物理曲线运动试题类型及其解题技巧含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理曲线运动试题类型及其解题技巧含解析
一、高中物理精讲专题测试曲线运动
1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:
(1)滑块A 在半圆轨道最高点对轨道的压力;
(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;
(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内
【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】
(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:
2211222
A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:
2
A N A v m g F m R
+=
滑块在半圆轨道最高点受到的压力为:
F N =1N
由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:
A A
B B m v m v =
解得:v B =3m/s
滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:
)B B B m v m M v =+共(
由能量关系:
2211()-22
P B B B B E m v m M v m gL μ=
-+共
解得E P =0.22J
(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:
)B B B m v m M v =+(
若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:
2
211
1()22
B B B B m gL m v m M v μ=-+
联立解得:
L 1=1.35m
若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:
222112()22
B B B B m gL m v m M v μ=
-+ 联立解得:
L 2=0.675m
综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m
2.一位网球运动员用网球拍击球,使网球沿水平方向飞出.如图所示,第一个球从O 点水平飞出时的初速度为v 1,落在自己一方场地上的B 点后,弹跳起来,刚好过网上的C 点,落在对方场地上的A 点;第二个球从O 点水平飞出时的初速度为V 2,也刚好过网上的C 点,落在A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:
(1)两个网球飞出时的初速度之比v 1:v 2; (2)运动员击球点的高度H 与网高h 之比H :h
【答案】(1)两个网球飞出时的初速度之比v 1:v 2为1:3;(2)运动员击球点的高度H 与网高h 之比H :h 为4:3. 【解析】 【详解】
(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为x 2
由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬间,其水平方向的分速度不变,竖直方向的分速度以原速率反向,根据运动的对称性可知两球第一次落地时的
水平位移之比x 1:x 2=1:3,
故两球做平抛运动的初速度之比v 1:v 2=1:3
(2)设第一个球从水平方向飞出到落地点B 所用时间为t 1,第2个球从水平方向飞出到C 点所用时间为t 2,则有H =2112gt ,H -h =2212
gt 又:x 1=v 1t 1
O 、C 之间的水平距离:x '1=v 2t 2
第一个球第一次到达与C 点等高的点时,其水平位移x '2=v 1t 2,由运动的可逆性和运动的对称性可知球1运动到和C 等高点可看作球1落地弹起后的最高点反向运动到C 点;故 2x 1=x '1+x '2
可得:t 1=2t 2 ,H =4(H -h ) 得:H :h =4:3
3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:
(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;
(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】
(1)物块从A 到B 运动过程中,根据动能定理得:22
101122
B mgL mv mv μ-=- 解得:11/B v m s =
(2)物块从B 到C 运动过程中,根据机械能守恒得:22
11·222
B C mv mv mg R =+ 解得:9/C v m s =
(3)物块从B 到D 运动过程中,根据动能定理得:22102
B mgL mv μ-=- 解得:230.25L m =
对整个过程,由能量守恒定律有:2
0102
Q mv =- 解得:Q=72J 【点睛】
选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.
4.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
根据牛顿第三定律,小物块对轨道的压力大小是62N
(2)小物块由B 点运动到C 点,根据动能定理有:
22011222
C B mgL mg r mv mv μ--⋅=
- 在C 点,由牛顿第二定律得:2
C
NC v F mg m r
+=
代入数据解得:60N NC F =
根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N
(3)小物块刚好能通过C 点时,根据22C
v mg m r
=
解得:2100.4m /2m /C v gr s s =
=⨯=
小物块从B 点运动到C 点的过程,根据动能定理有:
22211222
C B mgL mg r mv mv μ--⋅=
- 代入数据解得:L =10m
5.水平抛出一个物体,当抛出1秒后,它的速度方向与水平方向成45°角,落地时,速度方向与水平方向成60°角,(g 取10m/s 2)。
求: (1)初速度
(2)水平射程(结果保留两位有效数字) (3)抛出点距地面的高度 【答案】(1)10m/s (2)17m(3)15m 【解析】 【分析】
平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.将1秒后的速度进行分解,根据v y =gt 求出竖直方向上的分速度,再根据角度关系求出平抛运动的初速度;将落地的速度进行分解,水平方向上的速度不变,根据水平初速度求出落地时的速度;根据落地时的速度求出竖直方向上的分速度,运用v y =gt 求出运动的时间,再根据x=v 0t 求出水平射程.再根据h=12
gt 2
求出抛出点距地面的高度. 【详解】
(1)如图,水平方向v x =v 0,竖直方向v y =gt ,1s 时速度与水平成45°角,即θ=45°
因为tan450=
y v v
所以v0=v y
初速度:v0=gt=10×1=10m/s。
(2)落地时,
'
tan60y
x
v
v
=
所以落地竖直速度'
3103/
y
v gt v m s
===
解得t=3s
水平射程:
10317
x v t m m
==≈
(3)抛出点距地面的高度2
2
11
10315
22
h gt m m
==⨯⨯=
【点睛】
解决本题的关键知道平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.知道分运动和合运动具有等时性,掌握竖直方向和水平方向上的运动学公式.
