必修5模块测试题(A卷)
高中数学人教A版必修五 模块综合测评2 Word版含答案
![高中数学人教A版必修五 模块综合测评2 Word版含答案](https://img.taocdn.com/s3/m/5cbafd4767ec102de3bd895c.png)
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n 可能是( ) A .2n B .2n +1 C .2n -1D .2n -1【解析】 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 【答案】 C2.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≤-1或x ≥5} B .{x |x <-1或x >5} C .{x |1<x <5} D .{x |-1≤x ≤5}【解析】 不等式化为x 2-4x -5>0,所以(x -5)(x +1)>0,所以x <-1或x >5. 【答案】 B3.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于( )A .16B .32C .64D .256【解析】 ∵{a n }是等比数列且由题意得a 1·a 19=16=a 210(a n >0),∴a 8·a 10·a 12=a 310=64.【答案】 C4.下列不等式一定成立的是( ) A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R )D.1x2+1>1(x∈R)【解析】5.在△ABC中,角A,B,C的对边分别为a,b,c,ac=3,且a=3b sin A,则△ABC的面积等于()A.12 B.32C.1 D.3 4【解析】∵a=3b sin A,∴由正弦定理得sin A=3sin B sin A,∴sin B=1 3.∵ac=3,∴△ABC的面积S=12ac sin B=12×3×13=12,故选 A.【答案】 A6.等比数列{a n}前n项的积为T n,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是()A.T10B.T13C.T17D.T25【解析】由等比数列的性质得a3a6a18=a6a10a11=a8a9a10=a39,而T17=a179,故T17为常数.【答案】 C7.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1. 代入公式S n =a 1(1-q n )1-q ,即381=a 1(1-27)1-2,∴a 1=381127=3. ∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示. y x 表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,y x 的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形 B .正三角形 C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2 ≥23+2. 【答案】 A12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA→=12,则tan B 等于( ) A.32 B.3-1 C .2D .2- 3【解析】 由BC →·BA→=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2). 由题意知⎩⎨⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32. 【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n2(n ≥2). ∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *). ∴1a n =2n 2+n=2⎝ ⎛⎭⎪⎫1n -1n +1.∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011. 【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2, 又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】 316.若1a <1b <0,已知下列不等式: ①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2; ⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b <0, ∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由. 【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0, ∴⎩⎨⎧12a 1+66d >0,13a 1+78d <0, 即⎩⎨⎧24+7d >0,3+d <0, ∴-247<d <-3. (2)∵S 12>0,S 13<0, ∴⎩⎨⎧ a 1+a 12>0,a 1+a 13<0, ∴⎩⎨⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 【解】 ∵⎩⎨⎧α+β=-a ,αβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β),b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2. ∴⎩⎨⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1), 则k AB =32,k AC =12,∴12≤b -3a -1≤32.故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0, 整理得b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π, ∴A =π3.(2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3. 当且仅当b =c =3时取等号. ∴S △ABC =12bc sin A ≤12×3×32=334. 从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0.【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立. ①当a =0时,1≥0,不等式恒成立; ②当a ≠0时,则⎩⎨⎧a >0,Δ=4a 2-4a ≤0, 解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0. ∵0≤a ≤1, ∴①当1-a >a ,即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解;③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为(1-a ,a ).21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和.【解】 (1)由a 21=1,a 25=9, 得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1, ∵a n >0, ∴a n =2n -1.数列{a n }的通项公式为a n =2n -1. (2)a 2n ⎝ ⎛⎭⎪⎫12n=(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,① 12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n ,即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n . 22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°,在△AEC 中,由正弦定理得EC sin ∠EAC=AE sin C , 即sin C =AE sin ∠EAC EC=5sin 150°5x =12x , 在△ABC 中,由正弦定理得BC sin ∠BAC=AB sin C ,即AB=BC sin Csin 120°=4x×12xsin 120°=43=433.在△ABE中,由余弦定理得BE2=AE2+AB2-2AE·AB cos 30°=25+163-2×5×433×32=313,所以BE=313(千米).故轮船的速度为v=313÷2060=93(千米/时).。
人教A版高中数学必修五必修五 综合测试题 (第三套).docx
![人教A版高中数学必修五必修五 综合测试题 (第三套).docx](https://img.taocdn.com/s3/m/e6baeb9a10a6f524ccbf85d6.png)
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
高二英语必修五_Unit4_单元测试卷_A卷
![高二英语必修五_Unit4_单元测试卷_A卷](https://img.taocdn.com/s3/m/72e41f86f242336c1fb95ec4.png)
Unit4 单元测试卷A卷Unit 4 Making the newsA卷•高中名校好题基础达标卷第一部分:听力(共两节, 满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你都有5秒钟的时间阅读题目;听完后,各小题给出5秒钟的作答时间。
每段对话仅读一遍。
1. What is the woman probably going to do?A. Go swimming.B. Go shopping.C. Go hiking.2. What does the woman suggest doing?A. Waiting a little longer.B. Continuing the meeting.C. Having a break.3. What is the man doing?A. Driving.B. Reading.C. Shopping.4. What are the two speakers talking about?A. A yellow light.B. A road accident.C. A film.5. Who is the man probably?A. The woman’s boss.B. The woman’s doctor.C. The woman's teacher.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. What is the man doing?A. He is being interviewed.B. He is making flash.C. He is playing computer games.7. What do you think will happen after the conversation?A. The woman will call Mr. Taylor soon.B. The woman won’t create the website.C. The woman won’t get in touch with Mr. Taylor.听第7段材料,回答第8、9题。
高中语文 模块测试卷(A卷) 新人教版必修5
![高中语文 模块测试卷(A卷) 新人教版必修5](https://img.taocdn.com/s3/m/dbd1bd0558fb770bf78a55c5.png)
高中语文必修五模块测试卷(A卷)(本试卷共七大题22小题,满分150分,时量150分钟。
