小学数学六年级上册应用题解答题精选易错题集经典题目(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学六年级上册应用题解答题精选易错题集经典题目(含答案)
一、六年级数学上册应用题解答题
1.一玩具商从批发行购进两种大小不同的玩具熊100个,共花了3600元。
在零售时,其中70个大号玩具熊以每个54元卖出。
(1)如果余下的小号玩具熊以每个15元售出,求玩具商在这次买卖中的盈利率。
(2)如果在大号玩具熊卖完后,每个小号玩具熊应定价多少元,才能使盈利率达到25%。
2.根据下列信息回答问题。
印刷厂的纸是以“令”来卖的。
一令是500张。
最普通的纸张是A4纸。
A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分。
一张A0纸的规格为1189毫米×841毫米,差不多有1平方米。
如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等。
(1)需要多少张A4纸才能覆盖住一张A0纸?()
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?()
①420mm ②297mm ③210mm ④149mm
3.求实小学原来男、女生人数之比为16:13,这学期又转来几名女生,这样男、女生人数之比为6:5,这时男、女生人数共有880人,转来的女生有多少人?
4.下图中,涂色部分甲比乙的面积大2
11.25cm。
求BC的长。
5.如下图,图(1)与图(2)外面是两个同样大的正方形,只是里面的涂色部分不一样。
如果图(1)中涂色部分的面积是2
235.5m,求图(2)中涂色部分的面积。
(单位:m)
6.甲、乙两图中正方形的面积都是40cm2,阴影部分的面积哪一块大?大多少?
7.分别以直角三角形ABC的三条边为直径画了三个半圆,得到下图。
求阴影部分的周长和面积。
(单位:cm)
8.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。
请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。
(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
9.列出综合算式,不计算。
一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长
的1
4
?
10.食堂运来三种蔬菜,其中白菜的质量占28%,土豆的质量和其他两种蔬菜质量之和的比是2:3,土豆比白菜多24千克,食堂运来的三种蔬菜共多少千克?
11.果园里的桃树比苹果树少50棵,苹果树的1
3
和桃树的40%相等,梨树的棵数与苹果树
的棵数之比是2∶3,果园里这三种树各有多少棵?
12.商店购进一批自行车,购入价为每辆420元,卖出价为每辆500元,当卖出自行车的4
5
多20辆时,已获得全部成本,当自行车全部卖完时,共盈利多少元?
13.甲乙两船同时从A码头出发,沿着同一条航线匀速向相距280千米的B码头航行,4小时后导航系统显示两船相距20千米。
已知甲船的速度是乙船的87.5%,求甲乙两船的速
度。
(列方程解答)
14.一项工程,甲队单独完成需要20天,乙队单独完成需要12天。
现在乙队先工作几天,剩下的由甲队单独完成。
工作中各自的工作效率不变,全工程前后一共用了14天,共得劳务费2万元。
如果按各自的工作量计算,甲、乙各获得多少万元?
15.某商场一天内销售两种服装的情况是,甲种服装共卖得1560元,乙种服装共卖得1350元,若按两种服装的成本分别计算,甲种服装盈利25%,乙种服装亏本10%,试问该商场这一天是盈利还是亏本?盈或亏多少元?
16.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?
(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?
17.学校举行庆“六一”男女生大合唱,原计划合唱队中女生人数占合唱队总人数的40%,后来考虑到合唱效果,将其中5名女生换成了5名男生,这时女生与男生人数的比是
3∶7。
合唱队共有男女生多少名?
18.甲、乙两车同时从A、B两地相对开出,相遇后继续前进,当两车又相距70千米时,甲行驶了全程的75%,乙离A地的路程与已行驶的路程比是1∶2,A、B两地相距多少千米?
19.龙城超市上个星期售出甲、乙两种品牌的饮料箱数如下图.
(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?
(2)甲饮料周日的销售比周一多百分之几?
(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?
20.果园里有500棵果树,其中苹果树和梨树占总数的 40%,其余的是桃树和杏树,桃树和杏树的比是 3:2。
杏树有多少棵?
21.一辆汽车从甲地开往乙地,行了一段路程后,离乙地还有180km,接着又行了全程的20%,这时已行路程与未行路程的比是3:2.甲、乙两地相距多少千米?
22.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。
(如图所示)
(1)填写下列表格。
想一想,这些数量之间有什么关系? 大正方形每边的块数
3 黑瓷砖块数
8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块? 23.仔细观察下面的点子图,看看有什么规律.
