安徽合肥市第六中学等差数列练习题(有答案)百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12
B .20
C .40
D .100
2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
3.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
4.定义
12n
n
p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n
,又2n n a b =,则
1223910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
5.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -
B .n
C .21n -
D .2n
6.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为
( ) A .
89
B .
910
C .10
11
D .
1112
7.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12
S S =( ) A .
17
7
B .
83
C .
143
D .
103
8.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10
B .9
C .8
D .7
9.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
10.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( )
A .21S
B .20S
C .19S
D .18S
11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+
B .2()4f x x =
C .3()4x
f x ⎛⎫= ⎪⎝⎭
D .4()log f x x =
12.设等差数列{}n a 的前n 和为n S ,若()*
111,m m a a a m m N +-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +<
13.在数列{}n a 中,11a =,且11n
n n
a a na +=+,则其通项公式为n a =( ) A .
2
1
1n n -+ B .2
1
2n n -+
C .22
1
n n -+
D .2
2
2
n n -+
14.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51
B .57
C .54
D .72
15.已知数列{x n }满足x 1=1,x 2=23,且11112n n n
x x x -++=(n ≥2),则x n 等于( ) A .(
23
)n -1
B .(
23)n C .
21
n + D .
1
2
n + 16.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
17.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019
B .4040
C .2020
D .4038
18.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
19.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24
B .39
C .104
D .52
20.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸
B .一丈八尺五寸
C .二丈一尺五寸
D .二丈二尺五寸
二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!
24.(多选题)已知数列{}n a 中,前n 项和为n S ,且2
3n n n S a +=,则1
n n a a -的值不可能为
( ) A .2
B .5
C .3
D .4
25.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
26.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
27.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =
C .95S S >
D .6S 与7S 均为n S 的最大值
28.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<
B .22
415
4
a a +≥
C .15
11
1a a +> D .1524a a a a ⋅>⋅
29.已知数列{}n a 满足:13a =,当2n ≥
时,)
2
11n a =
-,则关于数列
{}n a 说法正确的是( )
A .28a =
B .数列{}n a 为递增数列
C .数列{}n a 为周期数列
D .2
2n a n n =+
30.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.B 【分析】
由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:
1011045100S a d =+=,
12920a d ∴+=, 4712920a a a d ∴+=+=.
故选:B. 2.A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212
, ()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8, 故选:A. 3.A 【分析】 转化条件为
122527
n n
a a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.
【详解】
因为
122527
n n a a n n +-=--,所以122527n n
a a n n +-
=--, 又1127a =--,所以数列27n a n ⎧⎫
⎨⎬-⎩⎭
是以1-为首项,公差为2的等差数列, 所以
()1212327
n
a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得
3722
n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()
()()3123min
13316p q S S a a S S =-=+=⨯-+--⨯=-.
故选:A. 【点睛】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.D 【分析】
由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】
设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n
=,则:2
2n S n =, 当1n =时,112a S ==,
当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-, 故212n
n a b n =
=-,()()1
11111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:
1223910
1111111111233517191.21891919
b b b b b b +++
⎡⎤⎛⎫⎛⎫⎛⎫=
-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎝⎭⎣⎦
=⨯= 故选:D 5.B 【分析】
根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】
因为3518a S +=,63
3a a =+,所以11161218
523a d a d a d +=⎧⎨+=++⎩, 所以11
1a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,
故选:B. 6.C 【分析】
首先根据()12
n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】
当1n =时,111a S ==, 当2n ≥时,()()11122
n n n n n n n a S S n -+-=-=
-=. 检验111a S ==,所以n a n =. 设()11111
11
n n n b a a n n n n +=
==-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…. 故选:C 7.D 【分析】
由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】
已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,
所以()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =.

