武义县第四中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武义县第四中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3
y x π
=+
B .22sin(2)3y x π=+
C .2sin()23x y π=-
D .2sin(2)3
y x π=-
2. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )
A .
B .
C .
D .
3. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3
D .4
4. 设函数y=
的定义域为M ,集合N={y|y=x 2
,x ∈R},则M ∩N=( ) A .∅
B .N
C .[1,+∞)
D .M
5. 如果
(m ∈R ,i 表示虚数单位),那么m=( )
A .1
B .﹣1
C .2
D .0
6. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是( )
A .8cm 2
B . cm 2
C .12 cm 2
D .
cm 2
7.已知f(x)=,g(x)=(k∈N*),对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),则k的最大值为()
A.2 B.3 C.4 D.5
8.特称命题“∃x∈R,使x2+1<0”的否定可以写成()
A.若x∉R,则x2+1≥0 B.∃x∉R,x2+1≥0
C.∀x∈R,x2+1<0 D.∀x∈R,x2+1≥0
9.f()=,则f(2)=()
A.3 B.1 C.2 D.
10.已知,,
x y z均为正实数,且
2
2log
x x
=-,
2
2log
y y
-=-,
2
2log
z z
-=,则()
A.x y z
<<B.z x y
<<C.z y z
<<D.y x z
<< 11.如图在圆O中,AB,CD是圆O互相垂直的两条直径,现分别以OA,OB,OC,OD为直径作四个圆,在圆O内随机取一点,则此点取自阴影部分的概率是()
A.
π
1
B.
π2
1
C.
π
1
2
1
-D.
π2
1
4
1
-
【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的
则几何体的体积为()
3
4
D
A
B
C
O
【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力.
二、填空题
13.在数列
中,则实数a= ,b= .
14.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.
其中真命题的代号是 (写出所有真命题的代号).
15.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2
()2f x x x =-,则()y f x =在R 上的解析式为 16.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .
17.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .
18.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .
三、解答题
19.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;
(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.
20.已知函数f (x )=.
(1)求f (f (﹣2));
(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.
21.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点 (1)求证:直线AF ∥平面BEC 1 (2)求A 到平面BEC 1的距离.
22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2
ln f x ax x =+,
()21145ln 639f x x x x =
++,()221
22
f x x ax =+,a R ∈
(1)求证:函数()f x 在点()()
,e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当2
3
a =
时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)
23.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y ) (1)求f (1)的值,
(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.
24.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.
(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;
(2)如图2,若E ,F 分别是线段AB ,CD 的中点,DG=2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下面两个条件,并说明理由.
①点H 到点F 的距离与点H 到直线AB 的距离之差大于4; ②GH ⊥PD .
武义县第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B 【解析】
考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 2. 【答案】B
【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,
第一次不被抽到的概率为,
第二次不被抽到的概率为,
第三次被抽到的概率是,
∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,
故选B .
3. 【答案】B
【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .
4. 【答案】B
【解析】解:根据题意得:x+1≥0,解得x ≥﹣1, ∴函数的定义域M={x|x ≥﹣1};
∵集合N 中的函数y=x 2
≥0,
∴集合N={y|y ≥0}, 则M ∩N={y|y ≥0}=N . 故选B
5. 【答案】A
【解析】解:因为,
而(m∈R,i表示虚数单位),
所以,m=1.
故选A.
【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.
6.【答案】C
【解析】解:由已知可得:该几何体是一个四棱锥,
侧高和底面的棱长均为2,
故此几何体的表面积S=2×2+4××2×2=12cm2,
故选:C.
【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.
7.【答案】B
【解析】解:∵f(x)=,g(x)=(k∈N*),
对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),
∴可得:>,对于x>1恒成立.
设h(x)=x•,h′(x)=,且y=x﹣2﹣lnx,y′=1﹣>0在x>1成立,
∴即3﹣2﹣ln3<0,4﹣2﹣ln4>0,
故存在x0∈(3,4)使得f(x)≥f(x0)>3,
∴k的最大值为3.
