怀来县一中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怀来县一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥α
B .m ⊂α,n ⊥m ⇒n ⊥α
C .m ⊂α,n ⊂β,m ∥n ⇒α∥β
D .n ⊂β,n ⊥α⇒α⊥β
2. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则
的值为
( )
A .
B .
C .
D .
3. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )
A .
B .
C .
D .
4. 设集合(){,|,,1A x y x y x y =
--是三角形的三边长},则A 所表示的平面区域是( )
A .
B .
C .
D .
5. 如图F 1、F 2是椭圆C 1:
+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共
点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )
A .
B .
C .
D .
6. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )
A .y 2=4x 或y 2=8x
B .y 2=2x 或y 2=8x
C .y 2=4x 或y 2=16x
D .y 2=2x 或y 2=16x
7. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2
B .8
C .﹣2或8
D .2或8
8. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )
A .y=x+2
B .
y= C .y=3x D .y=3x 3
9. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <0
10.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围
是( )
A .(1,4]
B .(0,1]
C .[﹣1,1]
D .(4,+∞)
11.下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0}
C .0∈{0}
D .∅={0}
12.设函数()(
)2
1,1
41
x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )
A .(][],20,10-∞-
B .(][],20,1-∞-
C .(][],21,10-∞-
D .[][]2,01,10-
13.已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2
B .﹣2
C .8
D .﹣8
14.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )
A .1
B .
C .
D .
15.执行如图所示的程序框图,如果输入的t =10,则输出的i =( )
A .4
B .5
C .6
D .7
二、填空题
16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2
132n n S S n n ++=+,若对n N *∀∈,1n n a a +<
恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .
14.已知集合
,若3∈M ,5∉M ,则实数a 的取值范围是 .
18.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .
19.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .
三、解答题
20.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;
(2)令()()g x xf x =,区间15
22
,D e e -⎛⎫= ⎪⎝⎭
,e 为自然对数的底数。

(ⅰ)若函数()g x 在区间D 上有两个极值,求实数m 的取值范围;
(ⅱ)设函数()g x 在区间D 上的两个极值分别为()1g x 和()2g x , 求证:12x x e ⋅>.
21.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围. 22.
(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;
(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.
23..已知定义域为R的函数f(x)=是奇函数.
(1)求a的值;
(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);
(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;(4分)
(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)
(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.
25.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.
怀来县一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】解:在A选项中,可能有n⊂α,故A错误;
在B选项中,可能有n⊂α,故B错误;
在C选项中,两平面有可能相交,故C错误;
在D选项中,由平面与平面垂直的判定定理得D正确.
故选:D.
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.2.【答案】C
【解析】解:F
,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.
1
点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,
|PF2|==,由勾股定理可得:|PF1|==.
==.
故选:C.
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
3.【答案】C
【解析】解;∵f′(x)=
f′(x)>k>1,
∴>k>1,
即>k>1,
当x=时,f()+1>×k=,
即f()﹣1=
故f()>,
所以f()<,一定出错,
故选:C.
4.【答案】A
【解析】
考点:二元一次不等式所表示的平面区域.
5.【答案】D
【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
∴+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,设双曲线C
的实轴长为2m,焦距为2n,
2
则2m=|AF
|﹣|AF1|=y﹣x=2,2n=2c=2,
2
∴双曲线C2的离心率e===.
故选D.
【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.
6.【答案】C
【解析】解:∵抛物线C方程为y2=2px(p>0),
∴焦点F坐标为(,0),可得|OF|=,
∵以MF为直径的圆过点(0,2),
∴设A(0,2),可得AF⊥AM,
Rt△AOF中,|AF|==,
∴sin∠OAF==,
∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
∵|MF|=5,|AF|=
∴=,整理得4+=,解之可得p=2或p=8
因此,抛物线C的方程为y2=4x或y2=16x.
故选:C.
方法二:
∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),
设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,
因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,
由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,
即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.
所以抛物线C的方程为y2=4x或y2=16x.
故答案C.
【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
7.【答案】D
【解析】解:由题意可得3∈A,|a﹣5|=3,
∴a=2,或a=8,
故选D.
8.【答案】C
【解析】解:模拟程序框图的运行过程,得;
该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);
这组数对对应的点在函数y=3x的图象上.
故选:C.
【点评】本题考查了程序框图的应用问题,是基础题目.
9.【答案】B
【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a>1,a0﹣b﹣1<0,
即a>1,b>0,
故选:B
10.【答案】A
【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,
则a>lne=1,
若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,
则△=16﹣4a≥0,解得a≤4,
若命题“p∧q”为真命题,
则p,q都是真命题,
则,
解得:1<a≤4.
故实数a的取值范围为(1,4].
故选:A.
【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.
11.【答案】C
【解析】解:对于A∅⊆{0},用“∈”不对,
对于B和C,元素0与集合{0}用“∈”连接,故C正确;
对于D,空集没有任何元素,{0}有一个元素,故不正确.
12.【答案】A
【解析】
考点:分段函数的应用.
【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 13.【答案】B
【解析】解:∵f(x+4)=f(x),
∴f(2015)=f(504×4﹣1)=f(﹣1),
又∵f(x)在R上是奇函数,
∴f(﹣1)=﹣f(1)=﹣2.
故选B.
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.
14.【答案】C
【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.
因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为