()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而
126103
S S =. 故选:D 【点睛】 思路点睛:
(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,
(2)()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =. 8.A 【分析】
利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】
在等差数列{}n a 中,设公差为d ,由
467
811a a a =⎧⇒⎨
+=⎩4448
12311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 9.B 【分析】
根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 10.B 【分析】
设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系139
2
a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】
设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392
a d =-. 又10a >,所以0d <,因此
222120(20)2002222n d d d d
S n a n n dn n d ⎛⎫=
+-=-=-- ⎪⎝
⎭, 所以20S 最大. 故选:B. 11.D
把点列代入函数解析式,根据{x n }是等比数列,可知1
n n
x x +为常数进而可求得1n n y y +-的结
果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】
对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于B ,函数2
()4f x x =上的点列{x n ,y n },有y n =2
4n x ,由于{x n }是等比数列,所以1
n n
x x +为
常数,
因此1n n y y +-=()
2222
14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于C ,函数3()4x
f x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1
n n
x x +为常数, 因此1n n y y +-=133()()44n n x x
+-=3
3
()()144n q
x
⎡⎤
-⎢⎥⎣⎦
,这是一个与n 有关的数,故{y n }不是等
差数列;
对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x
,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=11
444
4log log log log n n n n
x x x x q ++-==为常数,故{y n }是等差数列;
故选:D . 【点睛】 方法点睛:
判断数列是不是等差数列的方法:定义法,等差中项法. 12.D 【分析】
由等差数列前n 项和公式即可得解. 【详解】
由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=
>,111(1)()
02
m m m a a S ++++=<.
13.D 【分析】
先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出212
2
n n n a -+=,进而求出n a .
【详解】 解:11n
n n
a a na +=
+, ()11n n n a na a ++=∴,
化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:
111
n n
n a a +-=, 即21
11
1a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:
213243111111+a a a a a a --+-+ (111)
123n n a a -+-=+++…1n +-, 即111(1)
2
n n n a a --=, 2111(1)(1)2=1(2,)222
n n n n n n n n n z a a ---+∴=++=≥∈, 又
1
1
1a =也满足上式, 212()2
n n n n z a -+∴=∈, 22
()2
n a n z n n ∴=
∈-+.
故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 14.B 【分析】
根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】
317102a a a +=
1039a ∴=,即103a =
()11910
19191921935722
a a a S +⨯∴===⨯=
故选:B 15.C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫
⎨⎬⎩⎭
的通项公式,进而得出答案. 【详解】
由已知可得数列1n x ⎧⎫
⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21
n x n =+
故选:C 16.B 【分析】
利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】
因为7916+=a a ,
所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()
11515815151581202
a a S a +===⨯=. 故选:B 17.B 【分析】
由等差数列的性质可得52012016024a a a a +==+,则
()15202020
202016202010102
a a a a S +=
⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+
()12020
202052016202010104101040402
a a a a S +=
==⨯=+⨯⨯ 故选:B 18.D 【分析】
利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}
3n a 的公差,可求得310a 的值,进而可求得10a 的值.
【详解】
对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33217d a a =-=, 所以,33101919764a a d =+=+⨯=,因此,10
4a .
故选:D.
19.D
【分析】
根据等差数列的性质计算求解.
【详解】 由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==, 74a =,∴11313713()13134522
a a S a +=
==⨯=. 故选:D .
20.D
【分析】 由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为
985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和.
【详解】
由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,
则()19959985.52
a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),
所以410.5a =(尺),所以公差541d a a =-=-,
则()8910111210555522.5a a a a a a a d ++++==+=(尺).
故选:D .
二、多选题
21.无
22.无
23.无
24.BD
【分析】 利用递推关系可得1211
n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23
n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=
-, 化为:112111
n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭
单调递减, 可得:2n =时,
21n -取得最大值2. ∴1
n n a a -的最大值为3. 故选:BD .
【点睛】
本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 25.ABD
【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.
【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确.
故选:ABD.
26.AB
【分析】
根据等差数列的性质及717S S =可分析出结果.
【详解】
因为等差数列中717S S =,
所以89161712135()0a a a a a a ++
++=+=, 又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +=
=<,故D 错误, 故选:AB
【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.
27.BD
【分析】
设等差数列{}n a 的公差为d ,依次分析选项即可求解.
【详解】
根据题意,设等差数列{}n a 的公差为d ,依次分析选项:
{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;
又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;
而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>,
又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.
∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;
故选:BD.
【点睛】
本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.
28.ABC
【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项.
【详解】
由题知,只需1220010
a d d d =->⎧⇒<<⎨>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2222415223644
a a d d d d +=-++=-+>≥,B 正确;
2
1511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.
【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.
29.ABD
【分析】
由已知递推式可得数列
2=,公差为1的等差数列,结合选项可得结果.
【详解】
)211n a =-
得)2
11n a +=,
1=

即数列
2=,公差为1的等差数列,
2(1)11n n =+-⨯=+,
∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,
所以易知ABD 正确,
故选:ABD.
【点睛】
本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.
30.ABC
【分析】
由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c 时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩
时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列.
故选:A B C
【点睛】
本题只要考查等差数列前n项和n S与通项公式n a的关系,利用n S求通项公式,属于基础题.。

相关文档
最新文档