故选:B
【点评】本题考查了学生的构造函数,求导数,解决函数零点问题,综合性较强,属于难题.
8.【答案】D
【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题
∴否定命题为:∀x∈R,都有x2+1≥0.
故选D .
9. 【答案】A
【解析】解:∵f
()
=, ∴f (2)=f
()
=
=3.
故选:A .
10.【答案】A 【解析】
考
点:对数函数,指数函数性质. 11.【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 12.【答案】D 【
解
析
】
二、填空题
13.【答案】a=,b=.
【解析】解:由5,10,17,a﹣b,37知,
a﹣b=26,
由3,8,a+b,24,35知,
a+b=15,
解得,a=,b=;
故答案为:,.
【点评】本题考查了数列的性质的判断与归纳法的应用.
14.【答案】②④
【解析】解:根据题意得:圆心(k﹣1,3k),
圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;
考虑两圆的位置关系,
圆k:圆心(k﹣1,3k),半径为k2,
圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,
两圆的圆心距d==,
两圆的半径之差R﹣r=(k+1)2﹣k2
=2k+,
任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;
若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;
将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),
因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.
故答案为:②④
【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.
15.【答案】222,0
2,0
x x x y x x x ⎧-≥⎪=⎨--<⎪⎩
【解析】
试题分析:令0x <,则0x ->,所以()()()2
2
22f x x x x x -=---=+,又因为奇函数满足
()()f x f x -=-,所以()()2
20f x x x x =--<,所以()y f x =在R 上的解析式为22
2,0
2,0
x x x y x x x ⎧-≥⎪=⎨--<⎪⎩。
考点:函数的奇偶性。
16.【答案】 8 .
【解析】解:∵抛物线y 2
=8x=2px ,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10, ∴x=8, 故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
17.【答案】 {1,﹣1} .
【解析】解:合M={x||x|≤2,x ∈R}={x|﹣2≤x ≤2}, N={x ∈R|(x ﹣3)lnx 2=0}={3,﹣1,1}, 则M ∩N={1,﹣1}, 故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
18.【答案】 25
【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km ,
由正弦定理可得AC==25km,
故答案为:25.
【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵,
∴(x>0),
当a=2时,则在(0,+∞)上恒成立,
当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,
当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,
综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,
在区间(0,a﹣1)和(1,+∞)上单调递增;
当a=2时,函数(0,+∞)在(0,+∞)上单调递增;
当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.
(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,
(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,
假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,
∴f(a k+1)>f(a k),即得a k+2>a k+1>0,
由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,
∴数列{a n}为递增数列.
(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,
∴f(a1)>a1,即(a1为正整数),
设(x≥1),则,
∴函数g(x)在区间上递增,
由于,g(6)=ln6>0,又a1为正整数,
∴首项a1的最小值为6.
【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.
选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】
20.【答案】
【解析】解:(1)函数f(x)=.
f(﹣2)=﹣2+2=0,
f(f(﹣2))=f(0)=0.3分
(2)函数的图象如图:…
单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…
由图可知:
f(﹣4)=﹣2,f(﹣1)=1,
函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.
21.【答案】
【解析】解:(1)取BC1的中点H,连接HE、HF,
则△BCC1中,HF∥CC1且HF=CC1
又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1
∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,
∴AF∥HE,
∵AF⊄平面REC1,HE⊂平面REC1
∴AF∥平面REC1.…
(2)等边△ABC 中,高AF==,所以EH=AF=
由三棱柱ABC ﹣A
1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B 的距离等于
∵Rt △A 1C 1E ≌Rt △ABE ,∴EC 1=EB ,得EH ⊥BC 1
可得S
△
=BC 1•EH=×
×
=
,
而S △ABE =AB ×BE=2
由等体积法得V A ﹣BEC1=V C1﹣BEC ,
∴S △×d=S △ABE ×,(d 为点A 到平面BEC 1的距离)
即×
×d=×2×
,解之得d=
∴点A 到平面BEC 1的距离等于
.…
【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.