(1)根据上面图形与数的规律接着画一画,填一填.
(2)探索填空:按照上面的规律,第6个点子图中的点子数是 ;第10个点子图中的点子数是 .
24.观察下面点阵中的规律,回答下面的问题:
①方框内的点阵包含了( )个点。
②照这样的规律,第12个点阵中应包含多少个点? 我是这样想的:
25.世界卫生组织推荐的成人标准体重的计算方法是:
男性:(80)0.7-⨯=身高标准体重女性:(70)0.6-⨯=身高标准体重 下表是体重的评价标准: 实际体重比标准体重轻(重)的百分
比 轻20%以上
轻11%~20%
轻10%~重10%
重11%~20%
重20%以上
等级
消瘦
偏瘦
正常
偏胖
肥胖
cm kg
(2)杜叔叔身高170cm,体重至少减掉10kg才算是“正常”体重,杜叔叔现在的体重是多少kg?
26.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.
27.生命在于运动。
为了进一步提高全体同学的身体素质,拥有健康强杜的体魄,东华小
学开展了“天天晨跑”活动。
陈刚共跑了60km,张华所跑路程是陈刚所跑路程的4
5
还多
8km。
张华共跑了多少km?
28.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?
29.涛涛读一本故事书,第一天读了这本书的1
6
,第二天读了这本书的
1
5
,这时还剩95页
没有读。
这本故事书共有多少页?
30.打一份稿件,小红需要8小时,小明需要10小时,两人合作打了4小时,还剩5000个字,这份稿件一共有多少个字?
31.甲乙两仓库共存粮54吨,甲仓用了4
5
,乙仓用了
3
4
后,剩下的两仓一样多,原来两
仓各存粮多少吨?
32.操场上有108名同学在锻炼身体,其中女生占2
9
,后来又来了几名女生,这时女生人
数占
3
10
,后来又来了几名女生?
33.
为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵.五、六年级分别种植了多少棵?
34.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
35.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
36.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时,有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,问丙帮助甲、乙各多少时间?
37.一批零件平均分给甲、乙两人来做.两人同时加工,当甲完成时乙还有18个没有做.已知甲、乙两人每小时生产零件个数的比是5:4.这批零件一共多少个?
38.如图为某学校花坛,它由一个圆心角∠AOB=30°,半径AO=6米的扇形以及分别以
AO、BO的1
3
为直径的6个相等的半圆组成,求此花坛的面积。
39.一项工程,甲单独做30天完成,乙单独做40天完成,现在两人一起做,共用25天完成,其间甲休数是乙休息天数的2倍。
乙休息几天?
40.当图中两块阴影部分的面积相等时,x的值应该是多少?(单位:cm)
41.已知,在直角三角形ABC中,∠ACB=90°,AC=8,BC=6,AB=10,以AB边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.
42.一个工程队修一条公路,第一天修45米,第二天修全长的1
4
,第二天修的米数又恰
好比第一天多1
5
,这条公路全长多少米?
43.客、货两车分别从甲、乙两地同时相向而行,相遇时客车与货车所行路程比是7∶4。
已知,客车从甲地行驶到乙地需要8小时,货车每小时48km。
甲、乙两地相距多少千米?44.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是4:3,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。
已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米?
45.甲箱子有50个球,乙箱子有15个球,从甲箱拿出多少个球放入乙箱里才使得甲、乙两箱球的数量比是6:7?
46.小红读一本故事书,第一天读了全书的1
6
,第二天读了36页。
这时已读页数与剩下页
数的比是5∶7,小红再读多少页就能读完这本书?
47.在直角三角形ABC 中,这个三角形的面积是90平方厘米,D 是BC 的中点,E 是AD 中一点,AE 与ED 的比是2∶1,求阴影部分的面积?
48.聪聪读一本故事书,读完的页数比这本书总页数的1
3
还多20页。
此时,读完的页数与
未读页数的比是5:7,这本书一共有多少页?
49.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。
原来参加数学竞赛的女生有多少人?
