新初中数学命题与证明的分类汇编含答案解析(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初中数学命题与证明的分类汇编含答案解析(2)
一、选择题
1.下列说法正确的是()
A.两锐角分别相等的两个直角三角形全等
B.两条直角边分别相等的两直角三角形全等
C.一个命题是真命题,它的逆命题一定也是真命题
D.经过旋转,对应线段平行且相等
【答案】B
【解析】
【分析】
A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】
A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
D、经过旋转,对应线段相等,故D选项错误;
故选:B.
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
2.下列命题是真命题的是()
A.内错角相等
B.平面内,过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过一点有且只有一条直线与已知直线平行
【答案】B
【解析】
【分析】
命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.
【详解】
A、内错角相等,是假命题,故此选项不合题意;
B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;
C、相等的角是对顶角,是假命题,故此选项不合题意;
D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;
故选:B.
此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
3.下列结论中,不正确的是()
A.两点确定一条直线
B.两点之间,直线最短
C.等角的余角相等
D.等角的补角相等
【答案】B
【解析】
【分析】
根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.
【详解】
A.两点确定一条直线,正确;
B.两点之间,线段最短,所以B选项错误;
C.等角的余角相等,正确;
D.等角的补角相等,正确.
故选B
考点:定理
4.下列各命题的逆命题是真命题的是
A.对顶角相等B.全等三角形的对应角相等
C.相等的角是同位角D.等边三角形的三个内角都相等
【答案】D
【解析】
【分析】
分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.
【详解】
A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;
B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;
C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.
5.下列命题是假命题的是( )
A.对顶角相等B.两直线平行,同旁内角相等
C.平行于同一条直线的两直线平行D.同位角相等,两直线平行
【答案】B
【解析】
解:A.对顶角相等是真命题,故本选项正确,不符合题意;
B.两直线平行,同旁内角互补,故本选项错误,符合题意;
C.平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;
D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.
故选B.
6.下列命题:
①两条直线被第三条直线所截,同位角相等;
②两点之间,线段最短;
③相等的角是对顶角;
④直角三角形的两个锐角互余;
⑤同角或等角的补角相等.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
【详解】
解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B.
考点:命题与定理.
7.已知命题:等边三角形是等腰三角形.则下列说法正确的是()
A.该命题为假命题 B.该命题为真命题
C.该命题的逆命题为真命题 D.该命题没有逆命题
【答案】B
【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.
详解:等边三角形是等腰三角形,正确,为真命题;
其逆命题为等腰三角形是等边三角形,错误,为假命题,
故选:B.
点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.
8.下列各命题的逆命题成立的是()
A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C
【解析】
试题分析:首先写出各个命题的逆命题,再进一步判断真假.
解:A、逆命题是三个角对应相等的两个三角形全等,错误;
B、绝对值相等的两个数相等,错误;
C、同位角相等,两条直线平行,正确;
D、相等的两个角都是45°,错误.
故选C.
9.下列命题是真命题的是()
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;
故选:B.
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.用三个不等式a>b,ab>0,1
a

1
b
中的两个不等式作为题设,余下的一个不等式作
为结论组成一个命题,组成真命题的个数为()
A.0 B.1 C.2 D.3【答案】A
【解析】
【分析】
由题意得出3个命题,由不等式的性质再判断真假即可.
【详解】
解:①若a>b,ab>0,则1
a

1
b
;假命题:
理由:∵a>b,ab>0,∴a>b>0,
∴1
a

1
b

②若ab>0,1
a

1
b
,则a>b,假命题;
理由:∵ab>0,∴a、b同号,
∵1
a

1
b

∴a<b;
③若a>b,1
a

1
b
,则ab>0,假命题;
理由:∵a>b,1
a

1
b

∴a、b异号,
∴ab<0.
∴组成真命题的个数为0个;
故选:A.
【点睛】
本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.
11.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
解:①符合对顶角的性质,故本小题正确;
②两直线平行,内错角相等,故本小题错误;
③符合平行线的判定定理,故本小题正确;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.
故选B.
12.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是()A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角【答案】B
【解析】
【分析】
反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.
【详解】
解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,
∴应假设:在三角形中,至少有两个内角是直角.
故选:B.
【点睛】
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.
13.下列四个命题中:
①在同一平面内,互相垂直的两条直线一定相交
②有且只有一条直线垂直于已知直线
③两条直线被第三条直线所截,同位角相等
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
其中真命题的个数为()
A.1个 B.2 个 C.3个 D.4个
【答案】A
【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.
详解:①在同一平面内,互相垂直的两条直线一定相交,正确;
②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;
③两条平行直线被第三条直线所截,同位角相等,错误;
④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;
真命题有1个.
故选A.
点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.
14.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()
A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3
【答案】B
【解析】
试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b 的值不能说明命题为假命题;
在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;
在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;
在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;
故选B.
考点:命题与定理.
15.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
③正确;
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B .
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.
16.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )
A .A
B ∠=∠
B .AB B
C = C .B C ∠=∠
D .A C ∠=∠
【答案】C
【解析】
【分析】
反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.
【详解】
已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠
故选C
【点睛】
本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.
17.下列命题错误的是( )
A .平行四边形的对角线互相平分
B .两直线平行,内错角相等
C .等腰三角形的两个底角相等
D .若两实数的平方相等,则这两个实数相等
【答案】D
【解析】
【分析】
根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.
【详解】
解:A 、平行四边形的对角线互相平分,正确;
B 、两直线平行,内错角相等,正确;
C 、等腰三角形的两个底角相等,正确;
D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
18.下列四个命题中,其正确命题的个数是()
①若ac>bc,则a>b;
②平分弦的直径垂直于弦;
③一组对角相等一组对边平行的四边形是平行四边形;
④反比例函数y=k
x
.当k<0时,y随x的增大而增大
A.1 B.2 C.3 D.4
【答案】A
【解析】
【分析】
根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.
【详解】
解:①若ac>bc,如果c>0,则a>b,故原题说法错误;
②平分弦(不是直径)的直径垂直于弦,故原题说法错误;
③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;
④反比例函数y=k
x
.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;
正确命题有1个,
故选:A.
【点睛】
本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.
19.下面命题的逆命题正确的是()
A.对顶角相等B.邻补角互补
C.矩形的对角线互相平分D.等腰三角形两腰相等
【答案】D
【解析】
【分析】
先分别写出四个命题的逆命题,然后利用对顶角的定义、邻补角的定义、矩形的判断和等腰三角形的判定方法对各命题的真假进行判断.
【详解】
解:A.对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;
B.邻补角互补的逆命题为互补的角为邻补角,此逆命题为假命题;
C.矩形的对角线互相平分的逆命题为对角线互相平分的四边形为矩形,此逆命题为假命题;
D.等腰三角形两腰相等的逆命题为两边相等的三角形为等腰三角形,此逆命题为真命题.故答案为D.
【点睛】
本题考查了命题与定理,掌握举出反例法是判断命题的真假的重要方法.
20.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1
a
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C. 若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a=1
a
,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.。

相关文档
最新文档