6.如图,AB为倾角37
θ=︒的光滑斜面轨道,BP为竖直光滑圆弧轨道,圆心角为
143︒、半径0.4m
R=,两轨道相切于B点,P、O两点在同一竖直线上,轻弹资一端固定在A点另一自由端在斜面上C点处,现有一质量0.2kg
m=的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到D点后(不栓接)静止释放,恰能沿轨道到达P点,已知
0.2m
CD=、sin370.6
︒=、cos370.8
︒=,g取2
10m/s.求:
(1)物块经过P点时的速度大小p v;
(2)若 1.0m
BC=,弹簧在D点时的弹性势能
P
E;
(3)为保证物块沿原轨道返回,BC的长度至少多大.
【答案】(1)2m/s (2)32.8J (3)2.0m
【解析】
【详解】
(1)物块恰好能到达最高点P,由重力提供圆周运动的向心力,由牛顿第二定律得:
mg=m
2
p
v
R
解得:
100.42m/s
P
v gR=⨯=
(2)物块从D到P的过程,由机械能守恒定律得:
E p=mg(s DC+s CB)sin37°+mgR(1+cos37°)+1
2
mv P2.
代入数据解得:
E p=32.8J
(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:
E p=mg(s DC+s′CB)sin37°+mgR(1+cos37°)
解得:
s′CB=2.0m
点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.
7.如图甲所示,长为4m的水平轨道AB与半径为R=1m的竖直半圆弧管道BC在B处平滑连接,一质量为1kg可看作质点的滑块静止于A点,某时刻开始受水平向右的力F作用开始运动,从B点进入管道做圆周运动,在C点脱离管道BC,经0.2s又恰好垂直与倾角为45°的斜面相碰。
已知F的大小随位移变化的关系如图乙所示,滑块与AB间的动摩擦因数为μ=0.3,取g=10m/s2。
求:
(1)滑块在C点的速度大小;
(2)滑块经过B点时对管道的压力;
(3)滑块从A到C的过程中因摩擦而产生的热量。
【答案】(1) 2m/s(2) 106N,方向向下(3) 38J
【解析】(1)滑块从C离开后做平抛运动,由题意知:
又:
解得:v C=2m/s
(2)滑块从A到B的过程中,由动能定理得:
设在B点物块受到的支持力为N,由牛顿第二定律有:
滑块对圆弧管道的压力,由牛顿第三定律有:
联立以上方程,解得:=106N,方向向下;
(3) 滑块从A到B的过程中因摩擦产生的热量:12J
滑块从B 到C 的过程中,由能量守恒定律有:
又:
综上解得:Q=38J 。
点睛:本题是一道力学综合题,分析清楚滑块运动过程是解题的前提与关键,应用牛顿第二定律、动能定理与能量守恒定律即可解题。
8.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R 、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R 后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵到达管口C 时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g .求: (1)质量为m 的鱼饵到达管口C 时的速度大小v 1; (2)弹簧压缩到0.5R 时的弹性势能E p ;
(3)已知地面欲睡面相距1.5R ,若使该投饵管绕AB 管的中轴线OO ' 。
在90︒角的范围内来回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在
2
3
m 到m 之间变化,且均能落到水面.持续投放足够长时间后,鱼饵能够落到水面的最大面积S 是多少?