50.一个食堂买回一批面粉,第一天吃了1
5
,第二天吃了40 kg ,第三天吃的等于前两天吃
的总和,最后还剩16 kg .这批面粉有多少千克?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.(1)17.5%;(2)24元 【分析】
(1)根据单价×数量=总价分别求出大号玩具和小号玩具一共能卖多少钱,再用卖得的价格减去进价,就是利润;盈利率=利润÷成本×100%,据此解答;
(2)假设每个小号玩具熊应定价x 元,根据(大号玩具和小号玩具一共卖的价钱-成本)÷成本×100%=25%列方程解答即可。
【详解】
(1)54701510070⨯+⨯-()
=3780+450 =4230(元)
(4230-3600)÷3600×100% =630÷3600×100% =0.175×100% =17.5%
答:玩具商在这次买卖中的盈利率是17.5%。
(2)解:设小号玩具熊应定价x元。
100-70=30(个)
(54×70+30x-3600)÷3600×100%=25%
3780+30x-3600=3600×25%
180+30x=900
30x=900-180
30x=720
x=24
答:每个小号玩具熊应定价24元,才能使盈利率达到25%。
【点睛】
认真审题,看清条件和问题,解答此题用到的数量关系式是:盈利率=利润÷成本×100%。
2.(1)② (2)③
【解析】
【详解】
略
数一数,填一填,做一做。
3.10人
【详解】
880÷(6+5)=80(人),80×6=480(人),480÷16=30(人),30×13=390(人),80×5-390=10(人).
答:转来的女生有10人.
4.6厘米
【分析】
因为涂色部分甲比乙的面积大2
11.25cm,也就是(甲+空白扇形)-(乙+空白扇形)=11.25cm2,即半圆面积-三角形面积=11.25cm2,所以三角形面积=半圆面积-11.25,通过圆形面积公式和三角形面积公式进而可计算出BC的长。
【详解】
根据分析,列式如下:
[3.14×(10÷2)2÷2-11.25]×2÷10
=[39.25-11.25]×2÷10
=28×2÷10
=5.6(厘米)
答:BC的长是5.6厘米。
【点睛】
本题考查与圆形和三角形相关的计算,找到半圆面积-三角形面积=11.25cm2是解答本题的关键。
5.300平方米
【分析】
根据圆环的面积S=π(R2-r2),图(1)中涂色部分是一个圆环的面积,已知圆环的面积,据此求出大圆和小圆的半径平方之差,进而求出大圆的半径。
大圆直径是正方形的边长,图(2)中涂色部分的面积就是大正方形的面积减去小正方形的面积,据此解答。
【详解】
235.5÷3.14+5×5
=75+25
=100(平方米)
10×10=100(平方米)
大圆的半径是10米。
10×2=20(米),5×2=10(米)
20×20-10×10
=400-100
=300(平方米)
答:图(2)中涂色部分的面积是300平方米。
【点睛】
此题考查阴影部分的面积计算,求出大圆的直径是解题关键。
6.乙大,大14.2 cm2
【分析】
甲阴影部分的面积=正方形的面积-圆的面积,甲中圆的面积=π×正方形的面积÷4;
乙阴影部分的面积=圆的面积-正方形的面积,乙中圆的面积=π×正方形的面积÷2;然后进行比较、作差即可。
【详解】
S甲阴=40-3.14×40÷4=8.6(cm2)
S乙阴=3.14×40÷2-40=22.8(cm2)
乙图阴影部分面积大,大22.8-8.6=14.2(cm2)
7.68厘米;24平方厘米
【详解】
略
8.(1)
(2)0.285平方米 【详解】 略
9.()112140%140%4⎛
⎫÷-⨯-- ⎪⎝
⎭ 【分析】
根据题意可得,12米占这根电线总长度的()140%-,据此求出这根电线总长度。
因为第二次截取的长度占这根电线长度的1140%4⎛
⎫-- ⎪⎝
⎭,最后求出第二次截取的长度即可。
【详解】
()112140%140%4⎛
⎫÷-⨯-- ⎪⎝
⎭
=20×0.35 =7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。
【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。
10.200千克 【分析】
将蔬菜总质量看作单位“1”,根据土豆的质量和其他两种蔬菜质量之和的比是2:3,可得土豆占总质量的2
23
+,用24千克÷对应分率即可。
【详解】 24÷(2
23
+-28%) =24÷
325
=200(千克)
答:食堂运来的三种蔬菜共200千克。
【点睛】
关键是确定单位“1”,找到已知数量的对应分率。
11.桃树250棵,苹果树300棵,梨树200棵 【分析】
将桃树棵数看作单位“1”,桃树的40%÷苹果树的1
3
=苹果树占桃树的对应分率,确定50棵
的对应分率,用50棵÷对应分率=桃树棵数;桃树棵数+50=苹果树棵数;根据梨树的棵数与苹果树的棵数之比是2∶3,确定梨树占苹果树的分率,用苹果棵数×梨树对应分率=梨树棵数。
