2018高考数学一轮复习第9章算法初步统计与统计案例第4节相关性最玄乘估计与统计案例教师用书文北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节相关性、最小二乘估计与统计案例 [考纲传真] 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其初步应用.4.了解回归分析的基本思想、方法及其简单应用.
1.相关性
(1)线性相关
若两个变量x和y的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的.
(2)非线性相关
若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的.
(3)不相关
如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的.
2.最小二乘估计
(1)最小二乘法
如果有n个点(x1,y1),(x2,y2),…,(x n,y n)可以用下面的表达式来刻画这些点与直线y=a+bx的接近程度:[y1-(a+bx1)]2+[y2-(a+bx2)]2+…+[y n-(a+bx n)]2.
使得上式达到最小值的直线y=a+bx就是我们所要求的直线,这种方法称为最小二乘法.
(2)线性回归方程
方程y=bx+a是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x n,y n)的线性回归方程,其中a,b是待定参数.
3.回归分析
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心
对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,(x ,y )称为样本点的中心.
(3)相关系数r
①r =
∑i =1n
xiyi -n x
y ∑i =1
n x2i -n x 2
∑i =1
n y2i -n y 2
; ②当r >0时,称两个变量正相关. 当r <0时,称两个变量负相关. 当r =0时,称两个变量线性不相关. 4.独立性检验 若一个2×2列联表为:
χ2



+++
.
(1)当χ2
≤2.706时,可以认为变量A ,B 是没有关联的; (2)当χ2
>2.706时,有90%的把握判定变量A ,B 有关联; (3)当χ2>3.841时,有95%的把握判定变量A ,B 有关联; (4)当χ2>6.635时,有99%的把握判定变量A ,B 有关联.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( ) (2)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^
=-2.352x +。

相关文档
最新文档