计算机组成原理总结
计算机组成原理知识点总结

计算机组成原理知识点总结一、存储系统(一)存储器的基本概念1.分类a)作用(层次):CACHE 主存辅存b)存储介质:磁半导体光c)存取方式●随机存取:RAM ROM●串行访问●顺序存取:磁带●直接存取:磁盘d)信息可保存性--易失性破坏性读出非2.性能指标a)存储容量字b)单位成本每位成本c)存储速度(数据传输率主存带宽)3.层次化结构a)Cache-主存层次:硬件实现,解决速度不匹配问题b)主存-辅存层次:硬件+操作系统实现,解决容量问题,逐渐形成虚拟存储系统(二)半导体存储器1.存储器芯片的基本结构a)译码驱动电路(译码器:扩充容量)b)存储矩阵c)读写电路d)地址线,数据线,片选线,读写控制线2.半导体存储器RAM(易失性存储器)a)SRAM:触发器存储信息,速度快成本高集成度低,用于高速缓存b)DRAM:电容存储信息,需要刷新,速度慢成本低,集成度高,用于主存SDRAMc)DRAM的刷新:集中刷新,分散刷新,●异步刷新●不需要CPU控制●行为单位,仅需要行地址●存储器中所有芯片同时刷新d)RAM的读写周期3.ROM(非易失性存储器)a)特点:结构简单,位密度比RAM高,非易失性,可靠性高b)类型:MROM,PROM,EPPROM,FLASH MEMORY,SSD(三)存储器与CPU的协同工作(提高存储系统的工作速度)1.主存与CPU的连接a)字扩展b)位扩展●线选法●译码片选法●译码器的使用●分析地址空间c)字位同时扩展●选择存储器芯片●与CPU进行连接2.双口RAM和多模块存储器a)多模块存储器●单体多字●多体并行●低位交叉编址●高位交叉编址b)双端口RAM3.高速缓冲存储器a)CACHE局部性原理和性能分析●局部性原理●空间局部性●时间局部性●性能分析●命中率和失效率●CACHE----主存体系的平均访问时间b)CACHE工作原理●地址映射方式●全相联●直接相联●组相联●替换算法●RAND随机●FIFO先入先出●LRU最近最少使用●LFU最不经常使用●写策略●命中●全写法●写回法●不命中●写分配法●非写分配法4.虚拟存储器(主存和辅存共同构成)(增加存储系统的容量)a)基本概念:虚地址(逻辑地址)映射到实地址(物理地址)b)解决问题:进程并发问题和内存不够用问题c)类型●页式●段式●段页式d)虚实地址转换(提高速度)●快表TLB●慢表Page二、指令系统(一)指令格式1.操作码和地址码组成一条指令2.操作码a)定长操作码和扩展操作码b)操作码类型(二)指令寻址方式1.指令寻址(通过PC)a)顺序寻址b)跳跃寻址2.数据寻址a)隐含寻址b)立即寻址:给寄存器赋初值c)直接寻址d)间接寻址:扩大寻址范围,便于编制程序e)寄存器寻址:指令执行速度更快f)寄存器间接寻址g)偏移寻址(各寄存器内容+形式地址):基址寻址,变址寻址(处理数组,编制循环程序),相对寻址h)堆栈寻址(三)CISC和RISC1.CISC复杂指令系统计算机(用微程序控制器)a)更多更复杂,一般为微程序控制,用于计算机系统2.RISC精简指令系统计算机(用硬布线控制器)a)指令数目少,字长固定,寻址方式少,寄存器数量多,一般为组合逻辑控制,用于手机三、中央处理器(一)CPU的功能和基本结构1.CPU的功能:指令控制,操作控制,时间控制,数据加工,中断处理2.运算器a)功能:对数据进行加工b)基本结构:●算术逻辑单元ALU●暂存寄存器●通用寄存器组●累加寄存器ACC●程序状态字寄存器PSW●移位器,计数器3.控制器a)功能:取指令,分析指令,执行指令b)控制器的基本结构●程序计数器PC●指令寄存器IR●指令译码器,时序系统,微操作信号发生器●存储器地址寄存器MAR●存储器数据寄存器MDR4.数据通路的基本结构a)专用通路b)内部总线(二)指令执行过程1.指令周期a)构成:机器周期、CPU周期——CPU时钟周期、节拍b)类型:取指周期,间址周期,执行周期,中短周期c)标志触发器FE,IND,EX,INT:区别工作周期2.