参考资料_单管放大电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体管单管共射放大电路
一、 实验目的:
1.学习电子线路安装、焊接技术。
2.学会放大器静态工作点的测量和调试方法,分析静态工作点对放大器性能的影响。
3.掌握放大器交流参数:电压放大倍数、输入电阻、输出电阻、最大不失真输出电压和频率特性的测试方法。
4.进一步熟悉常用电子仪器及模拟电路设备的使用方法和晶体管β值测试方法。
二、实验原理:
(一)实验电路
图3.1中为单管共射基本放大电路。
1.
① R B 基极偏流电阻,提供静态工作点所需基极电流。
R B 是由R 1和RW 串联组成,RW 是可变电阻,用来调节三极管的静态工作点,R 1(3K )起保护作用,避免RW 调至0端使基极电流过大,损坏晶体管。
② R S 是输入电流取样电阻,输入电流I i 流过R S ,在R S 上形成压降,测量R S 两端的电压便可计算出I i 。
③ R C —集电极直流负载电阻。
④ R L —交流负载电阻。
⑤ C1、C2 —耦合电容。
(二)理论计算公式: ① 直流参数计算:
C
CQ CEQ BQ EQ CQ BEQ B
BEQ
BQ R I VCC V I I I V
7.0V ;
R V VCC I -=β⋅=≈≈-≈
式中:
..
② 交流参数计算:
()
C
O be B i V
i
S i
VS L
C L be
'L V
'
bb EQ 'bb be R R r //R R A R R R A R R R ;
r R A 300r (mA)
I (mV)26β1r r ≈=*+=
='*β-=
++≈∥Ω
的默认值可取式中:
(三)放大电路参数测试方法
由于半导体元件的参数具有一定的离散性,即便是同一型号的元件,其参数往往也有较大差异。
设计和制作电路前,必须对使用的元器件参数有全面深入的了解。
有些参数可以通过查阅元器件手册获得;而有些参数,如晶体管的各项有关参数(最重要的是β值),常常需要通过测试获取,为电路设计提供依据。
另一方面,即便是经过精心设计和安装的放大电路,在制作完成后,也必须对静态工作点和一些交流参数进行测试和调节,才能使电路工作在最佳状态。
一个优质的电子电路必定是理论设计和实验调试相结合的产物。
因此,我们不但要学习电子电路的分析和设计方法,还应认真学习电子调节和测试的方法。
1. 放大器静态工作点的调试和测量:
晶体管的静态工作点对放大电路能否正常工作起着重要的作用。
对安装好的晶体管放大电路必须进行静态工作点的测量和调试。
① 静态工作点的测量:
晶体管的静态工作点是指V BEQ 、I BQ 、V CEQ 、I CQ 四个参数的值。
这四个参数都是直流量,所以应该使用万用电表的直流电压和直流电流档进行测量。
测量时,应该保持电路工作在“静态”,即输入电压V i =0。
要使V i =0,对于阻容耦合电路,由于存在输入隔直电容,所以信号源的内阻不会影响放大器的静态工作点,只要将测试用的信号发生器与待测放大器的输入端断开,即可使V i =0;但是输入端开路很可能引入干扰信号,所以最好不要断开信号发生器,而是将信号发生器的“输出幅度”旋钮调节至“0”的位置,使V i =0。
对于直接耦合放大电路,由于信号源的内阻直接影响待测放大器的静态工作点,所以在测量静态工作点时必须将信号发生器连接在电路中,而将输出幅度调节至0。
在实验中,为了不破坏电路的真实工作状态,在测量电路的电流时,尽量不采用断开测点串入电流表的方式来测量,而是通过测量有关电压,然后换算出电流。
在本实验中,只要测出V BQ 、V CQ 、VCC 电压值,便可计算出V BEQ 、V CEQ 、I CQ 、I BQ 。
计算公式如下(计算前,需知道R B 、R C 的值):
B
BQ
BQ C CQ
CQ CQ
CEQ BQ BEQ R V VCC I R V VCC I V V ;V V -=
-===
式中:R B = R 1 + RW
为减小测量误差,应选用内阻较高的直流电压表。
(500型万用表的直流电压档内阻为20K Ω/V ,数字万用表直流电压档的内阻为10M Ω。
)
② 静态工作点的调节方法:
静态工作点的设置是否合适,对放大器的性能有很大的影响。
静态工作点对放大器的“最大不失真输出幅值”和电压放大倍数有直接影响。
当输入信号较大时,如果静态工作点设置过低,就容易产生截止失真(NPN 管的输出波形为顶部失真。
见图3.2(a ));如果静态工作点设置较高,就容易出现饱和失真(NPN 管的输出波形为底部失真。
