商都县高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

商都县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
2. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).
A .),3[]1,2(+∞--
B .),3()1,35(+∞--
C .),3[]1,3
5[+∞-- D .),3()1,2(+∞-- 3. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:
小时)间的关系为0e kt
P P -=(0P
,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8
B.10
C. 15
D. 18
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.
4. 下列关系正确的是( )
A .1∉{0,1}
B .1∈{0,1}
C .1⊆{0,1}
D .{1}∈{0,1}
5. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣2 6. 若tan α>0,则( )
A .sin α>0
B .cos α>0
C .sin2α>0
D .cos2α>0
7. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列
C .公比为a 的等比数列
D .公比为的等比数列
8. 函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞ 9. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2
D .2 5
10.设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )
A .1 B
. C

D .﹣1
11.已知三棱锥S ABC -外接球的表面积为32π,0
90ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )
A .4 B
. C .8 D

12.已知
f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( )
A .(1,5)
B .(1,4)
C .(0,4)
D .(4,0)
二、填空题
13.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,
{,0x x x f x x lnx x a
+≤=->在其定义域上恰有两
个零点,则正实数a 的值为______. 14.将曲线1:C 2sin(),04
y x π
ωω=+>向右平移
6
π
个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________. 15.在复平面内,记复数+i
对应的向量为
,若向量
饶坐标原点逆时针旋转60°
得到向量
所对应
的复数为 .
16.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 . 17.已知1sin cos 3
αα+=
,(0,)απ∈,则sin cos 7sin 12
ααπ-的值为 .
18.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1
在半径为的半球底面上,A 、B 、C 、D 四个顶点都
在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .
三、解答题
19.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;
(2)若恰好当60θ=时,S 取得最大值,求a 的值.
20.已知函数f (x )=sin (ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P (0,1)
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)设函数 g (x )=f (x )+cos2x ﹣1,将函数 g (x )图象上所有的点向右平行移动个单位长度后,所
得的图象在区间(0,m )内是单调函数,求实数m 的最大值.
21.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.
22.(本小题满分12分)
设函数()()2741201x x f x a a a --=->≠且.
(1)当a =
时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.
23f x =sin ωx+φω00φ2π
(2)求函数g (x )=f (x )+
sin2x 的单调递增区间.
24.(本小题满分12分)
某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:
(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;
(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.
0.005
0.02
频率组距
O
千克
商都县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B={1,2}. 故选:A .
【点评】本题考查交集的运算法则的应用,是基础题.
2. 【答案】C
【解析】由已知,圆1O 的标准方程为222
(1)()(4)x y a a ++-=+,圆2O 的标准方程为 222
()()(2)x a y a a ++-=+,∵
2->a ,要使两圆恒有公共点,则122||26O O a ≤≤+,即 62|1|2+≤-≤a a ,解得3≥a 或1
35
-≤≤-a ,故答案选C
3. 【答案】15 【
解析】
4. 【答案】B
【解析】解:由于1∈{0,1},{1}⊆{0,1},
故选:B
【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.
5. 【答案】D
【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D .
6. 【答案】C
【解析】解:∵tan α>0,
∴,
则sin2α=2sin αcos α>0. 故选:C .
7. 【答案】A
【解析】解:


∴a n =S (n )﹣s (n ﹣1)
=
=
∴a n ﹣a n ﹣1
=
=a
∴数列{a n }是以a 为公差的等差数列 故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
8. 【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化
法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周
期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 9. 【答案】
【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪
⎧2a +b =0(-1-a )2
+(-1-b )2
=r 2
(2-a )2
+(2-b )2
=r
2

解之得a =-1,b =2,r =3,
∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,
∴|MN |=|(-1+5)-(-1-5)|=25,选D. 10.【答案】A
【解析】解:y'=2ax , 于是切线的斜率k=y'|x=1=2a ,∵切线与直线2x ﹣y ﹣6=0平行
∴有2a=2 ∴a=1 故选:A
【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.
11.【答案】A 【解析】

点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,
左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图. 12.【答案】A
【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1
得,f (1)=5,
则函数f (x )过定点(1,5). 故选A .
二、填空题
13.【答案】e
【解析】考查函数()()20{
x x x f x ax lnx
+≤=-,其余条件均不变,则:
当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有ln x
a x =
有且只有一个实根。

令()()2
ln 1ln ,'x x g x g x x x -==, 当x >e 时,g ′(x )<0,g (x )递减; 当0<x <e 时,g ′(x )>0,g (x )递增。

即有x =e 处取得极大值,也为最大值,且为
1
e
, 如图g (x )的图象,当直线y =a (a >0)与g (x )的图象 只有一个交点时,则1a e
=
. 回归原问题,则原问题中a e =.
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的
值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 14.【答案】6
【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446
y x x ππππ
ωωω=-
+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡
⎤++-+=⎢⎥⎣
⎦对一切
x R ∈恒成立,∴1cos()06
sin()0
6πωπω⎧+=⎪⎪⎨⎪=⎪⎩
∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.
15.【答案】 2i .
【解析】
解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为

