高考数学压轴专题人教版备战高考《函数与导数》基础测试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新《函数与导数》专题解析
一、选择题
1.已知函数()322
f x x ax bx a =+++在1x =处取极值10,则a =( )
A .4或3-
B .4或11-
C .4
D .3-
【答案】C 【解析】
分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵3
2
2
()f x x ax bx a =+++, ∴2()32f x x ax b '=++.
由题意得2
(1)320
(1)110f a b f a b a =++=⎧⎨=+++='⎩, 即2
239a b a b a +=-⎧⎨++=⎩,解得33a b =-⎧⎨=⎩或4
11a b =⎧⎨=-⎩
. 当33
a b =-⎧⎨=⎩时,22()3633(1)0f x x x x '=-+=-≥,故函数()f x 单调递增,无极值.不符合题意. ∴4a =. 故选C .
点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.
(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.
2.三个数0.20.4
0.44,3,log 0.5的大小顺序是 ( ) A .0.40.2
0.43<4log 0.5<
B .0.40.2
0.43<log 0.5<4
C .0.4
0.20.4log 0.534<<
D .0.2
0.40.4log 0.54
3<<
【答案】D 【解析】
由题意得,12
0.2
0.4
5
5
0.4
0log
0.514
43
3<<<==== D.
3.已知函数()3
2
f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭
B .()
1,+?
C .5,127⎛⎫
-
⎪⎝⎭
D .11,127⎛⎫
-
⎪⎝⎭
【答案】C
【解析】 【分析】
根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()3
2
g x x x x =-++与y a =的
图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】
Q 函数()32f x x x x a =--+与x 轴有三个不同交点,
可转化为函数()3
2
g x x x x =-++与y a =的图象有三个不同的交点.
又()2
321(31)(1)g x x x x x '=-++=-+-Q ,
∴在1,,(1,)3⎛
⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.
∴()15327g x g ⎛⎫
=-=- ⎪⎝⎭
极小值,()()11g x g ==极大值,
5
127a ∴-
<<. 故选:C 【点睛】
本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.
4.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2
f x f x x -+=成立,
且当()0,x ∈+∞时,都有()'f x x >成立,若()()1
12
f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2
⎛⎤-∞ ⎥⎝

B .1,2⎡⎫+∞⎪⎢⎣⎭
C .(],2-∞
D .[)2,+∞
【答案】A 【解析】 【分析】
构造函数2
1()()2
g x f x x =-
,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令2
1()()2
g x f x x =-
,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,
Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,
所以(0)0f =,
22
22111()()()()()2
22g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.
又()()112
f a f a a -≥+
-Q ()()()2
211111222
g a a g a a a ∴-+
-≥++-, 即()()1
112
g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2
⎛⎤-∞ ⎥⎝

.
故选:A 【点睛】
本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出
2
1()()2
g x f x x =-
是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.
5.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2
-
B .1(,1)(,)2
-∞-+∞U C .1(,1)2-
D .1(,)(1,)2
-∞-⋃+∞
【答案】B 【解析】 【分析】
判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()
()2
210f x f x -+>化为
221x x ->-,求出解集即可.
【详解】
解:函数()sin2x
x
f x e e
x -=-+,定义域为R ,
且满足()()sin 2x
x f x e
e x --=-+- ()()sin2x x e e x
f x -=--+=-,
∴()f x 为R 上的奇函数; 又()'2cos222cos20x
x
f x e e
x x x -=++≥+≥恒成立,
∴()f x 为R 上的单调增函数;
又()
()2210f x f x -+>,
得()()()2
21f x
f x f x ->-=-,
∴221x x ->-, 即2210x x +->, 解得1x <-或12
x >
, 所以x 的取值范围是()1
,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭

故选B . 【点睛】
本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.
6.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.6
33log 132f f f -<-<
B .()()()0.6
332log 13f f f -<<-
C .()()()0.6
3
2
log 133f f f <-<- D .()()()0.6
3
2
3log 13f f f <-<
【答案】C 【解析】 【分析】
利用指数函数和对数函数单调性可得到0.6
32log 133<<,结合单调性和偶函数的性质可
得大小关系. 【详解】
()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,
0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,
()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.
故选:C . 【点睛】
本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.
7.已知函数
在区间
上有最小值,则函数
在区间
上一定( )
A .有最小值
B .有最大值
C .是减函数
D .是增函数
【答案】D
【解析】
【分析】
由二次函数在区间上有最小值得知其对称轴,再由基本初
等函数的单调性或单调性的性质可得出函数在区间上的单调性.
【详解】
由于二次函数在区间上有最小值,可知其对称轴,
.
当时,由于函数和函数在上都为增函数,
此时,函数在上为增函数;
当时,在上为增函数;
当时,由双勾函数的单调性知,函数在上单调递增,
,所以,函数在上为增函数.
综上所述:函数在区间上为增函数,故选D.
【点睛】
本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.
8.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为()时,其容积最大.
A.3
4
B.
2
3
C.
1
3
D.
1
2
【答案】B 【解析】【分析】
设正六棱柱容器的底面边长为x ,
则正六棱柱容器的高为)12
x -,则可得正六棱柱容器的容积为()(
))()32921224
V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】
设正六棱柱容器的底面边长为x ,
)1x -, 所以正六棱柱容器的容积为()(
))()329214
V x x x x x x x =+-=-+, 所以()227942V x x x '=-
+,则在20,3⎛⎫
⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝

上单调递增,在2,13⎛⎫
⎪⎝⎭
上单调递减, 所以当2
3
x =时,()V x 取得最大值, 故选:B 【点睛】
本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.
9.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,
()21f x x =-,则( )
A .()123
5log 2log 32f f f ⎛⎫⎛⎫
>> ⎪
⎪⎝⎭


B .()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪
⎪⎝⎭⎝⎭
C .()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
D .()2135log 3log 22f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
【答案】A 【解析】 【分析】
推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫
⎛⎫
=-<
⎪ ⎪⎝⎭⎝⎭
,()22
4log 3log 03f f ⎛

=-< ⎪⎝⎭
,()133log 2log 20f f ⎛⎫
=> ⎪⎝⎭
,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】
因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即
()()20f x f x +-=,
即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,
因为当[]0,1x ∈时,()2
1f x x =-单调递减,
因为5110222f f f ⎛⎫
⎛⎫
⎛⎫
=--=-<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫
=-< ⎪⎝⎭
, ()()1333log 2log 2log 20f f f ⎛⎫
=-=> ⎪⎝⎭
, 因为2
41
0log 132<<<,所以241log 32f f ⎛

⎛⎫-<- ⎪ ⎪⎝

⎝⎭
, 所以,123
14log 2log 23f f f ⎛⎫⎛⎫
⎛⎫>->- ⎪
⎪ ⎪⎝⎭




,即()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭

故选:A . 【点睛】
本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.
10.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛
⎫=++<< ⎪+++-⎝
⎭的最小值为
( ) A

13
+ B
C
D
【答案】B 【解析】 【分析】
利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】
2
2222sin 2sin cos 2cos 2sin cos
1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222
x x x x x x x x x x x x x x x x
x x x x +++-+++=
++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x x
x x x x x x x x x ⎛⎫⎛⎫
++ ⎪ ⎪⎝⎭⎝⎭=+=
+=⎛⎫⎛⎫
++ ⎪ ⎪⎝⎭⎝⎭

则()21tan 0sin 32f x x x x π⎛
⎫=
+<< ⎪⎝
⎭, 322222
21sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '
'
'
--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭
. 令()cos 0,1t x =∈,()3
2
61g t t t =--+为减函数,且102g ⎛⎫
=
⎪⎝⎭
, 所以当03
x π
<<时,
()1
1,02
t g t <<<,从而()'0f x <; 当
3
2
x π
π
<<
时,()1
0,02
t g t <<
>,从而()'0f x >.
故()min 3f x f π⎛⎫== ⎪⎝⎭
. 故选:A 【点睛】
本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.
11.已知函数())
ln
f x x =,设()3lo
g 0.2a f =,()0.23b f -=,
()
1.13c f =-,则( )
A .a b c >>
B .b a c >>
C .c b a >>
D .c a b >>
【答案】D 【解析】
∵())
ln
f x x =
∴())f x x ==
∴())f x x -=
∵当0x >1x >;当0x <时,01x <
∴当0x >时,())))f x x x x ==-=,
())f x x -=;
当0x <时()))f x x x ==;
()))f x x x -=-=.
∴()()f x f x =- ∴函数()f x 是偶函数
∴当0x >时,易得())f x x =为增函数 ∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-= ∵31log 52<<,0.2031-<<, 1.133>
∴ 1.10.2
3(3)(log 5)(3)f f f ->>
∴c a b >> 故选D.
12.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭
( ) A .
12e
- B .2e - C .1-
D .e
【答案】B 【解析】 【分析】
对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1
x e
=求得结果. 【详解】
由题意得:()()121f x f x
''=+
令1x =得:()()1211f f ''=+,解得:()11f '=-
()12f x x '∴=-+
12f e e ⎛⎫
'∴=- ⎪⎝⎭
本题正确选项:B 【点睛】
本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.
13.已知函数2()f x x m =+与函数1()ln
3g x x x =--,1,22x ⎡∈⎤
⎢⎥⎣⎦
的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4
[2,2+ B .5
[2ln 2,
ln 2)4
-+ C .5(ln 2,2ln 2)4
+- D .(]2ln2,2-
【答案】A
【解析】 【分析】
将问题转化为()()f x g x =-在1,22⎡⎤
⎢⎥⎣⎦
恰有两个不同的解,令()()()h x f x g x =+,将问
题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦
上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定
区间端点值和最值,由此构造不等式求得结果. 【详解】
()f x Q 与()g x 在1,22x ⎡∈⎤
⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,
()()f x g x ∴=-在1,22⎡⎤
⎢⎥⎣⎦
恰有两个不同的解,
即2
21ln
3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤
⎢⎥⎣⎦
上恰有两个不同的解, 令()2
ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x
---+'=+-==
, ∴当1,12x ⎛⎫
∈ ⎪⎝⎭
时,()0h x '<;当()1,2x ∈时,()0h x '>,
()h x ∴在1
,12
⎛⎫
⎪⎝
⎭上单调递减,在()1,2上单调递增,
又15ln 224h m ⎛⎫
=--+
⎪⎝⎭
,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1
,22
⎡⎤⎢⎥⎣