)一、语言文字运用(24分,每小题3分)1、下列各组词语中加点字的读音完全正确的一项是()A、庇.佑pì央浼.miǎn 熟稔.shěn 蓬蒿.hāo 更.相为命gēngB、险衅.xiàn 矫.首jiǎo 祈.祷qǐ提.防dī供.养无主gòngC、手腕.wàn 怏怏.yàng 泠.然líng 憎.恶zēng 战战兢兢.jīngD、俨.然yán 停泊.bó流憩.qì瘦削.xuē垂头丧.气sāng答案:C(A pì-bì miǎn-měi B xiàn –xìn qǐ-qí gòng—gōngD yán—yǎn sāng—sàng)2、下列各组词语书写完全正确的一项是()A、孤骛消耗笼罩交头结耳没精打采B、洗漱接攘辩护贪脏枉法提心掉胆C、怂恿车蓬慷慨云销雨霁闻名遐迩D、摇撼肮脏孤僻唉声叹气鬼鬼祟祟答案:D(A 骛——鹜结——接 B攘——壤脏——赃掉——吊 C蓬——篷)3.下列加点词语解释含有错误的一项是()A.残羹冷炙.(烤肉)砥砺.品格(磨练)气馁..悲观(没有勇气)B.陨身不恤(..(害怕)天高地迥.(远)..顾虑)毛骨悚然C.众口铄.金(熔化)不期.而遇(时期)独抒.己见(表示)D.莫名.其妙(说出)游目骋.怀(奔驰)望洋..兴叹(仰视的样子)答案:C(期,约定时间。
抒,表达。
)4、下列句子,没有语病的一句是()A.中国足球在2月10日晚以一种充满血性的方式成功地限制住对手进攻,打破了32年国际A级赛事不胜韩国队的耻辱记录。
B.五十八年,卓琳执小平之手不离不弃,在枪林弹雨中转战南北,在风雨阳光中起落同随。
她被当选2009年度“感动中国”人物称号。
高中数学人教A版必修五 模块综合测评1 Word版含答案
![高中数学人教A版必修五 模块综合测评1 Word版含答案](https://img.taocdn.com/s3/m/04fdff7927d3240c8447efa1.png)
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( ) A .T >0 B .T <0 C .T =0 D .T ≥0【解析】 法一 取特殊值,a =2,b =c =-1, 则T =-32<0,排除A ,C ,D ,可知选B.法二 由a +b +c =0,abc >0,知三数中一正两负, 不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc=ab -c 2abc .∵ab <0,-c 2<0,abc >0,故T <0,应选B. 【答案】 B11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1【解析】 由正弦定理得:a sin A =bsin B , ∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0. ∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形. 由勾股定理得c =12+(3)2=2. 【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n+1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1; (3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
[精品]新人教A版必修五高中数学模块综合测评2和答案
![[精品]新人教A版必修五高中数学模块综合测评2和答案](https://img.taocdn.com/s3/m/313333ce998fcc22bcd10d30.png)
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n可能是( )A.2n B.2n+1C.2n-1 D.2n-1【解析】取n=1时,a1=1,排除A、B,取n=2时,a2=3,排除D.【答案】 C2.不等式x2-2x-5>2x的解集是( )A.{x|x≤-1或x≥5}B.{x|x<-1或x>5}C.{x|1<x<5}D.{x|-1≤x≤5}【解析】不等式化为x2-4x-5>0,所以(x-5)(x+1)>0,所以x<-1或x>5.【答案】 B3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256【解析】∵{a n}是等比数列且由题意得a1·a19=16=a210(a n>0),∴a8·a10·a12=a310=64.【答案】 C4.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 【解析】5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12B.32 C .1D.34【解析】 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12,故选 A.【答案】 A6.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25【解析】 由等比数列的性质得a 3a 6a 18=a 6a 10a 11=a 8a 9a 10=a 39,而T 17=a 179,故T 17为常数.【答案】 C7.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1. 代入公式S n =a 1-q n1-q,即381=a 1-271-2,∴a 1=381127=3.∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx的取值范围是( ) A .(0,1) B .(0,1] C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示.yx表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,yx的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形B .正三角形C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+x -+3x -1=x -2+x -+3x -1=x -1+3x -1+2≥23+2.【答案】 A12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA →=12,则tan B 等于( ) A.32B.3-1 C .2D .2- 3【解析】 由BC →·BA →=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式 2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2).由题意知⎩⎪⎨⎪⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32.【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝⎛⎭⎪⎫1-111=2011.【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc ,∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】316.若1a <1b<0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2;⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b<0,∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由.【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0,∴-247<d <-3.(2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.【解】 ∵⎩⎪⎨⎪⎧α+β=-a ,αβ=2b ,∴⎩⎪⎨⎪⎧a =-α+β,b =αβ2,∵0≤α≤1,1≤β≤2,∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率. 取B (-1,0),C (-3,1), 则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0,整理得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π,∴A =π3. (2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3.当且仅当b =c =3时取等号.∴S △ABC =12bc sin A ≤12×3×32=334. 从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R .(1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0. 【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立.①当a =0时,1≥0,不等式恒成立;②当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a , 即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅; 当12<a ≤1时,原不等式的解集为(1-a ,a ). 21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和. 【解】 (1)由a 21=1,a 25=9,得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1,∵a n >0,∴a n =2n -1.数列{a n }的通项公式为a n =2n -1.(2)a 2n ⎝ ⎛⎭⎪⎫12n =(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,①12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n , 即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n . 22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°,在△AEC 中,由正弦定理得EC sin ∠EAC =AEsin C , 即sin C =AE sin ∠EAC EC =5sin 150°5x =12x, 在△ABC 中,由正弦定理得BC sin ∠BAC =ABsin C, 即AB =BC sin C sin 120°=4x ×12x sin 120°=43=433. 在△ABE 中,由余弦定理得 BE 2=AE 2+AB 2-2AE ·AB cos 30°=25+163-2×5×433×32=313, 所以BE =313(千米). 故轮船的速度为v =313÷2060=93(千米/时).。
高中英语 综合检测题A卷 必修5 试题(共20页)
![高中英语 综合检测题A卷 必修5 试题(共20页)](https://img.taocdn.com/s3/m/d2654ac65ebfc77da26925c52cc58bd6318693dc.png)