+i )(cos60°+isin60°)=

+i
)(
)=2i
,故答案为 2i .
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°
得到向量对应的复数为(+i )
(cos60°+isin60°),是解题的关键.
16.【答案】 m >1 .
【解析】解:若命题“∃x ∈R ,x 2
﹣2x+m ≤0”是假命题,
则命题“∀x ∈R ,x 2
﹣2x+m >0”是真命题,
即判别式△=4﹣4m <0, 解得m >1, 故答案为:m >1
17.
【解析】
7sin
sin sin cos cos sin 124343
43πππππππ⎛⎫
=+
=+ ⎪⎝

=
,
sin cos 7
33
sin 12
ααπ-∴==
,
故答案为
3
.
考点:1、同角三角函数之间的关系;2、两角和的正弦公式.
18.
【答案】 2 .
【解析】解:如图所示, 连接A 1C 1
,B 1D 1
,相交于点O . 则点
O 为球心,OA=

设正方体的边长为x ,则A 1O=
x .

Rt △
OAA 1中,由勾股定理可得:
+x 2
=

解得x=

∴正方体ABCD ﹣A 1B 1C 1D 1的体积V==2.
故答案为:2

三、解答题
19.
【答案】(1)2
1sin 212cos a S a a θθ
=
⋅+- (2)2a =
【解析】试题
解析:
(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:
22212cos x ax ax θ=+-,
所以2
2112cos x a a θ=+-,
所以211sin 2212cos a S ax x sin a a θ
θθ
=⋅⋅=⋅+-,
(2)因为()
()
2
2
2cos 12cos 2sin sin 1212cos a a a a a S a a θθθθ
θ
+--⋅=+-'⋅, ()
()
22
2
2cos 121212cos a a a
a a θθ
+-=⋅+-, 令0S '=,得02
2cos ,1a
a
θ=
+ 且当0θθ<时,022cos 1a
a θ>+,0S '>,
当0θθ>时,02
2cos 1a
a
θ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以221
12
a a =+,
解得2a = 因为1a >
,则2a =点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。

20.【答案】
【解析】解:(Ⅰ)∵函数f (x )=sin (ωx+φ)+1(ω>0
,﹣<φ

)的最小正周期为π,
∴ω
=
=2,
又由函数f (x )的图象过点P (0,1), ∴sin φ=0, ∴φ=0,
∴函数f (x )=sin2x+1;
(Ⅱ)∵函数 g (x )=f (x )+cos2x ﹣1=sin2x+cos2x=sin (2x+
),
将函数 g (x )图象上所有的点向右平行移动个单位长度后,
所得函数的解析式是:h (x )=sin[2(x ﹣
)+
]=
sin (2x ﹣
),
∵x ∈(0,m ),
∴2x ﹣
∈(﹣
,2m ﹣
),
又由h (x )在区间(0,m )内是单调函数,
∴2m ﹣

,即m ≤

即实数m 的最大值为.
【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和
性质,是解答的关键.
21.【答案】
【解析】解:(Ⅰ)∵g (x )=log a x (a >0,且a ≠1)的图象过点(4,2),
∴log a 4=2,a=2,则g (x )=log 2x .…
∵函数y=f (x )的图象与g (X )的图象关于x 轴对称,

.…
(Ⅱ)∵f (x ﹣1)>f (5﹣x ),


即,解得1<x <3,
所以x 的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
22.【答案】(1)158⎛
⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭
,,.
【解析】
试题分析:(1)由于12
2a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158
x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭
,;(2)由()()27
41442
27lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,
原命题转化为()()10
12800g a g <⎧⎪<<⎨<⎪⎩
⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,


点:1、函数与不等式;2、对数与指数运算.
【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与
不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得15
8
x <;第二小题利用数学结合思想
和转化思想,将原命题转化为()()10
12800g a g <⎧⎪<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,. 23.【答案】
【解析】(本题满分12分)
解:(1)由表格给出的信息知,函数f (x )的周期为T=2(﹣0)=π.
所以ω=
=2,由sin (2×0+φ)=1,且0<φ<2π,所以φ=

所以函数的解析式为f (x )=sin (2x+)=cos2x …6分
(2)g (x )=f (x )+sin2x=
sin2x+cos2x=2sin (2x+
),
令2k
≤2x+
≤2k
,k ∈Z 则得k π﹣
≤x ≤k π+
,k ∈Z
故函数g (x )=f (x )+sin2x 的单调递增区间是:,k ∈Z …12分
【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.
24.【答案】(本小题满分12分)
解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)
每天销售量的中位数为0.15
701074.30.35
+
⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;
若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)。

相关文档
最新文档