人教中考数学—锐角三角函数的综合压轴题专题复习及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:
(1)当 t 为何值时,点 E 在 BAC 的平分线上?
(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;
(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;
(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.
【答案】(1)4s t =;(2)PEGO S 四边形23
15688
t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165
t =
时,OE OQ ⊥. 【解析】
【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.
(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.
(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出
EC GQ OC OG
=,由此构建方程即可解决问题.
【详解】
(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,
∴22108-=6(cm ),
∵OD 垂直平分线段AC ,
∴OC=OA=3(cm ),∠DOC=90°,
∵CD ∥AB ,
∴∠BAC=∠DCO ,
∵∠DOC=∠ACB ,
∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD
==, ∴CD=5(cm ),OD=4(cm ),
∵PB=t ,PE ⊥AB , 易知:PE=34
t ,BE=54t , 当点E 在∠BAC 的平分线上时,
∵EP ⊥AB ,EC ⊥AC ,
∴PE=EC ,
∴
34
t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.
(2)如图,连接OE ,PC .
S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )
=1414153154338838252
524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =28
1516(05)33
t t t -+
+<<. (3)存在. ∵2
8568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=
52
时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .
∵OE ⊥OQ ,
∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,
∴tan∠EOC=tan∠QOG,∴EC GQ
OC OG
=,
∴
3
5
8
5
4
4
34
5
t
t
t
-
=
-
,
整理得:5t2-66t+160=0,
解得
16
5
t=或10(舍弃)
∴当16
5
t=秒时,OE⊥OQ.
【点睛】
本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.
2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE ∽△ACD ,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出
△ACD ∽△HEA ,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵AC=BD ,CD=AE ,
∴AF=AC .
∵∠FAC=∠C=90°,
∴△FAE ≌△ACD ,
∴EF=AD=BF ,∠FEA=∠ADC .
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD .
∵AD ∥BF ,
∴∠EFB=90°.
∵EF=BF ,
∴∠FBE=45°,
∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵3BD ,3AE , ∴
3AC CD BD AE
==. ∵BD=AF ,
∴3AC CD AF AE ==. ∵∠FAC=∠C=90°,
∴△FAE ∽△ACD , ∴
3AC AD BF AF EF EF
===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD .
∵AD ∥BF ,
∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=
3EF BF =, ∴∠FBE=30°,
∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,
∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,
∴BE=DH ,EH=BD .
∵3BD ,3AE ,
∴
3AC CD BD AE
==. ∵∠HEA=∠C=90°,
∴△ACD ∽△HEA , ∴
3AD AC AH EH
==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,
∴∠HAE+∠CAD=90°,
∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=
3AH AD
= ∴∠ADH=30°,
∴∠APE=30°.
点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和
性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.
3.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.
(1)求证:∠AEC=90°;
(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;
(3)若DC=2,求DH的长.
【答案】(1)证明见解析;
(2)四边形AOCD为菱形;
(3)DH=2.
【解析】
试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得
,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出
∠AEC=90°;
(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由
DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.
试题解析:(1)连接OC,
∵EC与⊙O切点C,
∴OC⊥EC,
∴∠OCE=90°,
∵点CD是半圆O的三等分点,
∴,
∴∠DAC=∠CAB,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠DAC=∠OCA,
∴AE∥OC(内错角相等,两直线平行)
∴∠AEC+∠OCE=180°,
∴∠AEC=90°;
(2)四边形AOCD为菱形.理由是:
∵,
∴∠DCA=∠CAB,
∴CD∥OA,
又∵AE∥OC,
∴四边形AOCD是平行四边形,
∵OA=OC,
∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.
∵四边形AOCD为菱形,
∴OA=AD=DC=2,
∵OA=OD,
∴OA=OD=AD=2,
∴△OAD是等边三角形,
∴∠AOD=60°,
∵DH⊥AB于点F,AB为直径,
∴DH=2DF,
在Rt△OFD中,sin∠AOD=,
∴DF=ODsin∠AOD=2sin60°=,
∴DH=2DF=2.
考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.
4.如图,矩形OABC 中,A(6,0)、C(0,
23)、D(0,33),射线l 过点D
且与x 轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.
(1)点B 的坐标是 ,∠CAO = º,当点Q 与点A 重合时,点P 的坐标
为 ;
(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 重叠部分的面积为S ,试求S 与x 的函数关系式和相应的自变量x 的取值范围.
【答案】(1)(6,23). 30.(3,33)(2)
()()()()243x 430x 33
31333x x 3x 5S {23x 1235x 93
543x 9+≤≤-+-<≤=-+<≤> 【解析】
解:(1)(6,23). 30.(3,33).
(2)当0≤x≤3时,
如图1,
OI=x ,IQ=PI•tan60°=3,OQ=OI+IQ=3+x ;
由题意可知直线l ∥BC ∥OA ,
可得
EF PE DC31
==
OQ PO DO3
33
==,∴EF=
1
3
(3+x),
此时重叠部分是梯形,其面积为:
EFQO
14343
S S EF OQ OC3x x43 233
==+⋅=+=+梯形
()()
当3<x≤5时,如图2,
()
HAQ
EFQO EFQO
22
1
S S S S AH AQ
2
43331333
x43x3=x x
32232
∆
=-=-⋅⋅
=+---+-
梯形梯形。
当5<x≤9时,如图3,
12
S BE OA OC312x
23
23
=x123
3
=+⋅=-
-+
()()。
当x>9时,如图4,
11183543
S OA AH6
22
=⋅=⋅.