?高中(gāozhōng)新课程导学丛书?必修5综合检测题 A卷〔满分是120分考试时间是是100分钟〕第一局部:英语知识运用〔一共3 节,满分是40分〕第一节:语法和词汇知识〔一共20小题;每一小题1分,满分是20分〕1. I wonder if it is _______ for you now; I have something important do talk with you.A. convenientB. severeC. complexD. comfortable2. with the develop of agricluture, machines now _______ horses.A. take place ofB. take the place ofC. give place toD. give way to3. I’ve been living here alone for 10 years, but seldom _______ as lonely as now.A. I have feltB. I feelC. have I feltD. will I feel4. Lincoln said it was wrong for the southern states to ______ from the Union.A. keep awayB. give awayC. break awayD. run away5. at present young people don’t like talking on ______ phone, but prefer communicating by _____ e-mail.A. a; theB. the; theC. the; /D. the; a6. ______ for several hours, the problem was finally solved.A. To debateB. DebatedC. Having debatedD. Debating7. ______ the information in the text, and try to guess the meanings of any new words.A. To analyseB. AnalyseC. Having analysedD. Analysing8. You ______ have thrown out those old newspaper. I need them to prepare for my paper.A. needn’tB. mustn’tC. shouldn’tD. couldn’t9. – Who should be responsible for the accident?-- The boss, not the workers. They just carried out the order______.A. as toldB. as are toldC. as tellingD. as theytold10. –Would you like to join me for a quick lunch before class?-- ________, but I promised Nancy to go out with her.A. I’d like toB. I like itC. I don’tD. I will11. Mr. Smith is ______ to attend the party to be held next Wednesday.A possible B. probable C. likelyD. seemingly12. With the guide ________ the way tomorrow, we’ll have no tr ouble finding the village.A. ledB. to leadC. leadingD. leads13. Only when _______ 50 years old ______ to learn English.A. was he; did he beginB. he was; he beganC. was he; he beganD. he was; did he begin14. The reason ___ he can’t come is ______ he has to work late.A. because; thatB. that; thatC. why; thatD. why; because15. —If you have any trouble, be sure to call me.—_______ .A. I am glad to hear thatB. I will,thank you very muchC. I hope soD. Thank goodness16. ---- I got the first prize in the English Speech Contest.---- Wonderful! ________!A. CongratulationsB. Best wishesC. CheersD. Good luck17.---- I hear Tom was badly injured in the accident last week.---- ______, let’s go and see him right now.A. If possibleB. If soC. If notD. If necessary18. When he came back home from the office at night, he found all his things ______ everywhere.A. throwB. having thrownC. throwingD. thrown19. Those young men were _______ of disturbing the public peace during the Spring Festival.A. chargedB. arrestedC. accusedD. informed20. I’ve been working for many years like this. However, seldom______ as tired as I do now.A. I feelB. I feltC. have I feltD. will felt第二节:完形填空阅读以下(yǐxià)短文,从每一小题所给的四个选项A、 B、C、D中,选出一个最正确选项.〔一共20小题;每一小题1分,满分是20分〕Prince was a dog. My husband found him 21 at the corner of the street, shaking in the cold and 22 dead, so he rescued him and 23 him home. He gave him the name Prince. I soon liked this little dog; 24 , I was not satisfied with his name. "Prince" sounded too formal. It was more like the 25 of a German shepherddog (牧羊犬). I tried to 26 a name more fitting, but I seemed to be stuck with (无法摆脱) "Prince". Before long Prince 27 some of his princely attributes (品性,品质) to our family. It started when our young son Luck was 28 in bed. Prince didn’t usually go upstairs where the boys’ rooms were. He usually 29 me wherever I went like glue, 30 I was the one who fed him, but on that 31 day, when I went upstairs to check Luck’s fever, I found that Prince was 32 beside my sick boy. He didn’t leave Luck’s side until Luck began to feel better. The same thing happened 33 . Whenever anyone in our family was sick, Prince would be right by that person’s side 34 it was his job to take care of them until they 35 . It was incredible to see this little dog 36 his active nature to show his 37 for a sick family member. Our little Prince livedfor nearly sixteen years. He remained 38 to our family the whole time. Even in his final days, when he was in pain, I 39 he would sacrifice his life for any of us. By then I had realized that his name was 40 after all —he truly was a Prince among dogs. 21. A. lying B. running C. walking D. screaming22. A. completely B. suddenly C. unfortunately D. nearly23. A. made B. supplied C. arranged D. brought24. A. otherwise B. instead C. however D. therefore25. A. name B. head C. body D. character26. A. put up with B. come up with C. look up to D. pay attention to27. A. analyzed B. described C. created D. showed28. A. asleep B. playing C. sick D. staying29. A. served B. grasped C. searched D. Followed30. A. if B. since C. though D. so31. A. particular B. warm C. meaningfulD. relative32. A. smiling B. quarreling C. fighting D. resting33. A. repeatedly B. immediately C. unexpectedly D. naturally34. A. even though B. now that C. as if D. ever since35. A. disagreed B. returned C. recovered D. cheered36. A. put forward B. rely on C. apply for D. set aside37. A. politeness B. care C. respect D. happiness38. A. tender B. common C. loyal D. sensitive39. A. doubted B. observed C. noticed D. knew40. A. proper B. careful C. specific D. formal第二(dì èr)局部:阅读理解〔一共20 小题,第一节每一小题2分,第二节每一小题1分;满分是45分〕阅读以下短文,从每一小题所给的四个选项A、 B、C、D中,选出一个最正确选项.AAn old lady in a plane had a blanket over her head and she did not want to take it off . The air hostess spoke to her, but the old lady said, “I have never been in a plane before , and I am frightened. I am going to keep this blanket over my head until we are back on the ground again !