兴和县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兴和县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}
2. 已知a=
,b=20.5,c=0.50.2
,则a ,b ,c 三者的大小关系是( )
A .b >c >a
B .b >a >c
C .a >b >c
D .c >b >a
3. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( )
A .1
B .2
C .3
D .4
4. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
5. 已知i z 311-=,i z +=32,其中i 是虚数单位,则2
1
z z 的虚部为( ) A .1- B .
54 C .i - D .i 5
4 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.
6. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2
B .x 3﹣2x 2
C .﹣x 3+2x 2
D .﹣x 3﹣2x 2
7. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
8. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )
A .(2,+∞)
B .(0,2)
C .(4,+∞)
D .(0,4)
9. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种
10.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )
A .1
B .2
C .3
D .4
11.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12
x x x f x x x ì-#ï=íp <?ïî,则
1741
()()46f f +=( ) A .716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
12.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2)
13.若函数21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>⎩则函数1
()2y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .4 14.已知函数
,,若,则( )
A1 B2 C3 D-1
15.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .
D .
二、填空题
16.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .
17.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则
圆的方程为 .
18.已知点F 是抛物线y 2
=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF
的重心到准线距离为 .
19.圆心在原点且与直线2x y +=相切的圆的方程为_____ .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.
三、解答题
20.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.
(1)求函数的单调区间;
(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.
21.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.
22.(本小题满分12分)
中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各
(1)求各大学抽取的人数;
(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的
概率.
23.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.
(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;
(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.
24.2
()sin 2f x x x =+
. (1)求函数()f x 的单调递减区间;
(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12
A f =,ABC ∆的面积为.
25.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
兴和县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},
故可得f(10x)>0等价于﹣1<10x<,
由指数函数的值域为(0,+∞)一定有10x>﹣1,
而10x<可化为10x<,即10x<10﹣lg2,
由指数函数的单调性可知:x<﹣lg2
故选:D
2.【答案】A
【解析】解:∵a=0.50.5,c=0.50.2,
∴0<a<c<1,b=20.5>1,
∴b>c>a,
故选:A.
3.【答案】A
【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,
∴f′(x)=﹣asinx,g′(x)=2x+b,
∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,
∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,
即a=1,b=0.
∴a+b=1.
故选:A.
【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.
4.【答案】B
【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,
对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
5. 【答案】B
【解析】由复数的除法运算法则得,i i i i i i i i z z 54
531086)3)(3()3)(31(33121+=+=-+-+=++=,所以2
1z z 的虚部为54.
6. 【答案】A
【解析】解:设x <0时,则﹣x >0,
因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2

又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),
所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2
,故选A .
7. 【答案】D
【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,
∴sin θcos θ<0,cos θ>0,
∴sin θ<0, ∴θ是第四象限角. 故选:D .
【点评】本题考查了象限角的三角函数符号,属于基础题.
8. 【答案】C
【解析】解:令f (x )=x 2
﹣mx+3,
若方程x 2
﹣mx+3=0的两根满足一根大于1,一根小于1,
则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),
故选:C .
【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.
9. 【答案】A
【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀
学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.
由分类计数原理,可得不同的分配方案共有18+18=36种,
故选A.
【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.
10.【答案】B
【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,
故选B.
11.【答案】C
12.【答案】B
【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,
∴f(π)=f(6﹣π),f(5)=f(1),
∵f(6﹣π)<f(2)<f(1),
∴f(π)<f(2)<f(5)
故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
13.【答案】D
【解析】
考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
14.【答案】A
【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=1 15.【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

故答案为:B
二、填空题
16.【答案】 2:1 .
【解析】解:设圆锥、圆柱的母线为l ,底面半径为r ,
所以圆锥的侧面积为: =πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1
故答案为:2:1
17.【答案】 (x ﹣1)2+(y+1)2=5 .
【解析】解:设所求圆的圆心为(a ,b ),半径为r ,
∵点A (2,1)关于直线x+y=0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x+y=0上, ∴a+b=0,①
且(2﹣a )2+(1﹣b )2=r 2
;②
又直线x ﹣y+1=0截圆所得的弦长为,
且圆心(a ,b )到直线x ﹣y+1=0的距离为d=
=

