淄川区高中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淄川区高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )
A .两个点
B .四个点
C .两条直线
D .四条直线
2. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .k
B .﹣k
C .1﹣k
D .2﹣k
3. 在△ABC 中,,则这个三角形一定是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角
D .等腰或直角三角形
4. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞
【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
5. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717
100201717
S S -=,则d 的值为( ) A .
120 B .110
C .10
D .20 6. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )
A .
B .
C .
D .
7. 设复数1i z =-(i 是虚数单位),则复数
22
z z
+=( ) A.1i - B.1i + C. 2i + D. 2i -
【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 8. 已知抛物线C :y x 82
=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6
B .3
C .
3
8
D .
3
4
第Ⅱ卷(非选择题,共100分)
9. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C.
D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 10.如图框内的输出结果是( )
A .2401
B .2500
C .2601
D .2704 11.集合{}1,2,3的真子集共有( )
A .个
B .个
C .个
D .个
12.已知M N 、为抛物线2
4y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为( )
A .240x y +-=
B .240x y --=
C .20x y +-=
D .20x y --=
二、填空题
13.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3
f x x x =-+的单调增区间是__________. 14.函数2
()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 . 15.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= . 16.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________.
【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
17.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .
18.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式
1log 3)(log 33-<x x f 的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
三、解答题
19.(本小题满分12分)
已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.
20.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;
(Ⅱ)若EF •FC=,求正方形ABCD 的面积.
21.已知数列{a n }和{b n }满足a 1•a 2•a 3…a n
=2(n ∈N *
),若{a n }为等比数列,且a 1=2,b 3=3+b 2.
(1)求a n 和b n ; (2)设c n
=(n ∈N *
),记数列{c n }的前n 项和为S n ,求S n .
22.(本小题满分13分)
椭圆C :22
221(0)x y a b a b
+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点
M ,点M 在x 轴的上方.当0m =
时,1||MF =
(Ⅰ)求椭圆C 的方程;
(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12
12
3MF F NF F S S ∆∆=,求直线l 的方程.
23.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,4
5a b a b x ++⎡⎤
∈⎢
⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.
24.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;
(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.
淄川区高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:方程(x2﹣4)2+(y2﹣4)2=0
则x2﹣4=0并且y2﹣4=0,
即,
解得:,,,,
得到4个点.
故选:B.
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
2.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.3.【答案】A
【解析】解:∵,
又∵cosC=,
∴=,整理可得:b2=c2,
∴解得:b=c.即三角形一定为等腰三角形.
故选:A.
4.【答案】A
5. 【答案】B 【解析】
试题分析:若{}n a 为等差数列,
()
()111212n
n n na S d a n n
n -+
==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭
为等差数列公差为2d ,
2017171
100,2000100,201717210
S S d d ∴
-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 6. 【答案】A
【解析】解:由已知中几何体的直观图,
我们可得侧视图首先应该是一个正方形,故D 不正确; 中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确
故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问
题的关键.
7. 【答案】A 【



8. 【答案】A
解析:抛物线C :y x 82
=的焦点为F (0,2),准线为l :y=﹣2,
设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m
,﹣2),