〞Then the captain came. He said, “Madam, I am the captain of this plane. The weather is fine, there are no clouds in the sky, and everything is going very well. 〞But she continued to hide.So the captain turned and started to go back. Then the old lady looked out from under the blanket with one eye and said, “I am sorry, young man, but I don’t like planes and I am never going to fly again. But I’ll say onething, 〞She continued kindly, “You and your wife keep your plane very clean!〞41. An old lady had _________ .A. glassesB. a blanket over her headC. a coatD. a basket42. A. She didn’t want to ________ .A. take it offB. turn it offC. get onD. talk about it43. _________ spoke to her .A. The air hostessB. The man next to herC. her husbandD. one of her friends44. The old lady had never been _________ before .A. abroadB. homeC. in a planeD. in hospitalBDick lived in England. One day in January he said to his wife, "I'm going to fly to New York next week because I've got some work there." "Where are you going to stay there?" his wife asked. "I don't know yet." Dick answered. "Please send me your address from there in a telegram," his wife said. "All right," Dick answered.He flew to New York on January 31st and found a nice hotel in the center of the city. He put his things in his room and then he sent his wife a telegram. He put the address of his hotel in it.In the evening he didn't have any work, so he went to a cinema. He came out at nine o'clock and said, "Now I'm going back to my hotel and have a nice dinner."He found a taxi and the driver said, "Where do you want to go?" But Dick didn't remember the name and address of his hotel."Which hotel are my things in?" he said, "And what am I going to do tonight?" But the driver of the taxi did not know. So Dick got out and went into a post office. There he sent his wife another telegram, and in it he wrote, "Please send me my address at this post office."Choose the right answer45. Dick flew to New York because ___.A. he went there for a holidayB. he had work thereC. he went there for sightseeing (观光(guāngguāng))D. his home was there46. Why did his wife want a telegram from him?A. Because she didn't know his address yetB. Because she wanted to go to New York, tooC. Because she might send him another telegramD. Because she couldn't leave her husband by himself in New York47. Where did Dick stay in New York?A. In the center of the city.B. In a hotel.C. In a restaurant.D. At his friend's house.48.Which of the following is not true?A. Dick stayed at a nice hotel in the center of the city.B. Dick didn't work on the first night of his arrival.C. Dick forgot to send his wife a telegram.D. Dick wanted to go back to his hotel in a taxi.CIn England, people often talk about the weather because they can experience four seasons in one day. In the morning the weather is warm just like in spring. An hour later black clouds come and then it rains hard. The weather gets alittle cold. In the late afternoon the sky will be sunny, the sun will begin to shine, and it will be summer at this time of a day.In England, people can also have summer in winter, or have winter in summer. So in winter they can swim sometimes, and in summer sometimes they should take warm clothes.When you go to England, you will see that some English people usually take an umbrella or a raincoat with them in the sunny morning, but you should not laugh at them.If you don't take an umbrella or a raincoat, you will regret (懊悔(àohuǐ)) later in the day.49. Why do people in England often talk about the weather?A. Because they may have four seasons in one dayB. Because they often have very good weatherC. Because the weather is warm just like in springD. Because the sky is sunny all day50. From the story we know that when _________come, there is a heavy rain.A. sunshine and snowB. black cloudsC. summer and winterD. spring and autumn51. In the sunny morning some English people usually take a raincoat or an umbrella with them because ________.A. their friends ask them to do soB. it often rains in EnglandC. they are going to sell themD. they are their favourite things52. The best title (标题(biāotí))for this passage is ________.A. Bad SeasonsB. Summer or WinterC. The Weather in EnglandD. Strange English PeopleDUncle Li and Uncle Wang are good friends. They live next to each other and their farms are both at the foot of the mountain. So they can help each other. But neither of them likes to use his head. They're both poor though they work hard. Most villagers have built new houses, but they still live in the low and broken houses. They never find out why.Once Uncle Li went to town to buy some medicine for his wife. In the town he heard the apples in a city were expensive. He told Uncle Wang about it as soonas he went back. They decided to carry some apples to the city. They borrowed some money from their friends and bought nearly 1,000 kilograms of apples in the villages and carried them to the city on a tractor. Bad luck! A lot of appleshas already been carried there when they arrived. A few days later they had to sell them at a low price。
人教课标版高中英语必修5 Unit1_单元测试卷_A卷
![人教课标版高中英语必修5 Unit1_单元测试卷_A卷](https://img.taocdn.com/s3/m/6d1b4e2bc8d376eeafaa3101.png)
Unit1 单元测试卷A卷Unit l Great scientistsA 卷·高中名校好题基础达标卷第一部分:听力(共两节,满分30分)第一节:(共 5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你都有5秒钟的时间阅读题目;听完后,各小题给出5秒钟的作答时间。
每段对话仅读一遍。
