a >0)与g (x )的图象 只有一个交点时,则1a e
=
. 回归原问题,则原问题中a e =.
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 17.【答案】20
【解析】【知识点】二项式定理与性质 【试题解析】通项公式为:令12-3r=3,r=3.
所以系数为:
故答案为:
18.【答案】 2x ﹣y+1=0 .
【解析】解:由题意得,y ′=(x+e x )′=1+e x
,
∴点A (0,1)处的切线斜率k=1+e 0
=2,
则点A (0,1)处的切线方程是y ﹣1=2x ,即2x ﹣y+1=0,
故答案为:2x ﹣y+1=0.
【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于
基础题.
三、解答题
19.【答案】
【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,
∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3=.………………5分
20.【答案】
【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点
∴≤1⇒a2≥1,即a≥1或a≤﹣1,
命题p为真命题时,a≥1或a≤﹣1;
∵点(a,1)在椭圆内部,
∴,
命题q为真命题时,﹣2<a<2,
由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题
即p真q假,则⇒a≥2或a≤﹣2.
故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).
21.【答案】
【解析】解:(Ⅰ)由已知条件,直线l的方程为,
代入椭圆方程得.
整理得①
直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,
解得或.即k的取值范围为.
(Ⅱ)设P(x1,y1),Q(x2,y2),则,
由方程①,.②
又.③
而.
所以与共线等价于,
将②③代入上式,解得.
由(Ⅰ)知或,
故没有符合题意的常数k.
【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.22.【答案】
【解析】解:(Ⅰ)如图1,∵弦CD垂直平分半径OA,半径为2,
∴CF=DF,OF=,
∴在Rt△COF中有∠COF=60°,CF=DF=,
∵CE为直径,∴DE⊥CD,
∴OF∥DE,DE=2OF=2,
∴,
图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,
又CF⊥AB,CF⊂平面ACB,
∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,
∴.
(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.
证明:分别连接PE,CP,OP,
∵点P为劣弧BC弧的中点,∴,
∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,
∴CP∥AB,且,又∵DE∥AB且DE=,
∴CP∥DE且CP=DE,
∴四边形CDEP为平行四边形,
∴PE∥CD,
又PE⊄面CDO,CD⊂面CDO,
∴PE∥平面CDO.
【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.
23.【答案】
【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得,则,
∴,得cosA=,
由余弦定理得,cosA==,
∴=,
化简得,n=4,
∴a=4、b=5、c=6,cosA=,
又0<A<π,∴sinA==,
∴△ABC的面积S===.
【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.
24.【答案】
【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,
∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.
当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.
所以函数f(x)的极小值为f(1)=1.
(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.
又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.
所以g(x)的最大值为g(e)=,
所以f(x)min﹣g(x)max>,
所以在(1)的条件下,f(x)>g(x)+.
【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..。