上恰有两个零点,
则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡
⎫+⎪⎢

⎭. 故选:A . 【点睛】
本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.
14.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.
15.函数()1ln f x x x ⎛

=-
⎪⎝⎭
的图象大致是( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】
通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果.
【详解】
当2x =时,110x x -=>,函数有意义,可排除A ; 当2x =-时,1302x x -
=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x
=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛
⎫=-
⎪⎝⎭单调递增,可排除C ; 故选:B.
【点睛】
本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.
16.如图,对应此函数图象的函数可能是( )
A .21(1)2x y x ⎛⎫=- ⎪⎝⎭
B .22(1)x y x =-
C .ln y x =
D .1x y xe =-
【答案】B
【解析】
【分析】 观察图象,从函数的定义域,零点,以及零点个数,特征函数值判断,排除选项,得到正确答案.
【详解】
由图象可知当0x =时,1y =-,C 不满足;
当1x =时,0y =,D 不满足条件;
A.由函数性质可知当2x =-时,()2141122y -⎛⎫=⨯-= ⎪⎝⎭
,显然A 不成立; 而B 都成立.
故选:B
【点睛】
本题考查根据函数图象,判断函数的解析式,重点考查函数性质的判断,包含函数的定义域,函数零点,零点个数,单调性,特殊值,等信息排除选项,本题属于中档题型.
17.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )
A .()()2019202020202019f f >
B .()()20192020f f >
C .()()2019202020202019f f <
D .()()20192020f f < 【答案】A
【解析】
【分析】
构造函数()()f x g x x
=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.
【详解】
令()()()0f x g x x x =>,则()()()2xf x f x g x x
'-'=. 由已知得,当0x >时,()0g x '>.
故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,

()()2020201920202019
f f >,所以()()2019202020202019f f >. 故选:A.
【点睛】
本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.
18.已知函数()2f x x mx =+图象在点()()
1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭
的前n 项和为n S ,则2018S 的值为( ) A .20152016
B .20162017
C .20172018
D .20182019
【答案】D
【解析】
【分析】 求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.
【详解】
由()2
f x x mx =+,得()2f x x m '=+,()12f m '∴=+, 因为函数()2f x x mx =+图象在点()()
1,1A f 处的切线l 与直线320x y ++=垂直, ()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则
()()21111111
f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019
S =-
+-++-=-=L . 故选:D.
【点睛】
本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.
19.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )
A .17(1)a r +
B .17[(1)(1)]a r r r +-+
C .18(1)a r +
D .18[(1)(1)]a r r r
+-+ 【答案】D
【解析】
【分析】
由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.
【详解】
解:根据题意,
当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,
孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,
⋯⋯
孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,
可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,
此时将存款(含利息)全部取回,
则取回的钱的总数:
171716
18(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .
【点睛】
本题考查了不完全归纳法及等比数列前n 项和,属中档题.
20.对于任意性和存在性问题的处理,遵循以下规则:。

相关文档
最新文档