见图3.2(b ))。
当静态工作点设置在交流负载线的中点时,如果出现失真,将是一种上下半周同时削峰的失真(见图3.2(c ))。
这时放大器有最大的不失真输出幅值。
前置放大器,由于处理的信号幅度较小,不容易出现截幅现象,而应着重考虑放大器的噪声、增益、输入阻抗、稳定性等方面,所以一般设置静态工作点在交流负载线中点以下偏低位置。
调节静态工作点一般通过改变R B 的阻值来进行。
若减小R B 的阻值 ,可使I CQ 增大,V CEQ 减小;增大R B 则作用相反。
调节工作点前,应先用图解法根据交流负载线确定最佳工作点的值(I CQ 、V CEQ ),然后给待测放大器加电后,用万用表测量V CEQ
,调节R B ,使V CEQ 达到设计值。
必要时,需要在放大器输入端输入一定幅度的正弦信号,用示波器观察输出波形,并调节R B ,使输出信号的失真最小。
实验中,为调节静态工作点方便,R B 采用了可变电阻RW (当然,如果改变VCC 和其它元件的数值也会影响静态工作点,但都不如调节R B 方便)。
实际应用电路中在Q 点调节好后,将RW 换为阻值相同的固定电阻。
2. 放大器动态指标测试:
本次实验中要测试的动态指标如下:电压放大倍数A V 、输入电阻R i 、输出电阻R o 、最大不失真输出幅值和通频带f bw 。
实用放大电路常常还要测试谐波失真系数、噪声系数、灵敏度、最大不失真输出功率、电源效率等参数。
这些参数也很重要,但限于实验课时限制,本次实验不进行测试。
① 电压放大倍数A V 的测量: 首先调节放大器静态工作点至规定值。
用低频信号发生器(XD22型)输出1KHz 正弦波信号V S ,用屏蔽线将正弦波信号接至放大器的输入端(线路图中的A 点和地之间,注意将屏蔽线的外层屏蔽网接地)。
调节信
号发生器输出幅度为规定值,用示波器(XJ4241型)观察输出电压V O 的波形,注意输出不应产生失真。
如果存在失真,应再次检查静态工作点和电路元件的数值,这些方面都正确的话,应减小输入信号的幅值。
s i o S
O
VS
i
O
V V V A V V A ==
图中V i 、V s 、V o 以电子管毫伏表测得,用示波器观察输出波形在不失真情况下测量。
② 输入电阻R i 的测量: 根据输入电阻的公式可知:
i
i
i I V R =
由于输入电流I i 的直接测量比较困难(直接在输入端串入电流表测量I i 将对放大器引入较大的干扰信号),所以在测量 I i 时,采用了间接测量的方法。
在电路输入端串入采样电阻R S ,用电子管毫伏计测量R S 两端的电压V s 和V i ,由R S 上的电压降便可换算出输入电流I i 。
公式如下:
s
i
S i R V V I -=
根据V i 和I i 便可计算出R i 。
③ 输出电阻R O 的测量: 根据输出电阻的公式可知:
L O 'O O R 1V V R ⨯⎪⎪⎭
⎫
⎝⎛-=
式中: V O ’—负载电阻R L 开路时的输出电压(将图3.1中的C 、D 开路)
V O —带负载输出电压,连接R L 后测得。
然后按公式计算R O 。
在上述测量过程中注意保持输入电压V i 的频率和幅值不变。
④最大不失真输出幅值的测量:(最大动态范围)
放大器的静态工作点确定之后,其“最大不失真输出幅值”就确定了,但由于Q点不一定是在交流负载线的中点,所以不一定是该电路能够达到的最大值。
测试“最大不失真输出幅度”的电路接线同A V的测试电路相同。
在测量过程中,将输入信号V S的幅值由小逐渐增大,并注意观测V O的波形,当波形刚开始出现失真时,这时的输出电压V O的幅度就是该电路对应当前工作点的“最大不失真输出幅度”。
记录该波形和幅值,并注意首先出现的是“截止失真”还是“饱和失真”,可分析出静态工作点是偏低(首先出现截止失真)还是偏高(首先出现饱和失真)。
参看图3.2的失真波形。
为使电路能达到最大的不失真输出幅度,应该将静态工作点调节到交流负载线的中点。
为此,应根据当前工作点情况,将Q 点适当调高(Q点偏低时)或调低(Q点偏高时)。
同时,逐步增大输入信号的幅度,用示波器监视输出波形,每当波形出现失真时,就根据失真情况微调RW,改变静态工作点,使失真消除。
当波形上下半周同时出现削峰现象时,说明静态工作点已调节在交流负载线的中点上,用示波器测量最大不失真输出电压的幅值V OP-P,或用电子管毫伏表测量最大不失真输出电压的有效值V OM有效。
两者之间的关系为:
V OP-P=22V OM有效。
⑤放大器频率特性的测量
.
