平定外国语学校2018-2019学年高二上学期第二次月考试卷数学卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平定县外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9 C .S 8
D .S 7
2. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( )
A .45
B .9
C .﹣45
D .﹣9
3. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移
4
π
个单位长度,所得的图象经过点 )0,43(
π
,则ω的最小值是( ) A .31 B . C .35
D .
4. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15
5. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( ) A .3条 B .2条 C .1条 D .0条
6. 设函数()(
)2
1,1
41
x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )
A .(][],20,10-∞-
B .(][],20,1-∞-
C .(][],21,10-∞-
D .[][]2,01,10-
7. 若方程C :x 2
+
=1(a 是常数)则下列结论正确的是( )
A .∀a ∈R +,方程C 表示椭圆
B .∀a ∈R ﹣,方程
C 表示双曲线
C .∃a ∈R ﹣,方程C 表示椭圆
D .∃a ∈R ,方程C 表示抛物线
8. 设函数f (x )
=的最小值为﹣1,则实数a 的取值范围是( )
A .a ≥﹣2
B .a >﹣2
C .a ≥
﹣ D .a
>﹣
9.
以过椭圆
+
=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
10.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( ) A

π B .2
π
C .
4
π
D

π
11.若y x ,满足约束条件⎪⎪⎩

⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
12.平面α与平面β平行的条件可以是( )
A .α内有无穷多条直线与β平行
B .直线a ∥α,a ∥β
C .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α
D .α内的任何直线都与β平行
二、填空题
13.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填
A B 方格的数字,则不同的填法共有
种(用数字作答).
14.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,
),(3,
),则O 点到直线AB
的距离是 .
15.【常熟中学2018届高三10月阶段性抽测(一)】函数()2
1ln 2
f x x x =
-的单调递减区间为__________. 16.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .
17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)
18.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.
三、解答题
19.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;
(Ⅱ)若a﹣c=﹣1,求△ABC的面积.
20.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行
(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)
21.解不等式|3x﹣1|<x+2.
22.已知函数f(x)=.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)当时,求f(x)的最大值,并求此时对应的x的值.
23.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,
PD=AD=2EC,EC∥PD.
(Ⅰ)求异面直线BD与AE所成角:
(Ⅱ)求证:BE∥平面PAD;
(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.
24.如图,在平面直角坐标系xOy中,以x为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两
点.已知A,B的横坐标分别为,.
(1)求tan(α+β)的值;
(2)求2α+β的值.
平定县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:∵S 16<0,S 17>0, ∴
=8(a 8+a 9)<0,
=17a 9>0,
∴a 8<0,a 9>0, ∴公差d >0. ∴S n 中最小的是S 8. 故选:C .
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
2. 【答案】A
【解析】解:a 8 是 x 10=[﹣1+(x+1)]10的展开式中第九项(x+1)8
的系数,
∴a 8=
=45,
故选:A .
【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.
3. 【答案】D

点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 4. 【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为.
故选B.
5.【答案】C
【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,
设直线l的方程为:,
则.
即2a﹣2b=ab
直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,
即ab=﹣16,
联立,
解得:a=﹣4,b=4.
∴直线l的方程为:,
即x﹣y+4=0,
即这样的直线有且只有一条,
故选:C
【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.
6.【答案】A
【解析】
考点:分段函数的应用.
【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 7.【答案】B
【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆
∴∃a∈R+,使方程C不表示椭圆.故A项不正确;
∵当a<0时,方程C:表示焦点在x轴上的双曲线
∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确
∵不论a取何值,方程C:中没有一次项
∴∀a∈R,方程C不能表示抛物线,故D项不正确
综上所述,可得B为正确答案
故选:B
8.【答案】C
【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,
当x=时,取得最小值﹣1;
当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,
即有f(x)在(﹣∞,)递减,
则f(x)>f()=a﹣,
由题意可得a﹣≥﹣1,
解得a≥﹣.
故选:C.
【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.
9.【答案】C
【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D
连接AC、BD,设AB的中点为M,作MN⊥l于N
根据圆锥曲线的统一定义,可得
==e,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)
∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离
故选:C
【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
10.【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为:=4π
故选:C.
11.【答案】D
【解析】
考点:简单线性规划.
12.【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.
当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.
当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.
当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,
故选D.
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
二、填空题
13.【答案】27
【解析】解:若A方格填3,则排法有2×32=18种,
若A方格填2,则排法有1×32=9种,
根据分类计数原理,所以不同的填法有18+9=27种.
故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.
14.【答案】.
【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,
)、(﹣,),
故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,
所以O点到直线AB的距离是=,
故答案为:.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.0,1
15.【答案】()
【解析】
16.【答案】(0,)∪(64,+∞).
【解析】解:∵f(x)是定义在R上的偶函数,
∴f(log8x)>0,等价为:f(|log8x|)>f(2),
又f(x)在[0,+∞)上为增函数,
∴|log8x|>2,∴log8x>2或log8x<﹣2,
∴x>64或0<x<.
即不等式的解集为{x|x>64或0<x<}
故答案为:(0,)∪(64,+∞)
【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.
17.【答案】 3.3
【解析】
解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.
设BC=x,则根据题意
=,
AB=x,
在AE=AB﹣BE=x﹣1.4,
则=,即=,求得
x=3.3(米)
故树的高度为3.3米,
故答案为:3.3.
【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.
18.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.

