2022―2023 学年度东莞市高三第一学期教学质量检查数学参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022―2023学年度东莞市第一学期教学质量检查高三数学参考答案
1.【答案】A 【解析】由220x x --<,得(2)(1)0x x -+<,得12x -<<,即{|12}B x x =-<<, 则{|1}x x A B >-= ,故选:A .
2.【答案】C 【解析】21i i(1i)
1i i i
z ++===-
,故z ==.故选:C . 3.【答案】D 【解析】因为(4,3)AB = ,(3,)AC t = ,所以(1,3)BC AC AB t =-=--
,因为1BC = ,
所以22
(1)(3)1t -+-=,解得3t =,则(3,3)AC = ,所以433321AB AC ⋅=⨯+⨯= .故选:D .
4.【答案】A
【解析】由题意设三次函数的解析式为()(2)()f x ax x x b =-+,即32()(2)2f x ax a b x abx =+--,
2()32(2)2f x ax a b x ab '=+--,(0)21(2)124(2)22f ab f a a b ab =-=-⎧∴⎨=+--=''⎩,解得142
a b ⎧=⎪
⎨⎪=⎩,
∴3
11()(2)(2)44
f x x x x x x =-+=-,故选:A .
5.【答案】C 【解析】(1,0)F ,准线方程为1x =,设(,)P P P x y ,由3PF =可得13P x +=,
2P x ∴=,代入24y x =得2
8P y =
,即(2,P ±
,故OP =
==,故选:C
6.【答案】C 【解析】由分步乘法计数原理,所有可能的传球情况有33327⨯⨯=种,其中仅第1次传球给乙的情况有326⨯=种,仅第1次传球给乙的情况有236⨯=种,仅第3次传球给乙的情况有224
⨯=种,所以所求概率为66416
2727
P ++==.故选:C 7.【答案】B 【解析】体积最大时,沿上下底面直径所在平面作出剖面图如图所示,显然此时圆F 与等腰梯形ABCD 的上底以及两腰相切,则建立如图所示直角坐标系,
由题意得(10)B ,
,C
,则BC k == 则直线BC 所在直线方程为3(1)y x =-
0y -=, 设(0,)F t ,体积最大时球的半径为R ,
则R EF t ==,则点F 到直线BC 的距离等于半径R ,
t
,解得t =
0t <<
t ∴=
,此时EF ==
,则3344
ππ33
V R =
=⨯=,故选:B . 8.【答案】B 【解析】令()ln 1f x x x =++,则()f x 在定义域(0,)+∞内单调递增,e ln 1a a b b +=++ ,即()(e )1(e )a a f b f f =-<,e a b ∴<,A 错误,B 正确;
令3a =-,则3()e e 30a f b a -=+=-<,且(1)20f =>,01b ∴<<,此时1b a >+,C 错误; 令0a =,则()e 1a f b a =+=,且(1)21f =>,01b ∴<<,此时1b a <+,D 错误;故选:B .
9.【答案】AC
【解析】二项式2023
(1
,展开式中,通项公式为12023
C
r
r
r T +=,
该二项展开式中二项式系数和为20232,令1x =得各项系数和为20232023(11)2+=,二项展开式中二项式系数和与各项系数和相等,A 选项正确;由二项式展开式的通项公式可知,r 为偶数时,对应的项为有理项,B 选项错误;该二项展开式中的常数项是012023C 1T ==,C 选项正确;
该二项展开式中含x
的项为2
2
32023
20232022C 2T x ⨯==
,系数是20232022
2
⨯,D 选项错误.
10.【答案】BD 【解析】对于A
,π()sin cos 4f x x x x ⎛
⎫=+=+ ⎪⎝
⎭,周期2π2π1T =
=.
当π0,
2x ⎛⎫∈ ⎪