【详解】
桃树:
1 5040%1
3
⎛⎫
÷÷-
⎪
⎝⎭
()
=50 1.21
÷-
=500.2
÷
250
=(棵)
苹果树:250+50=300(棵)
梨树:
2
300=200
3
⨯(棵)
答:桃树有250棵,苹果树有300棵,梨树有200棵。
【点睛】
部分数量÷对应分率=整体数量,两数相除又叫两个数的比。
12.40000元
【详解】
略
13.甲船35千米/时,乙船40千米/时
【分析】
设乙船速度是x千米/时,则甲船速度是87.5%x千米/时,乙船速度×时间-甲船速度×时间=20千米,列出方程求出乙船速度,乙船速度×87.5%=甲船速度。
【详解】
解:设乙船速度是x千米/时,则甲船速度是87.5%x千米/时。
4x-87.5%x×4=20
4x-3.5x=20
0.5x=20
x=40
40×87.5%=35(千米/时)
答:甲船速度是35千米/时,乙船速度是40千米/时。
【点睛】
用方程解决问题的关键是找到等量关系,整体数量×部分对应百分率=部分数量。
14.甲0.5万元;乙1.5万元
【详解】
甲工作的天数:
111
(141)()
121214
⨯-÷-=
11
630
÷=5(天)
乙工作的天数:1459
-=(天)
甲、乙工作量的比:
11
(5):(9)1:3 2012
⨯⨯=
甲获得的钱:
1
20.5
13
⨯=
+
(万元)
乙获得的钱:
3
2 1.5
13
⨯=
+
(万元)
15.盈利;盈利162元
【分析】
由题意可知,甲种服装盈利25%,就是比成本多了25%,那么卖价就是成本的1+25%=125%;乙种服装亏本10%,就是比成本少了10%,那么卖价就是成本的1-10%=90%;根据“已知一个数的百分之几是多少,求这个数”,用除法计算出甲种服装和乙种服装的成本价,然后把一天的销售总额加起来跟成本总价相比,就知道是盈亏多少了。
【详解】
1560÷(1+25%)
=1560÷1.25
=1248(元)
1350÷(1-10%)
=1350÷90%
=1500(元)
1560+1350=2910(元)
1248+1500=2748(元)
2910-2748=162(元)
答:该商场这一天盈利了,盈利162元。
【点睛】
解答此题的关键是要求出甲乙两种服装的成本价,根据已知一个数的百分之几是多少,求这个数用除法计算。
16.(1)12.75元
(2)20%
【分析】
(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;
(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。
【详解】
(1)2040÷200÷80%
=10.2÷80%
=12.75(元)
答:每支钢笔的标价是12.75元。
(2)(2040÷200-8.5)÷8.5
=1.7÷8.5
=20%
答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。
【点睛】
本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。
17.50名
【分析】
通过女生与男生人数的比是3∶7,求出女生占总人数的分率,单位“1”是总人数,用少了的5名女生÷对应分率=总人数。
【详解】
女生与男生人数的比是3∶7,那么女生占总人数的
3
37
+
=
3
10
5÷(40%-
3 10
)
=5÷
1 10
=50(名)
答:合唱队共有男女生50名。
【点睛】
本题考查了比的意义,百分数和分数复合应用题,关键是确定单位“1”,找到部分和对应分率。
18.168千米
【分析】
此题可以画线段图来帮助理解:
乙离A地的路程与已行路程的比为1:2,也就是乙离A地的路程占全程的
1
12
+
,已知甲
行了75%,由图意可知,70千米占全长的(75%-
1
12
+
),由此列式解决问题。
【详解】
70÷(75%-
1
12
+
)
=70÷(3
4
-
1
3
)
=70÷
5 12
=168(千米)
答:A、B两地相距168千米。
【点睛】
此题主要考查学生运用行程问题的基本知识,解答较复杂的行程问题的能力。
在解答此题时,关键是要找出70千米所占全程的分率。
19.(1)周二;(2)40%;(3)286箱, 270箱
【详解】
(1)从统计图中看出周二时,两种品牌饮料的销售量相差最大;
(2)(350﹣250)÷250
=40%
答:甲饮料周日的销售比周一多40%。
(3)(350+250+270+200+230+320+385)÷7
=2005÷7
≈286(箱)
(300+220+200+230+250+320+370)÷7
=1890÷7
=270(箱)
答:甲饮料这个星期平均每天销售约286箱,乙饮料这个星期平均每天销售270箱.20.120棵
【详解】
500×(1-40%)×[2÷(3+2)]=120(棵)
21.300千米
【详解】
180÷(
2
32
+20%)=300(千米)
答:甲、乙两地相距300千米.