1. What does the man suggest to the woman?A. Getting a used car.B. Saving her money.C. Buying a new car.2. When will the man do his homework?A. Before the game begins.B. After the game is overC. When his team wins the game.3. What are the speakers talking about?A. A horse.B. A movie.C. A girl.4. How many students failed in the exam?A. 5B. 15C.20.5. Where was Lucy at two o’clock?A. At the church.B. On the tower.C. At the school.第二节:(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独自后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独自前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
每段对话或独自读两遍。
听第6段材料,回答第6、7题。
6. Where is the Metropolitan Health Club?A. On Third Street.B. On Thirtieth Street.C. On Thirteenth Street.7. Why did the woman stop going to the Metropolitan Health Club?A. It was very far.B. It was too expensive.C. It was too busy.听第7段材料,回答第8、9题。
高二数学必修五单元测试03不等式(A卷)(解析版).doc
![高二数学必修五单元测试03不等式(A卷)(解析版).doc](https://img.taocdn.com/s3/m/a1cbb141c77da26924c5b00e.png)
班级_________ 姓名_____________ 学号____________ 分数 ___________ 《必修五单元测试三不等式》测试卷(A卷)(测试时间:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.在不等式x + 2y-1>0表示的平面区域内的点是()A. (1,-1)B. (0,1)C. (1,0)D. (-2,0)【答案】B【解析】试题分析:・・・1+2><(_1)_1〈0;0+2><1_1血1 + 2><0-1 = 0;-2 + 2><0-1<0,二可知点(0丄)在不等式x+2y-l >0表示的平面区域內.故B正确.2.已知集合A = [xeN\x2-5x + 4<0], B = {x\x2-4 = o],下列结论成立的是()A. Be A B_. A\J B = A C. Ar\B = A D. AcB = {2}【答案】D【解析】由已知得A = {123,4}, B = {-2,2},则AcB = {2},故选D.x>l3.区域{y>\构成的儿何图形的面积是()x+y<3A. 2B. 1C. 一D.-4 2【答案】D【解析】画出不等式组表示的区域如图,结合图形对知区域三角形的面积是S=-xlxl=l,应选答案D.2 24.[2018届河南省中原名校高三上学期第一次质】若a<b<0,则下列不等关系屮,不能成立的是1 ] ] ] 1 1A. ->-B. -------------------- >-C. a3 <b3D. a2 > b2a b a~b a【答案】B【解析]Va<b<0,.\a<a - b<0由y =丄在(一a,0)上单调递减知:一-— < 丄x a~b a因此B不成立.故选:B.5.不等式乞二L>0的解集是()x + 3A. _,+8B. (4,+00)、2(J 、C. (-00, -3)U(4, +oo)D. (-00,-3)u —,+oo【答案】D【解析】分式不等式可转换为二次不等式:(2兀一1)(兀+3)>0,(\ \据此可得不等式的解集为:(-00,-3)u -,+a)>本题选择D选项.6.已知关于兀的不等式x2-4x>m对任意XG(O,1]恒成立,则有()A. m <一3B. m >—3C. —3 < m < 0D. m > ~4【答案】A【解析1 vx2-4x> w对任意xe[O3l]恒成立,令/(x)=x2-4x s xe[0a l], v f(x)的对称轴为x = 2 ,二/ (x)在[0 J]单调递减,二当* 1时取到最小值为-3 ,:.实数w的取值范围是w<-3,故选A.X>1x + y<47.【2018届四川省南充市高三零诊】若实数俎y满足lx-2y-lS0 ,贝ljz = 2x + y的最大值为()A. 2B. 5C. 7D. 8【答案】C【解析】作出可行域:学@科网rf]Z = 2x +儿可得:y=- 2x + z,平行移动丿=-2兀+ z,由图象可知当直线经过点A时,直线的纵截距最大, 即z最大;易得A(3, 1),带入目标惭数z = 2咒+儿得:z = 2x3 + l = 7,即z = 2兀+ y的最大值为7故选:C.8.已知/(兀)=0?+加,且满足:15/(1)53,-1</(-1)<1,则/(2)的取值范围是()A. [0,12] B. [2,10] C. [0,10] D. [2,12]【答案】B【解析】・・・/(兀)=血2+加且15/(1)53, -1</(-1)<1, :.\<a + b<3, -\<a-b<\,JV+V =4 x— 3/(2)= 4a + 2b,令4d + " = x(Q+b) + y(a—b),可得{7-,解得{—,即x-y=2 y=l4a + 2/? = 3(Q+b)+(o—b), ・・・353(d+b)59, 253(a+b)+(d—b)510,则/(2)的取值范围是[2,10],故选B.F — r — 69.不等式一<0的解集为()兀—1A. {兀|兀(一2或»1}B. {兀| 兀<一2或vxv3}C. {兀|-2v兀〈1或x〉3}D. {%|-2VJVV1或lcxv3}【答案】B【解析】不等式即:(〒)(节2)<0(-1)转化为高次不等式:(x-3)(x+2)(x-l)<0利用数轴穿根法解得x < —2或1 v尢v 3 ,本题选择B选项.点睛:解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.10.若a,bER且必>0,则下列不等式中,恒成立的是()11 2 b a9 9.—— +「> ~严= —d—二2A. a + b > 2ab g a + b > Q a b ^Jab D. Q b'【答案】D【解析】对于选项A,当a = b时不成立;对于选项巧当a<0.b<0或a = b > 0时不成立;对于选项C, 当aV0,b<0时不成立:对于选项D,因为ab>0,所以;>0^>0,由基本不等式有恒成立, 故选D.y>0尤-y + 1 二011.[2018届广东省茂名市五大联盟学校高三9月】设绘y满足约束条件U + y-3<0,贝ijz = x-3y的最大值为()A. 3B. -5C. 1D. -1【答案】Ax - y +1 > 0 y = _x —z —z画出不等•式组k + 表示的区域如图,则问题转化为求动直线 3 B 在y 上的截距B 的最小值 1 1的问题,结合图形可知:当动直线一孑经过点P (3,0)^, z nlax = 3-3x0 = 3,应选答案A .12. [2018届云南省师范大学附属中学高三月考一】若直线ax + by-2 = Q (d>0』>0)始终平分圆第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填•在答题纸上)13.【2018届江苏省泰州屮学高三上学期开学】已知点PU ,y )满足<-XI y>>-+ y Xy z ~~ _贝I 」X 的最大值为 __________【解析】画出满足条件的半面区域,如图示:由z【答案】D【解析】x 2+y 2-2x-2y = 2 的周长,则眾的最小值为(3-2^2 43-2^2 ~2-D.【解析】直线平分圆周,则直线过圆心(1」),所以有G + b = 2,-!- +丄二丄(d + b) — 2ci b 2、)"(1 1)• -I 2G b )b = y[2a 时取“二”),故选 D.y咒表示过平面区域的点Qy)与(°,°)的直线的斜率,显然直线过力仃,3)时,z取得最大值,x故答案为:3.14. [2018届河南省中原名校高三上学期第一次联考】某学生计划用不超过50元钱购买单价分别为6元、7元的软皮和硬皮两种笔记本,根据需要软皮笔记本至少买3本,硬皮笔记本至少买2本,则不同的选购方式共有. _________ 种.【答案】7.(6x + 7y < 50% > 3沖2【解析】根据题意,设买x本软皮笔记本,y本硬皮笔记本,则有I ,32y <——当x=3时,7 ,可取的值.为2、3、4;26y < —当x=4时,7,可取的值为2、3;20y <——当x=5时,一7,可取的值为2;14y <——当X二6时,7,可取的值为2;共7种不同的选购方式;故答案为:7.15.若不等式x2-ax-b< 0的解集为何2VXV3},则不等式bx2-ax-l>0的解集为_____________________【答案】【解析】.••不等式x2-ax-b<0的解集为{x|2<x<3})・・・2,3是一元二次方程x2-ax-b = 0的两个实数根,2 +3 = a[2 x 3 =- b ,解得。
【推荐下载】人教版高二必修5英语模块训练试题(附答案)
![【推荐下载】人教版高二必修5英语模块训练试题(附答案)](https://img.taocdn.com/s3/m/90951331bed5b9f3f90f1cc4.png)
[键入文字]
人教版高二必修5英语模块训练试题(附答案)
英语是联合国的工作语言之一。
以下是为大家整理的人教版高二必修5英语模块训练试题,希望可以解决您所遇到的相关问题,加油,一直陪伴您。
第一部分 听力(共两节,满分30分)
第一节(共5小题;每小题1.5分,满分7.5分)
听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where does the conversation most probably take place?
A.In a park. B.In a zoo. C.In a pet store.
2.What does the woman mean?
A.Many tourists want to shop here.
B.Things here are not cheap.
C.The tourists here are very rich.
1。
人教课标版高中英语必修5 Unit5_单元测试卷_A卷
![人教课标版高中英语必修5 Unit5_单元测试卷_A卷](https://img.taocdn.com/s3/m/b2b9af2804a1b0717ed5dd29.png)
Unit5 单元测试卷A卷Unit 5 First aidA卷•高中名校好题基础达标卷第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你都有5秒钟的时间阅读题目;听完后,各小题给出5秒钟的作答时间。
每段对话仅读一遍。
1. (2017 •雅礼中学月考)What will Jane do in the shopping center?A. Buy some new music CDs.B. Listen to new music CDs.C. Take new music CDs for free.2. What happened to the speakers?A. They lost their way.B. They did something wrong.C. They helped the policeman.3. When will the speakers meet at the coffee shop?A. 2:50.B. 3:10.C. 3:15.4. What will the man do tomorrow?A. Buy the tickets.B. Take part in a party.C. Make a call to the woman.5. When did Tina have to take piano lessons?A. On Tuesday.B. On Sunday.C. Every day.第二节(共15小题;每小题1.5分,满分22. 5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