⎭时,3,444
x πππ
⎛⎫+∈ ⎪⎝⎭,所以()f x 在π0,2⎛⎫
⎪⎝⎭
上先增后减,A 错误;
对于B
,π()sin cos 4f x x x x ⎛
⎫=-=- ⎪⎝⎭
,周期2π2π1T =
=. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以()f x 在π0,2⎛⎫
⎪⎝⎭
上单调递增,B 正确;
对于C ,1()sin cos sin 22f x x x x ==,最小正周期2π
π2
T =
=,满足()(2π)f x f x =+, 当π0,2x ⎛⎫∈ ⎪⎝⎭时,2(0,)x π∈,所以()f x 在π0,2⎛⎫
⎪⎝⎭
上先增后减,C 错误;
对于D ,
sin ()tan cos x f x x x
==,最小正周期ππ1T ==,满足()(2π)f x f x =+, 且由正且函数的单调性可知函数在ππ,22⎛⎫
- ⎪⎝⎭
单调递增,故D 满足题意.故选:BD .
11.【答案】BC
【解析】直线AF 在平面11BB C C 内的投影为直线BF , 显然直线BF 与直线1B C 不垂直,
由三垂线定理可知直线1B C 与直线AF 不垂直,A 错误;
因为11//AG D F ,1AG ⊄平面1D EF ,1D F ⊂平面1D EF , 所以1
//AG 平面1D EF ,B 正确; 易证得1EF B C ⊥,EF CD ⊥,又1B C CD C = , 所以EF ⊥平面11A B CD ,又EF ⊂平面1D EF ,
所以平面1D EF ⊥平面11A B CD ,C 正确;
若点C 和点1A 到平面1D EF 的距离相等,则有1
//AC 平面1D EF , 或平面1D EF 过1AC 的中点,显然这两条都不满足,所以D 错误.
12.【答案】ABC 【解析】由2
212
x y +=
得1c ===,所以(1,0)F ,
联立22
12
y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得222(12)4220k x mkx m +++-=, 2222164(12)(22)0m k k m ∆=-+->,即2212k m +>,
设11(,)A x y 、22(,)B x y ,则122412mk x x k +=-+,2122
22
12m x x k
-=+, 所以
AB ==
=,对于A ,当
m k =时,:(1)l y k x =+过椭圆的左焦点(1,0)-, 此时
AB =
=,若4FA FB +
=
,则由4AB FA FB a +==
+ ,得4AB =
-
4=-,解得21k =,k =,所以存在k =
,使得4FA FB +=
,故A 正确;
1
对于B ,当m k =时,2122
412k x x k +=-+,312122242()221212k k
y y k x x k k k k
+=++=-+=++,
所以1212(11,)x x y FA y FB =-+-+=+
== 令2
121k t +=≥,则2
21k t =-
,则FA F B ==+= , 因为101t
<≤,所以当1
1t =,即1t =,0k =时,FA FB + 取最小值2,故B 正确;
对于C ,当1k =
时,4AB FA FB ==<=+ ,此时存在m ∈R 使得4FA FB +=
,故C 正确;
对于D ,当1k =时,12244123mk m x x k +=-
=-+,1212
42
2233
y y x x m m m m +=++=-=,
所以1212(11,)x x y FA y FB =-+-+=+
===,
因为2212k m +>且1k =,所以23m <
,所以m <<

所以当65m =-时,FA FB +
取最小值2<.故D 不正确.故选:ABC
13.【答案】1 【解析】()f x 的定义域为(,0)(0,)-∞+∞ ,因为()f x 为奇函数,所以()()0
f x f x -+=对任意非零实数恒成立,所以11
(1)(1)21022
f f a a a +-=+-+=-=,解得1a =.
14.【答案】1
2
##0.5 【解析】()2sin 2f x x '=-
,所以()()cos 22sin 22h x x x x ϕ=-=+
,其中
cos ϕ=
,sin ϕ=
,tan 2ϕ=,因为函数()h x 关于(,0)a 对称,所以π2π2a k ϕ+=+,π2π,2a k k ϕ=+-∈Z ,所以sin
cos 12tan 2tan tan 22sin 2cos
2a k πϕππϕπϕϕπϕϕ⎛⎫- ⎪
⎛⎫⎛⎫⎝⎭=+-=-=== ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭

15.【答案】
【解析】因为90APB ∠︒≥,所以45APO ∠︒≥,
所以2sin sin 45O OA APO O P P ∠==︒=≥ 解得OP ≤P 的坐标为(x ,
,解得x ≤,所以动点P 的轨迹的长度为 16.【答案】32)##44
【解析】设球的半径为r ,由题意可知四面体A BCD -为正四面体,棱长为4r ,所以四面体A BCD -的
,所以2
311(4)3V r r ==,要使12V V 取得最大值,则使2V 取最小值,由题
意可知此时该三角垛与四面体1111A B C D -相切.
取11C D 的中点1E ,过点A 作平面BCD 的垂线,垂足为1O ,如图可得截面111A B E ,过A 作11AF A E ⊥于
F ,则AF r =,设1AO 平面BCD O =,则点1O 为111B C D △ 的中心,点O 为BCD △的中心,且
1OO r =,设正四面体1111A B C D -的棱长为a ,则11A B a =
,1111A E B E ==
,11B O =

11O E =
,11AO =,由1111113O E AF AA A E ==,可得133AA AF r ==
,又AO =,
所以11114AO AA AO OO r =++=
+,
所以
11
2AO AO ==-,
所以3
3
1112442)A V V O AO ⎛⎫== ⎪-=⎝⎭

17.【答案】(1)1
(2)n n a -=-;(2)1920526
T -=
【解析】(1)当1n =时,11321S a =+,故11a =,························································1分
当2n ≥时,1
1321321n n n n S a S a --=+⎧⎨=+⎩,两式相减得113()(21)(21)n n n n S a a S --+-+-=,即
1322(2)n n n a a a n -=-≥,进而得12(2)n n a a n -=-≥,·················································3分
所以数列{}n a 是以首项为1,公比为2-的等比数列,·······················································4分
所以 .····················································································································5分 (2)当1n =时,111M m a ==,11b a ∴=,··································································6分
1(2)n n a -=- ,12n n a -∴=单调递增;当n 为奇数时,12n n a -=,且0n a >,当n 为偶数时,1
2n n a -=-,
且0n a <,因此当n 为大于1的奇数时,{}n a 的前n 项中的最大值为1(2)n n a -=-,最小值为2
1(2)n n a --=-,
因此当n 为偶数时,{}n a 的前n 项中的最大值为2
1(2)
n n a --=-,最小值为1
(2)
n n a -=-,
11,
1,22
n n n n b a a n -=⎧⎪
=+⎨⎪⎩≥,·····························································································7分
因此{}n b 的前20项和201351924620()()T b b b b b b b b =+++++++++
32541918341920121222222a a a a
a a a a a a a a a ++++++⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭
·····················8分
19
192019192011911(2)222222S S S S a a S +++-=+=+=++
····················································9分 191919
1(2)1(2)5212226
----=++=
+.·············································································10分 18.【答案】(1)1
2
;(2
【解析】(1)解法一:锐角ABC △中,M 是BC 的中点,且4AB =,2AC =,如图所示:
BM MC ∴=,sin sin(π)sin AMB AMC AMC ∠=-∠=∠,············································1分
在ABM △中,由正弦定理,有sin sin =∠∠AB BM
AMB BAM
,··············································3分
E 1B 11
在ACM △中,由正弦定理,有
sin sin AC MC
AMC MAC
=∠∠,··············································4分