一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.
三、解答题
19.【答案】
【解析】解:(I)由∵cosA=,0<A<π,
∴sinA==,
∵5(a2+b2﹣c2)=3ab,
∴cosC==,
∵0<C<π,
∴sinC==,
∴cos2C=2cos2C﹣1=,
∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣
∵0<B<π,
∴B=.
(II)∵=,
∴a==c,
∵a﹣c=﹣1,
∴a=,c=1,
∴S=acsinB=××1×=.
【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.
20.【答案】
【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80;
∵(,)在回归直线上,
∴选择=﹣20x+250;
(2)利润w=(x﹣5)(﹣20x+250)=﹣20x2+350x﹣1250=﹣20(x﹣8.75)2+281.25,
∴当x=8.75元时,利润W最大为281.25(万元),
∴当单价定8.75元时,利润最大281.25(万元).
21.【答案】
【解析】解:∵|3x﹣1|<x+2,
∴,
解得﹣.
∴原不等式的解集为{x|﹣<x<}.
22.【答案】
【解析】解:(1)f(x)=﹣
=sin2x+sinxcosx﹣
=+sin2x﹣
=sin(2x﹣)…3分
周期T=π,
因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分
当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,
所以函数f(x)的单调递减区间为,,k∈Z…7分
(2)当,2x﹣∈,…9分
sin(2x﹣)∈(﹣,1),当x=时取最大值,
故当x=时函数f(x)取最大值为1…12分
【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.
23.【答案】
【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,
∴EC⊥平面ABCD,
又BD⊂平面ABCD,
∴EC⊥BD,
∵底面ABCD为正方形,AC∩BD=N,
∴AC⊥BD,
又∵AC∩EC=C,AC,EC⊂平面AEC,
∴BD⊥平面AEC,
∴BD⊥AE,
∴异面直线BD与AE所成角的为90°.
(Ⅱ)∵底面ABCD为正方形,
∴BC∥AD,
∵BC⊄平面PAD,AD⊂平面PAD,
∴BC∥平面PAD,
∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,
∴EC∥平面PAD,
∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴
∴平面BCE∥平面PAD,
∵BE⊂平面BCE,
∴BE∥平面PAD.
(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,
∵PD⊥平面ABCD,AD CD⊂平面ABCD,
∴PD⊥CD,PD⊥AD,
∵PD=AD,F是PA的中点,
∴DF⊥PA,
∴∠PDF=45°,
∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,
∴DF⊥平面PAE,
∴DF⊥PE,
∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,
∴CD⊥平面PAD.
又DF⊂平面PAD,
∴DF⊥CD,
∵PD=2EC,EC∥PD,
∴PE与CD相交,
∴DF⊥平面PDCE,
∴DF⊥PD,
这与∠PDF=45°矛盾,
∴假设不成立即平面PAD与平面PAE不垂直.
【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.24.【答案】
【解析】解:(1)由已知得:.∵α,β为锐角,∴.
∴.∴.
(2)∵,∴.
∵α,β为锐角,∴,
∴.。

相关文档
最新文档