因此可知:A,B,D皆有可能,而<1,故C不可能.
故选C.
【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.
15.【答案】
【解析】解析:选B.程序运行次序为
第一次t=5,i=2;
第二次t=16,i=3;
第三次t=8,i=4;
第四次t=4,i=5,故输出的i=5.
二、填空题
16.【答案】
15 (,)
43
17.【答案】6.
【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,
f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,
令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
18.【答案】V
【解析】
【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C , 所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:
故答案为:
19.【答案】(0,1)
【解析】
考点:本题考查函数的单调性与导数的关系
三、解答题
20.【答案】(1)增区间()0,2,减区间()2,+∞,(2)详见解析
【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数()g x 在区间D 上有两个极值,等价于
()2ln 21g x x mx -'=+在15
22,e e -⎛⎫ ⎪⎝⎭
上有两个不同的零点,令()0g x '=,得2ln 1
2x m x +=
,通过求导分析 得m 的范围为512231,e e ⎛⎫ ⎪ ⎪⎝⎭
;(ⅱ)2ln 1
2x m x +=,得12122ln 12ln 12x x m x x ++==,由分式恒等变换得
12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=+-,得1
1
212112112222
1
ln ln 1ln ln 1x x x x x x x x x x x x x x ++++=⋅=⋅--,要证明 12x x e >,只需证12ln ln 12x x ++>,即证1
2
112
2
1ln 21x x x
x x x +⋅>-,
令3
1
21x e
t x -<
=<,()()21ln 1
t p t t t -=-+,通过求导得到()0p t <恒成立,得证。

试题解析:
(2)(ⅰ)因为()2
2ln g x x x mx x =--,
所以()2ln 2212ln 21g x x mx x mx =+--=-+',15
22,x e e -⎛⎫
∈ ⎪⎝⎭

若函数()g x 在区间D 上有两个极值,等价于()2ln 21g x x mx -'=+在15
22
,e e -⎛⎫ ⎪⎝⎭
上有两个不同的零点,
令()0g x '=,得2ln 1
2x m x
+=,
设()()2
2ln 112ln ,x x
t x t x
'+-==,令()0,t x x ='=所以m 的范围为51
2231
,e e ⎛⎫ ⎪ ⎪⎝⎭
(ⅱ)由(ⅰ)知,若函数()g x 在区间D 上有两个极值分别为()1g x 和()2g x ,不妨设12x x <,则
1212
2ln 12ln 1
2x x m x x ++=
=,
所以
12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=+-
即1
1
21211211222
2
1
ln ln 1ln ln 1x x x x x x
x x x x x x x x ++++=⋅=⋅--, 要证12x x e >,只需证12ln ln 12x x ++>,即证1
2112
2
1ln 21x x x
x x x +⋅>-, 令3
121x e t x -<=<,即证1ln 21t t t +⋅>-,即证1ln 21
t t t -<⋅
+, 令()()
21ln 1t p t t t -=-+,因为()()()()
2
22
114
011t p t t t t t -=-=+'>+, 所以()p t 在()
3,1e -上单调增,()10p =,所以()0p t <,
即()21ln 0,1
t t t --
<+所以1
ln 2
1
t t t -<+,得证。

21.【答案】
【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则
<1,解得1


若命题q 是真命题:“方程x 2﹣x+m ﹣4=0的两根异号”,则m ﹣4<0,解得m <4. 若p ∨q 为真,¬p 为真, 则p 为假命题,q 为真命题.


∴实数m 的取值范围是


【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
22.【答案】
【解析】解:(1)证明:∵AE =AF , ∴∠AEF =∠AFE .
又B ,C ,F ,E 四点共圆,
∴∠ABC=∠AFE,
∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.
(2)由(1)与∠B=60°知△ABC为正三角形,
又EB=EF=2,
∴AF=FC=2,
设DE=x,DF=y,则AD=2-y,
在△AED中,由余弦定理得
DE2=AE2+AD2-2AD·AE cos A.
即x2=(2-y)2+22-2(2-y)·2×1

2
∴x2-y2=4-2y,①
由切割线定理得DE2=DF·DC,
即x2=y(y+2),
∴x2-y2=2y,②
由①②联解得y=1,x=3,∴ED= 3.
23.【答案】
【解析】解:(1)因为f(x)为R上的奇函数
所以f(0)=0即=0,
∴a=1 …
(2)f(x)==﹣1+,在(﹣∞,+∞)上单调递减…
(3)f(t2﹣2t)+f(2t2﹣k)<0⇔f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k),
又f(x)=在(﹣∞,+∞)上单调递减,
∴t2﹣2t>﹣2t2+k,
即3t2﹣2t﹣k>0恒成立,
∴△=4+12k<0,
∴k<﹣.…(利用分离参数也可).
24.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,

综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,
x∈(1,e],h(x)是增函数,
∴,
∴时,,∴
∴a的取值范围为…(14分)
25.【答案】
【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2} ∵B⊆A,
∴(1)B=∅时,a=0
(2)当B={1}时,a=2
(3))当B={2}时,a=1
故a值为:2或1或0.。

相关文档
最新文档