sin sin 1sin sin 2
BM AMB BAM AC AB MC AMC MAC AB AC
∠∠===∠∠.(6分) 解法二:因为M 是BC 的中点,所以ABM ACM S S =△△,(2分)
所以sin s 2in 11
2BA AB AM M M M C AC A A ∠=⨯⨯⨯∠⨯⨯⨯,(4分) 即sin s 114n 222i BAM A M M C AM A ∠=⨯⨯⨯∠⨯⨯⨯,所以
sin 1
sin 2
BAM MAC ∠=∠.···················6分 (2)锐角ABC △
中,由cos MAC ∠=MAC ∠
为锐角,sin MAC ∴∠=,···········7分
由(1
)得1sin sin 2BAM MAC ∠=∠=,·······························································8分
又BAM ∠
为锐角,cos BAM ∴∠=,····································································9分
∴sin sin()sin cos cos sin BAC BAM MAC BAM MAC BAM MAC ∠=∠+∠=∠∠+∠∠········10分
=
=
,··············································································11分 所以ABC △
的面积为11sin 4222ABC S AB AC BAC =⋅⋅∠=⨯⨯=△.···················12分
19.【答案】(1)见解析;(2

【解析】(1)证明:因为AB 为半球M 的直径,C 为 AB 上一点,所以AC BC ⊥,··············1分 又因为AC PC ⊥,BC PC C = ,,BC PC ⊂平面PBC ,所以AC ⊥平面PBC ,·············2分 又因为PB ⊂平面PBC ,所以AC PB ⊥,····································································3分 又因为P 为半球面上一点,所以PA PB ⊥,···································································4分 PA AC A = ,,PA AC ⊂平面PAC ,所以PB ⊥平面PAC ,·········································5分 PC ⊂平面PAC ,所以PB PC ⊥.·············································································6分 (2)解法一:因为三角形ABC 为直角三角形,24AB AM ==,2AC =
,所以BC =,
又因为PB =PB ⊥平面PAC
,所以PC =,·····················································7分 又因为三角形PAB
也是直角三角形,所以PA .·····················································8分
所以11
222PAC S AC PC =
⋅⋅=⨯=△·································································9分
11
22
PAB S PA PB =⋅⋅==△,··································································10分
设点C 到平面PAB 的距离为h ,则有C PAB B PAC V V --=,即11
33
PAB PAC S h S PB ⋅=⋅△△,
所以PAC PAB S PB h S ⋅===△△·····································································11分
设直线PC 与平面PAB 所成的角为θ
,则
sin h PC θ===
.······························12分 解法二:因为三角形ABC 为直角三角形,24AB AM ==,2AC =
,所以BC =,
又因为PB =
PB ⊥平面PAC
,所以PC =,·····················································7分
取BC 中点O ,连接PO ,MO ,因为PB PC =,所以PO BC ⊥,因为//MO AC ,且AC ⊥平面PBC ,所以MO ⊥平面PBC ,因为,PO BC ⊂平面PBC , 所以MO PO ⊥,MO BC ⊥,
所以OB ,OM ,OP 两两垂直.(8分)
如图,分别以OB ,OM ,OP 为x ,y ,z 轴建立空间直角 坐标系,
则(2,0)A ,(3,0,0)B
,(C