综上所述,S与x的函数关系式为:
(
)()()()243x 430x 33
31333x x 3x 5S {23x 1235x 9543x 9+≤≤-+-<≤=-+<≤>. (1)①由四边形OABC 是矩形,根据矩形的性质,即可求得点B 的坐标:
∵四边形OABC 是矩形,∴AB=OC ,OA=BC ,
∵A (6,0)、C (0,23),∴点B 的坐标为:(6,23).
②由正切函数,即可求得∠CAO 的度数:
∵OC 233tan CAO ==OA 63
∠=,∴∠CAO=30°. ③由三角函数的性质,即可求得点P 的坐标;如图:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,
∵∠PQO=60°,D (0,3∴3
∴0PE
AE 3tan 60==.
∴OE=OA ﹣AE=6﹣3=3,∴点P 的坐标为(3,3).
(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x >9时去分析求解即可求得答案.
5.如图,MN 为一电视塔,AB 是坡角为30°的小山坡(电视塔的底部N 与山坡的坡脚A 在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A 处测得塔顶M 的仰角为45°;沿着山坡向上行走40m 到达C 处,此时测得塔顶M 的仰角为30°,请求出电视塔MN 的高度.(2≈1.413≈1.73,结果保留整数)
【答案】95m
【解析】
【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=203m,在RT△MFC中,设MN=x m,则AN=xm.FC=3xm,可得x+203=3 ( x-20),解方程可得答案..
【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.
在△ACE中,AC=40m,∠CAE=30°
∴CE=FN=20m,AE=203m
设MN=x m,则AN=xm.FC=3xm,
在RT△MFC中
MF=MN-FN=MN-CE=x-20
FC=NE=NA+AE=x+203
∵∠MCF=30°
∴FC=3MF,
即x+203=3 ( x-20)
解得:x=403 31
=60+203≈95m
答:电视塔MN的高度约为95m.
【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.
6.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为
152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】主塔BD的高约为86.9米.
【解析】
【分析】
根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.
【详解】
在Rt△ABC中,∠ACB=90°,
sin BC
A
AB
=.
∴sin152sin311520.5279.04
BC AB A︒
=⨯=⨯=⨯=.
79.047.986.9486.9
BD BC CD
=+=+=≈(米)
答:主塔BD的高约为86.9米.
【点睛】
本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.
7.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)
(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.
【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,
∠FCN 的大小总保持不变,tan ∠FCN
=4
3
.理由见解析. 【解析】 【分析】
(1)根据三角形判定方法进行证明即可.
(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.
(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】
(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,
ADG ABE DAG BAE AD AB ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:
则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,
∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,
EHF ABE FEH BAE AE EF ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°,
∴∠FCN=45°.
(3)当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:
由已知可得∠EAG=∠BAD=∠AEF=90°,
结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,
∴EH=AD=BC=8,
∴CH=BE,
∴EH FH FH
AB BE CH
==;
在Rt△FEH中,tan∠FCN=
84
63 FH EH
CH AB
===,
∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4
3
.
【点睛】
本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.
8.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=1
2
∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=3
5
,AK=10,求CN
的长.
【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3)20
1013
. 【解析】 试题分析:
(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;
(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=1
2
∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,
由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3
5
AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=
4
3
CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=
3AH
HK
=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP
=,可设PN=12b ,AP=9b ,由tan ∠ACG=
PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=5
13
,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:
(1)如图1,连接OG .
∵EF 切⊙O 于G , ∴OG ⊥EF ,
∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG ,
∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,
∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,
∵∠FGB=
1
2
∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .
(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=3
5
AH AC =,设AH=3a ,AC=5a , 则2
2
4AC CH a -=,tan ∠CAH=
4
3
CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,
∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH
HK
=3,2210AH HK a +=, ∵10 ∴
1010a =
∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°,
在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG , ∵∠ACN=∠ABG , ∴∠AKH=∠ACN , ∴tan ∠AKH=tan ∠ACN=3, ∵NP ⊥AC 于P ,
∴∠APN=∠CPN=90°,
在Rt△APN中,tan∠CAH=
4
3
PN
AP
=,设PN=12b,则AP=9b,
在Rt△CPN中,tan∠ACN=PN
CP
=3,
∴CP=4b,
∴AC=AP+CP=13b,∵AC=5,
∴13b=5,
∴b=5
13
,
∴CN=22
PN CP
+=410b⋅=20
10 13
.
9.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)
【答案】潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用
BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD=
tan AD ACD
∠ =
tan30
x
3x
在Rt △BCD 中,BD=CD •tan68°, ∴325+x= 3x •tan68° 解得:x ≈100米,
∴潜艇C 离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频
10.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;
(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.
(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.
【答案】【发现】(1)MN 的长度为π3;(23
P 的坐标为10(,);或3
03()或23
03
-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.
【解析】 【分析】
发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;
(2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;
拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现]
(1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为6011803
ππ
⨯=. 故答案为
3
π
; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=,∴S 重叠部分=S △APQ 12=
PQ ×AQ 3
=. 即重叠部分的面积为3
8
. [探究]
①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);
②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123
30cos ==︒∴点P 的坐标为(
23
3
,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 23
=
; ∴点P 的坐标为(23
3
-
,0);
[拓展]
t的取值范围是2<t≤3,4≤t<5,理由:
如图5,当点N运动到与点A重合时,MN与Rt△ABO的边有一个公共点,此时t=2;
当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=1,∴t
41
1
-
==3,MN与
Rt△ABO的边有两个公共点,∴2<t≤3.
如图6,当⊙P运动到PM与OB重合时,MN与Rt△ABO的边有两个公共点,此时t=4;直到⊙P运动到点N与点O重合时,MN与Rt△ABO的边有一个公共点,此时t=5;
∴4≤t<5,即:t的取值范围是2<t≤3,4≤t<5.
【点睛】
本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.。