,∴2m=﹣a ,4=
﹣4,∴m 2=32,由抛物线的定义可得
|QF|=
+2=4+2=6.故选A .
9. 【答案】D
【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-
,则5(0)2cos()6
f π
=-=,故选D. 10.【答案】B
【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,
故选:B .
【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.
11.【答案】C 【解析】
考点:真子集的概念. 12.【答案】D
【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.
设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).
由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,
而1222y y +=,∴12
12
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D .
二、填空题
13.【答案】(
【解析】()2
310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭
14.【答案】3a ≤- 【解析】
试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.
15.【答案】 1 .
【解析】解:f (x )的图象关于直线x=3对称,且f (5)=1,则f (1)=f (5)=1, f (x )是偶函数,所以f (﹣1)=f (1)=1. 故答案为:1.
16.【答案】±.
【解析】分析题意得,问题等价于2
64x ax ++≤只有一解,即2
20x ax ++≤只有一解,
∴2
80a a ∆=-=⇒=±,故填:±.
17.【答案】 .
【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,
∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2
=bc , ∴由余弦定理可得b 2=a 2+c 2
﹣2accosB ,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S △ABC =bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
18.【答案】)3,0(
【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且
13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即
)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(. 三、解答题
19.【答案】(1)3
π
;(2) 【解析】
试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式2
2
a a =,把
考点:向量的数量积,向量的夹角与模.
【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b
⋅<>=求得这两个
向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 20.【答案】
【解析】证明:(Ⅰ)∵以D 为圆心、DA 为半径的圆弧与以BC 为直径半圆交于点F , 且四边形ABCD 为正方形,
∴EA 为圆D 的切线,且EB 是圆O 的切线,
由切割线定理得EA 2
=EF •EC ,
故AE=EB .
(Ⅱ)设正方形的边长为a ,连结BF , ∵BC 为圆O 的直径,∴BF ⊥EC ,
在Rt △BCE 中,由射影定理得EF •FC=BF 2
=,
∴BF==,解得a=2,
∴正方形ABCD 的面积为4.
【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
21.【答案】
【解析】解:(1)设等比数列{a n }的公比为q ,∵数列{a n }和{b n }满足a 1•a 2•a 3…a n =2(n ∈N *
),a 1=2,
∴,,

∴b 1=1,
=2q >0,
=2q 2,
又b 3=3+b 2.∴23=2q 2
,解得q=2.
∴a n=2n.
∴=a1•a2•a3...a n=2×22× (2)
=,
∴.
(2)c n
=
=
=

=,
∴数列{c n}的前n项和为S n
=

+…
+
=﹣
2
=﹣
2+
=
﹣﹣1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.
22.【答案】
【解析】解:(Ⅰ)由直线:1
l x my
=-经过点
1
F得1
c=,
当0
m=时,直线l与x
轴垂直,
2
1
||
2
b
MF
a
==,
由2
1
2
c
b
a
=



=


解得
1
a
b
⎧=


=
⎪⎩
C的方程为221
2
x
y
+=.(4分)
(Ⅱ)设
1122
(,),(,)
M x y N x y,
12
0,0
y y
>>,由
12
//
MF NF知12
12
11
22
||
3
||
MF F
NF F
S MF y
S NF y


===.
联立方程2
2
1
1
2
x my
x
y
=-



+=
⎪⎩
,消去x得22
(2)210
m y my
+--=
,解得y=
∴1y =
,同样可求得2y =, (11分)
由1
23y y =得123y y =
3=,解得1m =, 直线l 的方程为10x y -+=. (13分)
23.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭
上单调递减,在,b e ⎛⎫

⎪⎝⎭
上单调递增.(2)7b e a ≤<
【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不
等式()'0h x >得b x e >
求出单调增区间;解不等式()'0h x <得b
x e
<求出单调减区间;(2)先依据题设345a b a b ++<得7b a <,由(1)知()m in 0h x ≤,然后分345a b b a b e ++≤≤、4b a b e +<、35
b a b
e +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出其取值范围7b
e a

<: 解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫ ⎪⎝⎭
上单调递减,在,b e ⎛⎫

⎪⎝⎭
上单调递增. (2)由345a b a b ++<得7b
a <,由条件得()min 0h x ≤. ①当345a
b b a b e ++≤≤,即345e b e e a e ≤≤--时,()min b b h x h a e e ⎛⎫
==-+ ⎪⎝⎭,由0b a e -+≤得 3,5b b e e e a a e
≥∴≤≤-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,4
5a b a b ++⎡⎤
⎢⎥⎣⎦上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
43?3044e b b
a b e e b e --+-=>=>,矛盾,∴不成立. 由0b
a e
-+≤得.
③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,4
5a b a b ++⎡⎤
⎢⎥⎣⎦上单调递减,
()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52?2230553e b b
a b e
e b e
----=>=>,∴当35b e a e >
-时恒成立,综上所述,7b e a ≤<. 24.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C 74=35种情况;若4人全是男生,共有C 84
=70种情况;
故全为女生的概率为
=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C 154
,选出男生的人数为X=0,1,2,3,4… P (X=0)
=
=
;P (X=1)
=
=
;P (X=2)
=
=

P (X=3)
=
=;P (X=4)
=
=.…
0 1 2
3
4 EX=0×
+1×
+2×
+3×
+4×
=
.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.。

相关文档
最新文档