人教A版高中数学必修五模块测试卷(A).docx
![人教A版高中数学必修五模块测试卷(A).docx](https://img.taocdn.com/s3/m/b7d9a0985fbfc77da269b192.png)
高中数学学习材料马鸣风萧萧*整理制作必修5模块测试卷(A )一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC 中,a =3,b =7,c =2,那么B 等于( )A .30°B .45°C .60°D .120°2. 已知{a n }是等差数列,五个数列① {a 2n -3};② {| a n |};③ {lg a n };④ {3-2a n };⑤ {a n 2} 中,仍是等差数列的个数是( )A .1个B .2个C .3个D .4个 3.在△ABC 中,一定成立的等式是( )A .a sin A =b sinB B .a cos A =b cos BC .a sin B =b sin AD .a cos B =b cos A 4.数列 {a n } 是公差不为 0 的等差数列,且 a 7,a 10,a 15 是等比数列{b n }的连续三项,若等比数列{b n } 的首项 b 1 = 3,则 b 2 等于( ) A .245 B .5 C .2 D .95 5.已知a +b >0,b <0,那么a 、b 、-a 、-b 的大小关系是( )A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD . a >b >-a >-b6.三个不相等的正数a 、b 、c 成等比数列,则lg a 、 lg b 、 lg c 是( )A .等差数列B .既是等差又是等比数列C .等比数列D .既不是等差又不是等比数列7.在首项为81,公差为-7的等差数列}{n a 中,最接近零的是第( )A .11项B .10项C .9项D .8项8.在△ABC 中,三个顶点的坐标分别是A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界上运动,则w =y -x 的取值范围是( ) A .[1,3] B . [-3,1] C .[-3,-1] D .[-1,3] 9.数列{)1(2+n n }的前n 项和为S n ,已知611=n S ,则n 值是( )A .8B .9C .10D .11 10.下列各不等式:① 212a a +> (R a ∈); ② 12x x+≥ (0,≠∈x R x ) ; ③2≥+abb a (0≠ab ); ④11122>++x x (R x ∈).其中正确的个数是( )A .4个B .3个C .2个D .1个二、填空题:本大题共4小题.每小题5分,满分20分.11.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+ a 10= . 12.在ΔABC 中,AB =2cm ,BC =2cm ,∠A 满足3sinA +cosA =1,则ΔABC 的面积是 .13.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖 块.14.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.16.如图所示,在某公园的一块绿地上划出一个矩形区域,在这个矩形区域的中央修建两个相同的矩形的池塘,每个面积都为200米2,池塘前方要留4米宽的走道,其余各方均为2米宽的走道,问每个池塘的长宽各为多少米时(记池塘的长为x 米),这个矩形区域占地面积最少?并求出这个最小值.17.已知等差数列{}n a ,92=a ,215=a ,(1)求{}n a 的通项公式;(2)若n a n b 2=,求数列{}n b 的前n 项和n S .18.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =600,AC =7,AD =6, S △ADC =1532 ,求AB 的长.池塘池塘走道2米走道2米走道2米4米走道4米走道 走道2米走道2米19.某运输公司接受了向抗洪救灾地区每天送至少180t 支援物资的任务.该公司有8辆载重6t 的A 型卡车与4辆载重为10t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排A 型或B 型卡车,所花的成本费分别是多少?20.已知数列{x n }的各项为不等于1的正数,其前n 项和为S n ,点P n 的坐标为(x n ,S n ),若所有这样的P n (n =1,2……)都在斜率为5的同一条直线上. (1)求证数列{x n }是等比数列;(2)设y n = log x n a 且满足 y 8 = 125 ,y 12 = 117 ,a 为大于0的常数.① 试确定a 的值;② 是否存在正整数M ,使得当n >M 时,x n >1恒成立?若存在,求出相应的M ;若不存在,请说明理由.6002 1DCB A必修5模块测试卷(A )1-10:CBCBC ABDBD11.- 49 12. 3 13. 4n +2 14.3 15.解:设公比为q ,由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a 即⎪⎩⎪⎨⎧=+=+45)1(①10)1(23121q q a q a ②÷①得 21,813==q q 即 ,将21=q 代入①得 81=a ,1)21(83314=⨯==∴q a a , 231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s . 16.解:设池塘的长为x (0>x )米,则池塘的宽为x200米,令矩形区域的面积为y 平方米,则有)6200)(62(++=xx y =4[109+3)100(xx +]=⨯+≥)203109(4676 当且仅当x x 100=,即10=x 时,676min =y ,这时20200=x②答:池塘的长和宽分别为10米、20米,矩形区域的面积最小为676平方米.17.解:(1) 设数列 {a n } 的公差为d ,则a 5=a 2+3d .得21=9+3d ,∴ d = 4,∴ a n = a 2 + (n -2) d = 4n + 1(2) ∵ b n = 2 a n , ∴ b n = 24n +1, 又 b n +1b n= 16,∴ {b n } 是以 16 为公比的等比数列.b 1=25=32,∴ S n = 32(1-16n )1-16= 3215 (16n -1)18.解:依题意 S △ADC = 12 ·6·7 sin ∠1 = 1532∴ sin ∠1 = sin ∠2 = 5314∴ cos ∠2 = 1114 ∴ △ABC 中,sin ∠ACB = sin (∠2 + 60︒) = sin ∠2 cos 60︒ + cos ∠2 sin 60︒= 5314 ×12 + 1114 ×32 = 16328 =437 又 AC sin B = AB sin ∠ACB ⇒ 732= AB 437 ⇒ AB = 8.19.答案:解:设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.A 型车B 型车 限量 车辆数 xy 10运物吨数 24x 30y 180费用320x504yz由表可知x ,y 满足的线性条件:1024301800804x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≤≤≤≤, 且320504z x y =+.作出线性区域,如图所示,可知当 直线320504z x y =+过(7.50)A ,时,xyCDBA8O 4z最小,但(7.50)A,不是整点,继续向上平移直线320504z x y=+可知,(52),是最优解.这时min 320550422608z=⨯+⨯=(元),即用5辆A型车,2辆B型车,成本费最低.若只用A型车,成本费为83202560⨯=(元),只用B型车,成本费为180504302430⨯=(元).20.解:(1)证明:已知P n、P n+1都在斜率为5的同一直线上,∴S n+1-S nx n+1-x n=5 , ∴x n+1x n+1-x n=5,∴4x n+1=5x n∴x n+1x n=54,n=1,2,3,……∴{x n}是以x1为首项,公比为54的等比数列(2) (i) ∵ y n=log xn a , y8=18,y12 =117,1y n= log a x n , 又由(1), x n = x1·(54)n-1∴1y8-1y12=log a x8-log a x12 = log ax8x12= log a (54)-4,又∵1y8-1y12=25-17=8, ∴ log a(54)-4 = 8, ∴a8 = (45)4, 又a > 0,∴a = 25=255(ii)由(i) 知x n = a 1y n,而a =2 55∈ (0,1) , 故欲使x n > 1, 则只须1y n<0,∵1y n= log a x n= log a [x1·(54)n-1]=(n-1)log a54+log a x1∴ { 1y n} 为等差数列, 其公差d = log a54= log25554=-lg54lg255= -2.(公差d也可由1y12-1y8= 4d 求得)∴1y n=1y8+ (n-8)·(-2)=25-n+16 = 41-2n由1y n< 0 得n > 20.5∴取M=20, 当n>20时x n>1 恒成立.(注:凡是取M为大于或等于20的正整数均可)。
高中英语 模块综合检测 必修5 试题(共16页)
![高中英语 模块综合检测 必修5 试题(共16页)](https://img.taocdn.com/s3/m/ecbb473b86c24028915f804d2b160b4e767f8111.png)
模块综合(zōnghé)检测Ⅰ.阅读理解(一共15小题;每一小题2分,满分是30分)A(2021·外国语高二下期末)The Museum: The Charles Dickens Museum in London is the world's most important collection of material relating to the great Victorian novelist and social commentator. The only surviving London home of Dickens (from 1837 until 1839) was opened as a museum in 1925 and is still welcoming visitors from all over the world. On the four floors,visitors can see paintings,rare editions,manuscripts,original furniture and many items relating to the life of one of the most popular and beloved personalities of the Victorian age.Opening Hours: The Museum is open from Mondays to Saturdays 10:00-17:00; Sundays 11:00-17:st admission is 30 minutes before closing time.Special opening times can be arranged for groups,who may wish to book a private view.Admission Charges: Adults:£5.00; Students:£4.00; Seniors:£4.00; Children:£3.00; Families:£14.00 (2 adults & up to five children).Group Rates: For a group of 10 or more,a special group rate of £4.00 each applies. Children will still be admitted for £3.00 each.Access: We are constantly working to improve access to the Museum. Our current projects involve the fitting of a wheelchair ramp(活动坡道)for better access and an audio tour for visitors with impaired vision. Our Handling Sessions (亲身体验活动) are also suitable for the visually impaired. The Museum has developed an online virtual tour through the Museum. Click here tovisit all the rooms in the Museum online.Hire the Museum: The Museum can be hired for private functions,parties and many other social occasions.Find Us: The Museum may be reached by using the following buses: 7,17,19,38,45,46,55,243.And by these underground services: Piccadilly Line; Central Line. For a map,please click here. The British Museum and the Foundling Museum are within walking distance.【语篇解读(jiě dú)】本文讲的是一个伦敦的查尔斯狄更斯博物馆,有来自世界各地的游客到博物馆去旅游。
高二英语人教版必修5练习:模块综合测评含解析
![高二英语人教版必修5练习:模块综合测评含解析](https://img.taocdn.com/s3/m/03bec091852458fb760b564c.png)
模块综合测评(时间:120分钟满分:150分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话前,你都有5秒钟的时间阅读题目所完后,各小题给出5秒钟的作答时间。
每段对话仅读一遍。
W:How do you like this ki nd of music?M:To be honest,I can ' t stand this noise at all.1 .What does the man mean?A. He enjoys this kind of music very much.B. He doesn' t like this kind of music at all.C. He doesn' t have time to enjoy music.答案:B2. What do we know about the man?A. He lost his keys.B. He lost his way.C. He lost his car.答案:A3. Where does the con versati on most probably take place?A. ln a library.B. ln a bookstore.C. ln a read ing room.答案:B4. What are the woman ' s two daughters like?A. Na ncy is older and taller.B. Nancy s sister is older and taller.C. Na ncy s sister is taller though youn ger.:CA. It s a foolish actio n.B. It helps to lose weight.C. It will make one feel weak. A( 15; 1.5 , 22.5 )5555 5 , ABC 5 56 5 6 76. What is van ilia accord ing to the con versati on?A. A kind of milk.B. A kind of cookie.C. A kind of chocolate.:B7. What can we lear n from the con versati on?A. The man dra nk a glass of milk as well.B. The man does n t like cookies at all.C. The man likes cookies with chocolate.:A7 , 8 108. Where does the con versati on most probably take place?A. At the airport.B.In a taxi.C.ln a hotel.答案:C9. Whe n will the woma n have to leave her room tomorrow?A. At 12:00.B.At 1:30 p.m.C.At 2:00 p.m. 答案:B10. What does the man suggest the woma n do?A. Start out earlier.B. Keep her room clea n.C. Book a taxi ahead.答案:A听第8段材料,回答第11至13题。
必修五模块综合测试
![必修五模块综合测试](https://img.taocdn.com/s3/m/46785775524de518974b7d3c.png)
必修五模块综合测试一、 选择题(共12小题,每小题5分,共计60分)1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于( ) A .60° B .60°或120° C .30°或150° D .120°2.不等式201x x -+≤的解集是 ( ) A 、(1)(12]-∞--U ,,B 、[12]-,C 、(1)[2)-∞-+∞U ,,D 、(12]-,3.等比数列的前项和为,第项与第项的和为,则数列的首项为( ) A. B. C. D.4.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A .8B .-8C .±8D .以上都不对 5、已知实数n m 、满足22=+n m ,其中0>mn ,则nm 21+的最小值为 ( ) A 、4 B 、6 C 、8 D 、12 6、若11<β<α<-,则下面各式中恒成立的是( ).(A )02<β-α<- (B )12-<β-α<-(C )01<β-α<- (D )11<β-α<-7. 在ABC ∆中,c b a ,,分别为三个内角A 、B 、C 所对的边,设向量(),,m b c c a =--u r (),n b c a =+r,若向量m n ⊥u r r ,则角A 的大小为( )A .6π B .3π C .2π D .32π8、在等差数列{}n a 和{}n b 中,,100,75,2510010011=+==b a b a 则数列{}n n b a +的前100项和为 A 、10000 B 、1000 C 、100 D 、0{}n a 424024180{}n a 24689.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知n n T S =37+n n ,则55b a 等于 A.7 B.32 C.421D.82710、数列{a n }中,a 1+a 2+a 3+…+a n =2n -1,则a 12+a 22+a 32+…+a n 2等于A 2)12(-nB)12(31-n C 14-n D )14(31-n二、 填空题(共4小题,每小题5分,共计20分)11. 在△ABC中, AB 2, AC 1,AB AC ==⋅=u u u r u u u r u u u r u u u r若且,那么这三角形的面积为12. 已知数列{}n a 满足262,n a n =-则使其前n 项和n S 取最大值的n 的值为13.不等式220ax bx ++〈的解集为{|12}x x <<,则不等式220ax bx -+>的解集为_________________.14. 设等差数列{}n a 的公差0d ≠,又1a 、3a 、9a 成等比数列,则1392410a a a a a a ++=++ ;15.函数143++=x x y )1(->x 的最小值是___________. 16.定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{}a n 是等积数列且a 12=,公积为10,那么这个数列前21项和S 21的值为_____________.17、若不等式1)1(4)1(1+-⨯+<-+n n a n n对于任意正整数n 恒成立,则实数a 的取值范围是三.解答题(共6小题,共计70分)18. (本小题满分14分)已知c b a ,,是ABC ∆中角C B A ,,的对边,S 是ABC ∆的面积.若35,5,4===S b a ,求边c 的长度.19. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B 2-cos 2C =72. (1)求角C 的大小; (2)求△ABC 的面积.20.已知数列}{n a 的前n 项和为n S ,且满足23-=n n S a (∈n N *). (1)求数列}{n a 的通项公式; (2)求数列}{n na 的前n 项和n T .21. (本小题共15分)设,4,221==a a 数列}{n b 满足:,1n n n a a b -=+ 且 .221+=+n n b b(1) 求证数列}2{+n b 是等比数列(要指出首项与公比),求数列}{n a 的通项公式.22.解关于x 的不等式:2(1)10,(0)ax a x a -++<>23.(本小题满分12分)数列{}n a 满足递推式365),2(13341=≥-+=-a n a a nn n 其中(1)求a 1,a 2,a 3;(2)若存在一个实数λ,使得⎭⎬⎫⎩⎨⎧+nn a 3λ为等差数列,求λ值; (3)求数列{n a }的前n 项之和.必修五模块综合测试答案1. B2.D3.C4.A5.D 6.A 7. B 8.A 9. C 10.D11.12; 12. 12 或13 ;13.{x|1->x 或2x -<}; 14. 1316; 15.3. 16. 72; 17、)32,3(- 18. (本小题14分) 解: 21cos 23sin sin 21=⇒=⇒=C C C ab S 或21-………………………….7分 21cos 2222=-+=C ab b a c 或61, 21=∴c 或61.……………….7分19.解:(1)∵A +B +C =180°,由4sin 2A +B 2-cos 2C =72,得4cos 2C 2-cos 2C =72,∴4·1+cos C 2-(2cos 2C -1)=72,整理,得4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =12ab sin C =12×6×32=332.20、解:(Ⅰ)当1n =时,1113232a S a =-=-,解得11a =;……………………1分当2n ≥时,32n n a S =-,1132n n a S --=-,两式相减得13n n n a a a --=,…………………3分 化简得112n n a a -=-,所以数列{}n a 是首项为1,公比为12-的等比数列. 所以112n n a -⎛⎫=- ⎪⎝⎭.