频率特性曲线来表示。
频率特性曲线直观的反映出电压放大倍数A V 、附加相移ΔΦ与输入信号的频率f之间的关系。
单管阻容耦合放大器的频率特性曲线如图3.4所示。
A vm为中频(信号频率f0=1KHz)
1
电压放大倍数。
当输入信号频率的变化时,电压放大倍数下降3dB(为中频放大倍数的
2≈0.707倍)时对应的频率分别称为下限截止频率和(f L)和上限截止频率(f H),并定义通频带f bw为:
f bw =f H - f L
由于放大器的A V 不能直接测得,而是测出V i 和V o 之后根据公式:i
O
V V V A 计算而得,所以一般采用如下方法测量放大器的上、下限截止频率:
固定信号发生器的输出V i 的幅值不变,改变其输出频率,这时V O 的变化即代表了A V 的变化。
先将信号发生器的频率设为1KHz ,用示波器观察放大电路的输出波形不失真,测量这时示波器显示的输出幅值V Omp 或用毫伏表测量放大电路的输出有效值V Om ,在保证输出信号不失真的前提下,可微调信号发生器的输出幅度,使放大器的输出电压易于读数(指针指示某一整数值)。
然后保持信号发生器的输出幅值不变,逐渐改变信号发生器的输出频率,记录对应该频率点的放大器输出电压V O ,当信号频率较低或较高时,V O 将下降。
这时应减小每次的频率变化增量,仔细寻找使V O =0.707V Om 时的频率值f ,该频率值就是f L 或f H 。
为减少测量所用的时间,在中频段,因放大电路的输出电压有较宽的一段基本不变,所以调节频率可适当粗一些,而在放大器输出电压发生变化时,应多测几点,以保证测量的准确性。
测试时,必须保证输入信号的幅值不变,只改变频率。
所以应使用双踪示波器同时监视U i 和U o ,当改变输入信号频率时,如果幅值有所改变,应调整信号发生器的输出幅值旋钮使U i 幅值与初始值相同。
⑥ 干扰和自激振荡的消除:参看附录。
三、实验内容:
实验电路如图3.1所示。
先画出装配图,然后焊接电路。
电路焊接好后,经检查无误,将实验电路与各电子仪器正确连接,再次检查无误后(特别要注意稳压电源的输出电压和极性、万用电表的量程),向下进行通电调试。
为防止干扰,信号发生器、示波器、毫伏表的屏蔽线外层屏蔽网和稳压电源的负极应接在公共地线上。
(一)焊接电路
1. 用数字万用表的H FE 档或晶体管图示仪JT-1测量实验中使用的晶体管T 的电流放大系数β,作为分析计算的依据。
2.根据原理图在纸上画出电路装配图。
在画装配图时,要注意以下几点: ① 注意晶体管的管脚位置,E 、B 、C 的方向。
② 画装配图时要考虑元件的实际大小尺寸。
③ 装配图上安排元件位置时最好遵照原理图的信号流向,要注意输入回路应尽量远离输出回路,避免输出信号反馈到输入端,引起放大器不能正常工作。
④ 要有一根公用地线,作为输入、输出的公共端和元件的接地端的接地线。
在实际应用电路中,公共地线通常使用较粗的裸铜线。
⑤ 对于初学者,可根据原理图的元件位置来布置电路板元件位置,便于理解工作原理和调试检查。
实际应用电路中,要根据具体条件充分考虑散热、避免电磁干扰、避免有害反馈等因素,元件安排要整齐美观,并尽量缩小电路板面积。
3.根据电路装配图,在实验电路板上焊接电路。
焊接电路时,要注意以下几点:
① 使用的电烙铁功率要合适,功率太大容易烫坏元件;功率太小焊接困难,焊点呈渣状,不光滑,很容易形成虚焊。
一般焊接晶体管元件使用功率为25~35W 的电烙铁比较合
适,焊接较大的元件可使用大于45W的电烙铁。
电烙铁的焊头要清洁,表面预先镀有一层焊锡。
如果焊头表面氧化发黑,则很难焊接。
因此,如果焊头已经氧化发黑,先不要接电,用砂纸将焊头的氧化层去除,注意把尖端部特别要处理干净,然后加电,当焊头温度升高至能够融化松香时,立即涂上松香,避免焊头氧化,当焊头温度升高至能熔化焊锡时,镀上一层焊锡,这样便能方便地焊接了。
本实验室使用的电烙铁是长寿型,烙铁头是用特殊合金制造,因此禁止使用锉刀锉焊头,只能使用砂纸磨光。
②将待焊接的元件接脚处理干净,去掉接脚的污物和氧化物,才能可靠焊牢。
对于氧化严重的接脚,可用细砂纸打磨出金属光泽并预先镀锡。
但对于镀金的元件接脚严禁用砂纸打磨,以免造成更严重的氧化。
③在焊接过程中,多使用助焊剂—松香,尽量减少焊锡的用量。
焊锡只要能将元件接脚和线路板铆钉圆满包住即可,避免过多流溢,与其它接脚形成短路。
松香的作用是避免接脚在电烙铁高温下进一步氧化,并能去除接脚表面不太严重的氧化层,还能增加焊锡的流动性,使焊点光滑。