22.【答案】(1)切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.(2) a 的范围是11,22⎡⎤
-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足
()()()12f x g x f x <<恒成立函数()g x 有无穷多个
【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭
;
试题解析:
(1)因为()12f x ax x '=+
,所以()f x 在点()(),e f e 处的切线的斜率为1
2k ae e
=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛
⎫=+-++ ⎪⎝
⎭,
整理得11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫ ⎪⎝⎭
. (2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛
⎫--+< ⎪⎝
⎭,对()1,x ∈+∞恒成立,
因为()()1212p x a x a x =--+'()2
2121a x ax x --+=()()()
1211*x a x x
⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,21
21
x a =-,
①当112a <<时,有211x x >=,即1
12
a <<时,在()2,x +∞上有()0p x '>,
此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;
②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()
1,p x p ∈+∞,也不合题意; ③当1
2
a ≤
时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;
要使()0p x <在此区间上恒成立,只须满足()111022
p a a =--≤⇒≥-, 所以11
22
a -
≤≤. 综上可知a 的范围是11,22⎡⎤
-
⎢⎥⎣⎦
. (利用参数分离得正确答案扣2分)
(3)当23a =
时,()21145ln 639f x x x x =++,()221423
f x x x =+ 记()()22115
ln 39
y f x f x x x =-=-,()1,x ∈+∞.
因为22565399x x y x x
='-=-,
令0y '=,得x =
所以()()21y f x f x =-在⎛ ⎝
为减函数,在⎫+∞⎪⎪⎭上为增函数,
所以当x =
时,min 59
180y =
设()()()159
01180
R x f x λλ=+<<,则()()()12f x R x f x <<,
所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个 23.【答案】
【解析】解:(1)在f ()=f (x )﹣f (y )中, 令x=y=1,则有f (1)=f (1)﹣f (1), ∴f (1)=0;
(2)∵f (6)=1,∴2=1+1=f (6)+f (6),
∴不等式f (x+3)﹣f ()<2
等价为不等式f (x+3)﹣f ()<f (6)+f (6), ∴f (3x+9)﹣f (6)<f (6),
即f (
)<f (6),
∵f (x )是(0,+∞)上的增函数,
∴
,解得﹣3<x <9,
即不等式的解集为(﹣3,9).
24.【答案】
【解析】(1)证明:依题意,E ,F 分别为线段BA 、DC 的三等分点, 取CF 的中点为K ,连结PK ,BK ,则GF 为△DPK 的中位线, ∴PK ∥GF ,
∵PK ⊄平面EFG ,∴PK ∥平面EFG , ∴四边形EBKF 为平行四边形,∴BK ∥EF , ∵BK ⊄平面EFG ,∴BK ∥平面EFG , ∵PK ∩BK=K ,∴平面EFG ∥平面PKB , 又∵PB ⊂平面PKB ,∴PB ∥平面EFG . (2)解:连结PE ,则PE ⊥AB ,
∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD=AB , PE ⊂平面PAB ,PE ⊥平面ABCD , 分别以EB ,EF ,EP 为x 轴,y 轴,z 轴, 建立空间直角坐标系,
∴P (0,0,
),D (﹣1,4,0),
=(﹣1,4,﹣
),∵P (0,0,
),
D(﹣1,4,0),=(﹣1,4,﹣),
∵==(﹣,,﹣),
∴G(﹣,,),
设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,
依题意得:,
∴x2>16y,(﹣1≤x≤1),(i)
又=(x+,y﹣,﹣),
∵GH⊥PD,∴,
∴﹣x﹣+4y﹣,即y=,(ii)
把(ii)代入(i),得:3x2﹣12x﹣44>0,
解得x>2+或x<2﹣,
∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,
∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.。