…………………5分(Ⅱ)由(Ⅰ)可得112n n na n -⎛⎫=⋅- ⎪⎝⎭,所以112n n n b na n -⎛⎫==⋅- ⎪⎝⎭,………6分12111111232222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+⋅-+⋅-++⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L12n T -= ()12111111212222n nn n -⎛⎫⎛⎫⎛⎫⎛⎫⋅-+⋅-++-⋅-+⋅- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭L …………………8分两式相减得12131111122222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫=+-+-++--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭L …………………9分11121212nnn ⎛⎫-- ⎪⎛⎫⎝⎭=-- ⎪⎛⎫⎝⎭-- ⎪⎝⎭221332n n ⎛⎫⎛⎫=-+⋅- ⎪ ⎪⎝⎭⎝⎭,…………………11分 所以数列{}n na 的前n 项和42419392nn T n ⎛⎫⎛⎫=-+⋅- ⎪ ⎪⎝⎭⎝⎭.…………………12分21. (本小题15分)解:(1)),2(222211+=+⇒+=++n n n n b b b b ,2221=+++n n b b Θ又422121=+-=+a a b , ∴数列}2{+n b 是首项为4,公比为2的等比数列. ……………………………….7分(2)2224211-=⇒⋅=+∴+-n n n n b b ..221-=-∴-n n n a a令),1(,,2,1-=n n Λ叠加得)1(2)222(232--+++=-n a nn Λ,22)2222(32+-++++=∴n a n n Λ.222212)12(21n n n n -=+---=+ …………………………………….8分22、解:原不等式可化为:(1)(1)0,(0)ax x a --<>①当01a <<时,原不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭②当1a >时,原不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭③当1a =时,原不等式的解集为φ22. (1)由95,365133365,133343441==-+==-+=-a a a a a a n n n 则知及同理求得a 2=23, a 1=5123(2){},33()3,5,23,95n n n nn n a a xn ya xn y a a a λλλ++=+=+⋅-===∴Q 为一个等差数列于是设又由 ⎪⎪⎩⎪⎪⎨⎧==-=-⋅+==-⋅+==-⋅+==21,1,2127)3(959)2(233)(5321y x y x a y x a y x a λλλλ求得知1111()3,()3222212n n nn a n a n λ=+⋅+=+⋅+=-∴而满足递推式因此 由上两式相减则记项和的前先求13223)21(3)212(3)211(33)21(3)212(3)211(,3)21(213)21()3(+⋅+++⋅++⋅+=⋅+++⋅++⋅+=⋅+=+⋅+=n n n n n n n n Tn n Tn n n b n a ΛΛΘ231211111111113(1)3333()32293319112()3(39)()321322223132{}3(31).2222n n n n n n n n n n n n n n n n T T n T n n n T n n n n n a n T +++++++++-=+++++-+⋅--=+-+⋅=+--+⋅-=-⋅=⋅⋅+=⋅+=+L 因此前项和为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修5 模块测试题(A 卷)
广铁一中 刘国
考试时间:120分钟 试卷满分:150分
1、已知等差数列{a n }的通项公式,4,554==a a ,则a 9等于( ). A 、1 B 、 2 C 、 0 D 、 3
2、不等式0322≤+--x x 的解集为( )
A 、}13|{-≤≥x x x 或
B 、}31|{≤≤-x x
C 、}13|{≤≤-x x
D 、}13|{≥-≤x x x 或 3、已知1>x ,则函数1
1
)(-+
=x x x f 的最小值为( ) A 、1 B 、2 C 、3 D 、4
4、在△ABC 中,AB =3,A =45°,C =60°,则BC =( ) A .3-3 B.2 C .2 D .3+ 3
5、已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( ) (A )140 (B )280 (C )168 (D )56
6、若实数a 、b 满足a +b =2,则3a +3b 的最小值是
A .18
B .6
C .23
D .243
7.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,炮台底部与船处同一地平面,而且两条船与炮台底部连线成30°角,则两船相距为( )
A.310米
B.3100米
C.3020米
D.30米 8、等比数列{a n }中,a 3,a 9是方程3x 2—11x +9=0的两个根,则a 6=( ) A .3 B .6
11 C .± 3 D .以上皆非
9、已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则 ( ) A .m <-7或m >24 B .-7<m <24 C .m =-7或m =24 D .-7≤m ≤ 24 10、在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于
A .030
B .060
C .0120
D .0150 二、填空题(每题5分,共20分)
5 10 x
2
4 6 8 10 12 14 11、若21<<-a ,12<<-b ,则a -b 的取值范围是
12.在锐角△ABC 中,已知|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为________.
13.已知实数x 、y 满足⎩⎨⎧
y ≤2x
y ≥-2x
x ≤3
,则目标函数z =x -2y -1的最小值是________.
14、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n 个图案中有白色地面砖 块.
三、解答题(共6小题,满分80分) 15、(本小题满分12分)△ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.
16.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
17.(本小题满分14分)已知不等式ax 2+bx +c >0的解集为{x |-1<x <2},试判断a 的符号,并求不等式
a (x 2+1)+
b (x -1)+
c >2ax 的解集。
18、(本小题满分14分) 数列}{n a 满足11=a ,)21(1n n n a a a +=+(*N n ∈)。
(I )求证:数列1
{}n
a 是等差数列,并求a n ;
(II )若33
16
13221>++++n n a a a a a a ,求n 的取值范围
19.(本小题满分14分) 在△ABC 中,A =π
3,BC =23,设内角B =x ,△ABC 的面积为y , (1)求函数y =f (x )的解析式和定义域; (2)求y 的最大值.
20.(本小题满分14分)已知数列{a n }的前n 项和为S n ,且a n +S n =1(n ∈N *). (1)求数列{a n }的通项公式;
(2)若数列{b n }满足b n =3+log 4a n ,设T n =|b 1|+|b 2|+…+|b n |,求T n .
高一数学必修5模块考试答案
一、选择题
11、(-2,4) 12、2 13、-10 14、42n + 三、解答题
15、解:在△ABC 中,∠BAD =150o
-60o
=90o
,∴AD =2sin60o
=3. 在△ACD 中,AC 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =
21×1×3×sin60o =34
3
16.解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是z ,则z =6x +8y ,
由题意有 ⎩⎪⎨⎪⎧
30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,
x ,y 均为整数.
由图知直线y =-34x +1
8
z 过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4
+8×9=96(百元).
故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.
17.解:∵ax 2+bx +c >0的解集为{x |-1<x <2},∴a <0,且方程ax 2+bx +c =0的两根为-1,2。
由韦达定理可得:
⎩
⎨⎧
-b a =1c a
=-2, ∴⎩⎪⎨⎪⎧
b =-a
c =-2a ,
代入a (x 2+1)+b (x -1)+c >2ax , 得a (x 2+1)-a (x -1)-2a >2ax . ∵a <0,
∴x 2
+1-(x -1)-2<2x , ∴x 2+1-x +1-2-2x <0, ∴x 2-3x <0, ∴0<x <3.
答案:{x |0<x <3}
18、解:(I )由已知可得:
1112n n
a a +=+所以数列}1{n a 是等差数列,首项11
1=a ,公差2d =
∴
12)1(1
11
-=-+=n d n a a n
∴1
21
-=
n a n (II )∵)1
21
121(21)12)(12(11+--=+-=
+n n n n a a n n
∴)1
2112151313111(2113221+--++-+-=
++++n n a a a a a a n n 11(1)22121
n
n n =-=
++ ∴
16
2133
n n >+ 解得16n > 解得n 的取值范围:*{|16,}n n n N >∈
19.解:(1)△ABC 的内角和A +B +C =π,
由A =π
3
,B =x ,
B >0,
C >0,
得C =2π3-x,0<x <2π3
,
即函数y =f (x )的定义域为(0,2π
3).
应用正弦定理,知AB =BC sin A sin C =4sin(2π
3
-x ),
∴y =12AB ·BC sin B =43sin x sin(2π3-x )(0<x <2π3
).
(2)y =43sin x sin(2π3-x )=43sin x (32cos x +12sin x )=6sin x cos x +23sin 2x =23sin(2x -π6)+3(-π6<2x -
π
6
<7π6
), 当2x -π6=π2,即x =π
3
时, y 取最大值3 3.
20.解:(1)由a n +S n =1,得a n +1+S n +1=1,两式相减得 a n +1-a n +S n +1-S n =0,
∴2a n +1=a n ,即a n +1=1
2
a n .
又n =1时,a 1+S 1=1,
∴a 1=12.
又a n +1=1
2
a n ,
∴数列{a n }是首项为12,公比为1
2的等比数列.
∴a n =a 1q n -
1=12·(12)n -1=(12)n .
(2)b n =3+log 4(12)n =3-n 2=6-n
2
.
当n ≤6时,b n ≥0,
T n =b 1+b 2+…+b n =n (11-n )
4
;
当n >6时,b n <0,
T n =b 1+b 2+…+b 6-(b 7+b 8+…+b n ) =6×54-[(n -6)(-12)+(n -6)(n -7)2·(-12)]
=n 2
-11n +604
.
综上可知,T n
=⎩⎨⎧
n (11-n )4 (n ≤6)
n 2
-11n +60
4 (n ≥7)
.。