根据垂径定理得:r 2﹣d 2
=

即r 2﹣(
)2
=③;
由方程①②③组成方程组,解得;
∴所求圆的方程为(x ﹣1)2+(y+1)2
=5. 故答案为:(x ﹣1)2+(y+1)2
=5.
18.【答案】 .
【解析】解:∵F 是抛物线y 2
=4x 的焦点,
∴F (1,0),准线方程x=﹣1, 设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,
∴△MNF 的重心的横坐标为,
∴△MNF 的重心到准线距离为.
故答案为:.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
19.【答案】22
2x y +=
【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以
r d ==
=222x y +=.
三、解答题
20.【答案】
【解析】解:(1)由题意:f′(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为﹣3;
由已知所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)
所以由f′(x)=3x2﹣6x>0得心x<0或x>2;
所以当x∈(0,2)时,函数单调递减;
当x∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)
(2)由(1)知,函数在x∈(1,2)时单调递减,在x∈(2,3)时单调递增;
所以函数在区间[1,3]有最小值f(2)=c﹣4要使x∈[1,3],f(x)>1﹣4c2恒成立
只需1﹣4c2<c﹣4恒成立,所以c<或c>1.
故c的取值范围是{c|c或c>1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.
21.【答案】
【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),
椭圆的离心率为,即有=,即a=c,b==c,
以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,
直线y=x+与圆相切,则有=1=b,
即有a=,
则椭圆C的方程为+y2=1;
(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),
由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,
即有+=0,即+=0,
即有x1y2+y2+x2y1+y1=0,①
设直线PQ :y=kx+t ,代入椭圆方程,可得
(1+2k 2)x 2+4ktx+2t 2﹣2=0,
判别式△=16k 2t 2﹣4(1+2k 2)(2t 2﹣2)>0,
即为t 2﹣2k 2<1②
x 1+x 2=,x 1x 2=,③
y 1=kx 1+t ,y 2=kx 2+t ,
代入①可得,(k+t )(x 1+x 2)+2t+2kx 1x 2=0,
将③代入,化简可得t=2k ,
则直线l 的方程为y=kx+2k ,即y=k (x+2).
即有直线l 恒过定点(﹣2,0).
将t=2k 代入②,可得2k 2
<1,
解得﹣<k <0或0<k <.
则直线l 的斜率k 的取值范围是(﹣
,0)∪(0,). 【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.
22.【答案】(1)甲,乙,丙,丁;(2)25P =
. 【解析】
试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;
(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.
试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.
(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,12{,}b b ,13{,}b b ,23{,}b b ,共15种,
这2名同学来自同一所大学的结果共6种,所以所求概率为62155
P =
=. 考点:1、分层抽样方法的应用;2、古典概型概率公式.
23.【答案】
【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,
由茎叶图知:
分数在[50,60)之间的频数为2,
∴全班人数为.
(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;
频率分布直方图中[80,90)间的矩形的高为
. (Ⅲ)将[80,90)之间的3个分数编号为a 1,a 2,a 3,[90,100)之间的2个分数编号为b 1,b 2, 在[80,100)之间的试卷中任取两份的基本事件为:
(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)共10个,
其中,至少有一个在[90,100)之间的基本事件有7个,
故至少有一份分数在[90,100)之间的概率是

24.【答案】(1)5,36k k ππππ⎡⎤+
+⎢⎥⎣⎦(k ∈Z );(2)【解析】
试题分析:(1)根据3222262k x k πππππ+
≤-≤+可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫= ⎪⎝⎭可得3A π
=,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1
试题解析:(1)111()cos 22sin(2)2262
f x x x x π=
-=-+, 令3222262k x k πππππ+≤-≤+,解得536
k x k ππππ+≤≤+,k Z ∈, ∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).
考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用.
25.【答案】(1)证明见解析;(2)【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.

点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.。

相关文档
最新文档