【答案】gR ;(2)3mgR ;(3)28.25R π 【解析】 【分析】 【详解】
(1)质量为m 的鱼饵到达管口C 时做圆周运动的向心力,完全由重力提供,则
2
1v mg m R
=
可以解得
1v =
(2)从弹簧释放到最高点C 的过程中,弹簧的弹性势能全部转化为鱼饵的机械能,由系统的机械能守恒定律有
2
1102
F G W W mv +=
- 即
()2
1
2.502
F W mg R m
-=-
得
3F W mgR =
故弹簧弹性势能为E p =3mgR
(3)不考虑因缓慢转动装置对鱼饵速度大小的影响,质量为m 的鱼饵离开管口C 后做平抛运动,设经过t 时间落到水面上,得
t =
= 离OO'的水平距离为x 1,鱼饵的质量为m 时
113x v t R ==
鱼饵的质量为
2
3
m 时,由动能定理 ()()2
1
2122.50323F W mg R m v ⎛⎫-=- '⎪⎝⎭
整理得:
1
v ' 同理:
21
6x v t R ='= 114r x r R =+= 227r x r R =+=
鱼饵能够落到水面的最大面积S 是
()
222211
8.254
S r r R πππ=
-= 【点睛】
本题考查了圆周运动最高点的动力学方程和平抛运动规律,转轴转过90°鱼饵在水平面上
形成圆周是解决问题的关键,这是一道比较困难的好题.
9.一轻质细绳一端系一质量为m =0.05吻的小球儿另一端挂在光滑水平轴O 上,O 到小球的距离为L = 0.1m ,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示水平距离s=2m ,动摩擦因数为μ=0.25.现有一滑块B ,质量也为m =0.05kg ,从斜面上高度h =5m 处滑下,与 小球发生弹性正碰,与挡板碰撞时不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,(g 取10m/s 2,结果用根号表示),试问:
(1)求滑块B 与小球第一次碰前的速度以及碰后的速度. (2)求滑块B 与小球第一次碰后瞬间绳子对小球的拉力.
(3)滑块B 与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数.
【答案】(1)滑块B 95,碰后的速度为0;(2)滑块B 与小球第一次碰后瞬间绳子对小球的拉力48N ;(3)小球做完整圆周运动的次数为10次。
【解析】 【详解】
(1)滑块将要与小球发生碰撞时速度为v 1,碰撞后速度为v 1′,小球速度为v 2 根据能量守恒定律,得:
mgh =
21122
s mv mg μ+ 解得:
v 195
A 、
B 发生弹性碰撞,由动量守恒,得到:
mv 1=mv 1′+mv 2
由能量守恒定律,得到:
222
112111222
mv mv mv '=+
解得:
v 1′=0,v 295
即滑块B 95,碰后的速度为0 (2)碰后瞬间,有:
T-mg =m 2
2
v L
解得:
T =48N
即滑块B 与小球第一次碰后瞬间绳子对小球的拉力48N 。
(3)小球刚能完成一次完整的圆周运动,它到最高点的速度为v 0,则有:
mg =m 20v L 小球从最低点到最高点的过程机械能守恒,设小球在最低点速度为v
,根据机械能守恒有:
22011222
mv mgL mv =+ 解得:
v =5m/s
滑块和小球最后一次碰撞时速度至少为v =5m/s ,滑块通过的路程为s ′,根据能量守恒有:
mgh =
212mv mgs μ+ 解得:
s ′=19m
小球做完整圆周圆周运动的次数:
n =21s s s
'-
+= 10次
即小球做完整圆周运动的次数为10次。
10.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:
()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;
()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;
()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.
【答案】(1)6N (2)0.2m (3)/s
【解析】
【分析】
(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;
(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;
(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度.
【详解】
(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有
2A mv mg R
=,
所以,2/A v m s ==; 那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:
2211222
B A mv mv mgR =+,所以,/B v s ==; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力
26B N mv F mg N R
=+=,方向竖直向上; 故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:
221122
C B mgL mv mv μ-=-,
所以,2/C v m s ==;
设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212
h gt =,
0.8C x d v t v m +===, 所以,0.2d m =;
(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;
故平抛运动的初速度'C s v t ==
所以,1.5/'4/C m s v m s ≤≤;
又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:
()2201122'22
C mg R r mgL mv mv μ--=-; 所以,
0/v s ==
,
故0//2
m s v s
≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.。