P (9分)
设平面PAB 的一个法向量为(,,)n x y z = ,
因为2,0)AB =-
,PB =


以200n AB y y x z n PB ⎧⎧⋅=-==⎪⎪⇒⎨⎨=⎪⋅==⎪⎩⎩
,取1x =,
得n =
,··········································································································10分
又因为CP =
,所以cos ,n CP n CP n CP
⋅〈〉===⋅
···························11分
设直线PC 与平面PAB 所成的角为θ
,则sin cos ,n CP θ=〈〉=
.·······························12分 20.【答案】(1)0.61q <≤;(2)使用B 型号炮弹,理由见解析. 【解析】(1)因为发射B 型号炮弹3发至少命中一发的对立事件是一发都未命中,且每发炮弹击中与否相互独立,··················································································································1分 所以发射B 型号炮弹3发至少命中一发的概率为31(1)q --,·············································2分 所以31(1)0.936q --≥,所以3(1)0.064q -≤,10.4q -≤,0.6q ≥,·························3分 又因为01q <<,所以0.61q <≤.·············································································4分 (2)选用B 型号炮弹使得目标飞行物坠毁的概率更大,理由如下:·····································5分 记事件M =“发射A 型号炮弹目标飞行物坠毁”,i A =“发射A 型号炮弹命中i 发”(0,1,2,3)i =, 所以112233()()(|)()(|)()(|)P M P A P M A P A P M A P A P M A =⋅+⋅+⋅
122233223
333C (1)0.6C (1)1C 1.8(1)3(1)1p p p p p p p p p p =-+-⨯+=-⨯⨯-++
2233321.8(12)330.20.6 1.8p p p p p p p p p =-++-+=--+,·······································7分 同理记N =“发射B 型号炮弹目标飞行物坠毁”,i B =“发射B 型号炮弹命中i 发”(0,1,2,3)i =, 所以112233()()(|)()(|)()(|)P N P B P N B P B P N B P B P N B =⋅+⋅+⋅
122233223
3330.4C (1)0.8C (1)C 1.2(1) 2.4(1)q q q q q q q q q q =-+-+=-+-+
223331.2(12) 2.4 2.40.2 1.2q q q q q q q q =-++-+=-+···················································9分 因为1p q +=,所以1q p =-,
则323()()0.20.6 1.80.2(1) 1.2(1)P M P N p p p p p -=--++---
322330.20.6 1.80.2(133) 1.2 1.20.4 2.41p p p p p p p p p =--++-+--+=-+-,·············10分
令3()0.4 2.41(00.4)f p p p p =-+-<≤,则2
() 1.2 2.4f p p '=-+,
因为00.4p <≤,所以()0f p '>恒成立,所以()f p 在(0,0.4]上单调递增,
又4(0.4)0.4 2.40.410.02560.9610f =-+⨯-=-+-<,················································11分 则()(0.4)0f p f <≤,故()()0P M P N -<,即()()P M P N <,
所以使用B 型号炮弹使得目标飞行物坠毁的概率更大.·····················································12分
21.【答案】(1)2
213
x y -=,
(2)32 【解析】(1)解法一:由已知得2c =,222a b c +=,22
41
13a b -=,·································2分
解得a =
1b =,·································································································3分
O x y
z
所以双曲线的标准方程为2
213
x y -=.··········································································4分
解法二:2a ==
,a ∴=···················································2分 又因为2c =
,所以1b =
=,···········································································3分
所以双曲线的标准方程为2
213
x y -=.··········································································4分
(2)设切线l 的方程为:(0)x my n m =+≠,
联立22
13
x my n x y =+⎧⎪⎨-=⎪⎩,整理得222
(3)230m y mny n -++-=,·············································5分 由题知222244()3)0(3m n n m ∆=-⨯⨯-=-,化简得223m n +=,··································6分 设11(,)P x y ,22(,)Q x y ,则1F P l ⊥,2F Q l ⊥,
则1111
112x my n y x m
=+⎧⎪
⎨⋅=-⎪+⎩,解得2
121221(2)1n m x m m n y m ⎧-=⎪⎪+⎨+⎪=-⎪+⎩;·································································7分 同理2222
112x my n y x m
=+⎧⎪
⎨⋅=-⎪-⎩,解得2
222221(2)1n m x m m n y m ⎧+=⎪⎪+⎨-⎪=-⎪+⎩
.·····························································8分 点(0,0)到直线x my n =+
的距离==d 所以OPQ △
的面积1122
S d PQ d =⨯⨯=⨯
22421
2211n m mn m m ==⨯=++. (或由向量三角形的面积公式,可得OPQ △的面积
223122122222
(2)(2)(2)(2)221
22(1)2(12)1m n n m m n n m mn m n S x y x y mn m m m
++---+=-==++=+)·······10分 又2
2
3m n +=
,m ∴=
S =,
令24=-t n ,由203n <<,则14t <<,
所以====S ················11分 所以当158=t ,即85t =
时,max 33242
==⨯=S .
所以OPQ △面积最大值为3
2
.····················································································12分
解法二:(5分至8分同解法一)2222(2),11n m m m P n m -+-++⎛⎫∴ ⎪⎝⎭,2222(2),11n m m n m Q m +⎛⎫
⎪⎝--+⎭
+,······9分。

相关文档
最新文档