④必须严防虚焊。
焊接好后,稍用力拉动元件,应没有接脚松动的感觉。
⑤控制电烙铁接触元件的时间,过短容易虚焊,过长又会烫坏元件。
一般应在2秒到6秒之间,根据所焊接的元件大小和散热情况决定。
⑥焊接完成检查无误后方可通电实验。
(二)参数测试
1.测量静态工作点:
先将RW调至阻值最大位置,稳压电源输出调至12V,信号发生器的输出幅度调节为0 ,再接通电源。
用万用表监视I CQ(参看前面介绍测量I CQ的方法),调节RW,使I CQ=2mA(即V CQ=6V),用数字万用表的直流电压档测量V BQ、V EQ、V CQ,断开电源后,用电阻档测量R B2,记入表3.1中。
表3.1 I=2mA
2.测量电压放大倍数:保持I CQ = 2mA 不变
在放大器输入端加入频率为1000HZ的正弦信号V S,调节低频信号发生器的输出幅度,使V i=5mV,同时用示波器观察放大器输出电压V O的波形,在保持波形不失真的条件下,用交流毫伏表测量下述两种情况下的V O值,并用双踪示波器同时观察V O和V i的相位关系,并计算出A V,把结果记入表3.2。
表3.2 I=2mA V= 5 mV
记录i o
3.观察静态工作点对电压放大倍数的影响
置R C=3KΩ,R L=∞,V i适当(≈10mV),调节RW,用示波器监视输出电压波形,在V O不失真的条件下,通过调节R b改变I CQ的值,测量I CQ为1mA和3mA时V O的值,记入表3.3 ,并计算出A V,与2mA的A V值比较。
表3.3 R=3KΩR=∞
测量I CQ0 。
4.观察静态工作点对输出波形失真的影响
置R C=3KΩ,R L=3KΩ,V i=0,调节RW使I CQ=3mA,测出V CEQ值,记入表3.4中。
再逐步加大输入信号V i ,使输出幅值最大但不失真,然后保持输入信号幅值不变,分别增大和减小RW,使波形出现失真,画出V O的波形,并测出失真情况下的I CQ和V CEQ值,把结果记入表3.4中。
每次测I CQ和V CEQ时,注意应使输入信号为0。
表3.4 R=3KΩR=∞V= mV
置R C=3KΩ,R L=3KΩ,按照前面“放大器动态参数测试”中介绍的“最大不失真输出幅值的测量”中粗体字所述的方法,同时调节输入信号的幅度和可变电阻RW,寻找能输出最大不失真幅值的Q点。
用示波器和交流毫伏表测量V Om,记入表3.5。
表3.5 R=3KΩR=3KΩ
置R C=3KΩ,R L=3KΩ,I CQ=2mA。
输入1KHZ正弦信号,在输出电压V O不失真的情况下,用交流毫伏表测出V s,V i,和V O,记入表3-6;然后,保持V i不变,断开R L,测得V O,记入表3-6中,并计算得到R i 、R o的计算值。
表中的理论值是指根据电路图计算得到的值。
计算时,r bb’可取100Ω。
表3-6 R=3KΩR=3KΩI=2mA
置R C=3KΩ,R L=3KΩ,I CQ=2mA,保持输入信号的幅值不变(V s或V i约10mV),改
变信号频率f ,逐点测出相应的输出电压记入表3-7 。
表3-7 V
= mV
四、实验设备与器件:
1.晶体管直流稳压电源(型号DH1718):调节输出电压为+12V;
2.低频信号发生器(型号XD22);3.双踪示波器(型号XJ4241);4.交流毫伏表(型号GB-9);
5.万用电表(型号500);
6.数字万用表(型号D803或D809);7.电烙铁、焊锡、松香
8.晶体三极管(型号9011
、9013或3DG6);
9.电位器(可变电阻)2MΩ;
10.电阻、电解电容器。
五、实验报告
1.列表整理测量结果,并把所测得的静态工作点、电压放大倍数、输入电阻、输出电阻的值与理论计算值相比较(每项结果取一组进行比较),分析产生误差的原因。
2.总结R C、R L及静态工作点对放大器电压放大倍数及输入、输出电阻的影响。
3.讨论静态工作点变化对放大器输出波形的影响,比较最大不失真输出电压范围的理论计算值与实测值,分析产生误差的原因。
4.分析、讨论在调试过程中出现的问题。
六、预习要求:
1.阅读教材中有关单管放大电路的内容,根据理论课内容估算实验电路的性能指标。
假设:三极管采用NPN型硅管,β=100,V BEQ≈0.6V,r bb’=100Ω
R1=3KΩ,RW=800KΩ,R C=3KΩ,R L=3KΩ。
估算放大器的静态工作点,电压放大倍数,输入电阻和输出电阻。
2.当要求I CQ=2mA时,计算R b应为多少Ω?