22.(1)4,5,6,7
12,16,20,24
(2)36块
【分析】
(1)大正方形每边的块数每增加1块,所用的黑瓷砖块数就增加4块;
(2)白瓷砖的总块数是每个边上的块数的平方,而黑瓷砖的总数量是白瓷砖一边的数量加1的四倍。
【详解】
(1)
大正方形每边的块数增加1块,所用的黑瓷砖数就增加4块;
(2)64=8×8;
(8+1)×4
=9×4
=36(块);
答:黑瓷砖用了36块。
【点睛】
解答本题的关键是根据图形找到规律,再根据规律来求解。
(2)27;65
【详解】
(2)第6个点子图中的点子数是:
2+3+4+5+6+7
=2+5+(3+7+4+6)
=27(个)
第10个点子图中的点子数是:
2+3+4+5+6+7+8+9+10+11
=13×5
=65(个)
答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.
24.①13;②34个;我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34(个)。
【分析】
①第(1)个点阵有1个点,第(2)点阵有4个点,第(3)个点阵有7个点,第(4)个点阵有10个点,从第(2)开始,每一个点阵比前一个多3个点,则第(5)有10+3=13个点。
②竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个)
【详解】
①方框内的点阵包含了13个点。
②12+11+11=34 (个);我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个)。
【点睛】
本题主要考查学生的观察和分析问题的能力。
25.(1)正常
(2)79.3千克
【分析】
(1)吴阿姨是女性,根据(身高-70)×0.6=标准体重,先代入数据求出吴阿姨的标准体重,再求出吴阿姨的标准体重与其体重的差,用差除以标准体重,求出差占标准体重的百分之几,从而得出结论;
(2)杜叔叔是男性,根据(身高-80)×0.7=标准体重,求出杜叔叔的标准体重,再加上
10千克,就是杜叔叔现在的体重。
【详解】
(1)(158-70)×0.6
=88×0.6
=52.8(千克)
(52.8-50)÷52.8
=2.8÷52.8
≈5.3%
吴阿姨的体重比正常体重轻5.3%,属于正常范围。
答:吴阿姨的体重等级是正常。
(2)(170-80)×0.7
=90×0.7
=63(千克)
63×(1+10%)+10
=63×1.1+10
=69.3+10
=79.3(千克)
答:杜叔叔现在的体重是79.3千克。
【点睛】
解决本题先理解题目给出的标准体重的计算方法,然后根据已知数量代入公式计算。
26.52cm
【详解】
2222753.1475235.5r cm S r cm π===⨯=圆()
()
27.56km
【分析】
张华所跑路程是陈刚所跑路程的五分之四还多8km ,先用乘法求出陈刚所跑路程的五分之四是多少,再加上8千米就是张华共跑的路程,据此解答即可。
【详解】
46085
⨯+ =48+8
=56(千米)
答:张华共跑了56千米。
【点睛】
本题考查分数乘法,解答本题的关键是掌握分数乘法的计算方法。
28.975千米
【分析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的1
5。
相遇后两车又行驶
了3小时,行驶了全程的3
5。
把全程看作单位“1”,则两车剩下的路程共占全程的(1-
3 5),用两车剩下的路程之和除以(1-
3
5
)即可求出全程。
【详解】
1 5×3=
3
5
(230+160)÷(1-3
5
)
=390÷2 5
=975(千米)
答:A、B两地的距离是975千米。
【点睛】
已知一个数的几分之几是多少,求这个数,用除法计算。
明确“两车每小时共行全程的1 5”
和“两车剩下的路程共占全程的(1-3
5
)”是解题的关键。
29.150页【分析】
第一天读了这本书的1
6
,第二天读了这本书的
1
5
,都是以这本书为单位“1”,那么还剩下这
本书的19
30
,量率对应求单位“1”。
【详解】
1119
1
6530
--=
19
95150
30
÷=(页)
答:这本故事书共有150页。
【点睛】
本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。
30.50000个
【分析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
【详解】
1
18
8
÷=
1
110
10
÷=
119
81040
+=
99
4
4010
⨯=
91
1
1010
-=
1
500050000
10
÷=(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,在分数除法应用题中广泛应用,但量和率一定要对应。
31.甲:30吨,乙:24吨
【分析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了4
5
之后,剩余粮食为(1
-4
5
)x;乙仓用了
3
4
之后,剩余粮食为(1-
3
4
)×(54-x);此时剩下的两仓一样多,
据此列出方程解答。
【详解】
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。
(1-4
5
)x=(1-
3
4
)×(54-x)
1 5x=
1
4
×(54-x)
1 5x=
1
4
×54-
1
4
x
1 5x+
1
4
x=
1
4
×54
9 20x=
54
4
x=54
4
÷
9
20
x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。
【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。
32.12名
【分析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单
位“1“,则原来男生人数占现在人数的
3
(1)
10
-,根据已知一个数的几分之几是多少求这个数
用除法,求出现在的学生数,再进一步得出结论。
【详解】
原来男生人数:
2
108(1)
9
⨯-
7
108
9
=⨯
84
=(名)
后来学生总数:
3
84(1)
10
÷-
7
84
10
=÷
120
=(名)
12010812
-=(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
33.五年级:24棵六年级:32棵
【详解】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵.