3.怎样测量R B的阻值?
4.当调节R B,使放大器输出波形出现饱和或截止失真时,晶体管的管压降V CE怎样变化?
5.改变静态工作点对放大器的输入电阻R i有无影响?改变外接电阻R L对输出电阻有无影响?
6.在测量A V、R i和R o时,怎样选择输入信号的大小和频率?为什么测试信号一般
选1KHZ ,而不选用500KHZ ?
7. 测试中如果将低频信号发生器、交流毫伏表、示波器中任一仪器的输入端接线对调(即不把所有仪器的接地端连接在一起),将会出现什么现象? 注:实验内容中,加“*”的项根据课时选作。
附录:实验中用到的公式和图
1.直流负载线方程: C C Q C C C EQ R I V V -= 2.交流负载线方程: 'L C CE R I V ⋅∆-=∆ 3.负载线图:
① 当I CQ = 2mA 时,图见F3.1。
⎪⎩
⎪⎨⎧=⨯+=+==⨯-=-=V 9)K 3K 3(26R I V 'V V
6K 3212R I VCC V '
L CQ CEQ C CQ CEQ ∥ 式中V ’是交流负载线在V CE 轴上的辅助点
由图中可知Q 点位于交流负载线较低位置,最大输出幅度为:V Om =I CQ R L ’≈3V 。
② 求最大不失真幅值 公式:
当Q 点位于交流负载线中点时,由交流负载线图可知,应有:
'L C Q C EQ R I V =
因此可由下式联立求得V CEQ 和I CQ :
⎪⎩⎪⎨⎧==-=⎪⎩⎪⎨⎧-==⎪⎩⎪⎨⎧-==mA 67.2I V 4V I 312I 5.1K
3I 12V )K 3K 3(I V R I VCC V R I V CQ CEQ CQ CQ CQ CEQ CQ CEQ C CQ CEQ 'L
CQ CEQ 解得:
即:
∥
V ’=8V
当取此工作点时,Q 点位于交流负载线中点,放大器有最大的“最大
'
'
28 不失真输出幅度”。
见图F3.2 。
这时,最大输出幅度为:
V Om =V CEQ =I CQ R L ’=4V
4.R b 的计算: 根据:BQ
BE b I V VCC R -= 设三极管β=150
① 当I CQ =2mA 时,R b =848K Ω
② 当最大输出幅度时,I CQ =2.67mA ,R b =635K Ω
5.A V 的估算值:
① 当I CQ =2mA 时,r be 为:
K 1.220632
26151100mA I mV 26)1(r r EQ 'bb be ≈Ω=+=β++= ② R L ’=R C ∥R L =3K ∥3K=1.5K
③ 根据公式:
倍)(107K
1.2K 5.1150r R A be '
L V =⨯-=⋅β-=(带负载时) 空载时比上值大一倍,即214倍。
④ 输出电压
当V i =10mV 时,V O ≈10×107≈1V (带负载)或2V (空载)
6.输入电阻:
R i ≈r be =2.1K
当R S 取3K 、V i 取10mV 时,
A 76.4K
1.2mV 10R V I i i S μ=== R S 上的压降为3K ×4.76μA=14.3 mV
所以,当V i 为10mV 时,V S 应为10+14.3=24.3mV 。
这个值与实测值可能会有误差,因为r be 的计算值是根据r bb ’等于100Ω得出的。
实际r bb ’可能不是100Ω。
7.输出电阻:
R O ≈R C =3K。