34.174个
【详解】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个。
35.18升
【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27×
=90×
=18(升)
答:这个水池早晨用去了18升水.
36.3小时,5小时
【分析】
把一个仓库的货物量看作单位“1”,甲乙丙搬完两个仓库也就是完成了2个单位量,设他们搬完货物花了x小时,根据“工作效率×工作时间=工作量”列方程即可解答。
【详解】
解:设他们搬完两个仓库货物花了x小时。
(
1
10
+
1
12
+
1
15
)×x=2
1
4
x=2 x=8
(1-
1
10
×8)÷
1
15
=1
5
÷
1
15
=3(小时)
8-3=5(小时)
答:丙帮助甲搬运了3小时,帮乙搬运了5小时。
【点睛】
把一个仓库的货物量看作单位“1”,甲乙丙搬完两个仓库也就是完成了2个单位量,这是解答本题的关键。
37.180个
【详解】
解:设这批零件共有x个,
x:( x﹣18)=5:4
2x =x ﹣90
2x ﹣2x =x ﹣90﹣2x
0=x ﹣90
0+90=x ﹣90+90
90=x 90=x
x =180;
答:这批零件一共180个.
38.84平方米
【分析】
先分别求出扇形和圆的面积,再求出和即可。
【详解】
30 3.14360
⨯⨯6² =1 3.1412
⨯⨯6² =9.42(平方米);
3.14×1²=3.14(平方米);
9.42+3.14×3
=9.42+9.42
=18.84(平方米);
答:花坛的面积是18.84平方米。
【点睛】
熟练掌握扇形和圆的面积公式是解答本题的关键。
39.乙休息5天。
【分析】 根据题意知:甲的工作效率是130,乙的工作效率是140
;两人一起做,共用25天,甲休数是乙休息天数的2倍,设乙休息了x 天,则工作时间为(25x -)天,甲休息了2x 天,工作时间为(252x -)天;甲的工作量是1(252)30x -⨯,乙的工作量是1(25)40x -⨯;甲做的工作量+乙做的工作量=总工作量,可列方程解答。
【详解】
解:设乙休息子x 天,则甲休息子2x 天,根据甲做的工作量+乙做的工作量=总工作量,可列方程如下:
11(252)(25)13040
x x -⨯+-⨯= 1008753120x x -+-=
17511120x -=
11175120x =-
5x =
答:乙休息了l5天。
【点睛】
本体的关键是找到甲做的工作量+乙做的工作量=总工作量这一数量关系,然后列方程解答。
40.4厘米
【分析】 左边阴影部分的面积=梯形面积-14圆的面积,右边阴影部分的面积=14
圆的面积-三角形面积,由题意可知两块阴影部分的面积相等,据此列出方程即可。
【详解】
(10+x )×10÷2-3.14×10²÷4=3.14×10²÷4-10×10÷2
解:50+5x -78.5=78.5-50
5x -28.5=28.5
5x =57
x =11.4
答:x 的值应该是11.4厘米。
【点睛】
本题考查了列方程解决问题,关键是观察图形特点,找到等量关系。
41.61
【详解】
根据题意得:
[3.14×(10÷2)2×
12﹣12
×6×8]×4 =[39.25﹣24]×4
=15.25×4
=61
答:阴影部分的面积是61.
42.216m
【详解】
1145121654m ⨯+÷=()() 答:这条公路全长216米.
43.672千米
【分析】。