数据流a)取指周期:根据PC取出指令代码存放在IRb)间址周期:根据IR中指令地址码取出操作数的有效地址c)执行周期:根据指令字的操作码和操作数进行相应操作d)中断周期:保存断点,送中断向量,处理中断请求3.执行方案a)单指令周期:串行,指令相同执行时间b)多指令周期:串行,指令不同执行时间c)流水线方案:隔一段时间启动一条指令,多条指令处于不同阶段,同事并行处理(三)数据通路的功能和基本结构(连接路径)1.CPU内部总线a)单总线b)多总线2.专用数据通路:多路选择器和三态门3.了解各阶段微操作序列和控制信号(四)控制器的功能和工作原理1.控制器的结构和功能a)计算机硬件系统连接关系b)控制器的功能:取指令,分析指令,执行指令c)控制器的输入和输出2.硬布线控制器a)硬布线控制单元图:组合逻辑电路+触发器b)设计步骤(了解)●分析每个阶段的微操作序列●选择CPU的控制方式●安排微操作序列●电路设计3.微程序控制器a)基本结构●微地址形成部件●微地址寄存器CMAR●控制存储器CM●微指令寄存器CMDRb)微指令的格式●水平型:并行操作●字段直接编码方式●直接编码方式●字段间接编码方式●垂直型:类似机器指令c)微指令的地址形成方式●下地址字段指出:断定方式●根据机器指令的操作码形成d)基本概念●微命令和微操作●微指令和微周期●主存储器和控制存储器●程序和微程序●寄存器:MAR和CMAR,IR和CMDRe)硬布线和微程序的比较(微操作控制信号的实现形式)(五)指令流水线1.指令流水线的概念a)指令执行过程划分为不同阶段,占用不同的资源,就能使多条指令同时执行b)表示方法●指令流程图:分析影响流水线的因素●时空图:分析性能2.性能指标a)吞吐率TPb)加速比Sc)效率E3.影响流水线的因素a)结构相关(资源冲突)b)数据相关(数据冲突)c)控制相关(控制冲突)4.流水线的分类a)按使用级别:部件功能级,处理机级,处理机间b)按完成功能:单功能,多功能c)按连接方式:动态,静态d)按有无反馈信号:线性,非线性5.多发技术a)超标量流水线技术b)超流水线技术c)超长指令字技术四、总线(一)总线概念和分类1.定义:一组能为多个部件分时共享的公共信息传送线路2.分类a)按数据传输格式●串行,并行b)按功能●片内总线●系统总线●数据总线,地址总线,控制总线●通信总线c)按时序控制方式●同步,异步3.总线结构a)单总线结构——系统总线b)双总线结构(通道)●主存总线●IO总线c)三总线结构●主存总线●IO总线●DMA总线(二)总线的性能指标1.总线传输周期(总线周期)2.总线带宽3.总线宽度(位宽)4.总线复用:一种信号线传输不同信息(三)总线仲裁1.集中仲裁方式a)链式查询方式b)计数器定时查询方式c)独立请求方式2.分布仲裁方式(四)总线操作和定时1.总线传输的四个阶段a)申请分配阶段●传输请求●总线仲裁b)寻址阶段c)传输阶段d)结束阶段2.定时a)同步定时方式(同步通信)b)异步定时方式(异步通信)●不互锁●半互锁●全互锁c)半同步通信d)分离式通信(五)总线标准五、IO系统(一)IO系统基本概念1.演变过程a)早期:分散连接,CUP与IO串行,程序查询方式b)接口模块和DMA阶段:总线连接,cpu与io并行,中断方式及DMA方式c)具有IO通信结构的阶段d)具有IO处理机的阶段2.IO系统的基本组成a)IO软件——IO指令和通道指令b)IO硬件——外设,设备控制器和接口,IO总线等3.IO方式简介a)程序查询方式:IO与CPU串行,CPU有“踏步等待”现象(由程序控制)b)程序中断方式:IO准备数据时CPU继续工作,在指令执行结束时响应中断(由程序控制)c)DMA方式:主存与IO交换信息时由DMA控制器控制,在存取周期结束时响应DMA请求(由硬件控制)d)通道方式:通过IO指令启动通道,通道程序放在主存中(由硬件控制)(二)外部设备1.输入设备——键盘,鼠标2.输出设备a)显示器●分类●阴极射线管(CRT)●液晶(LCD)●发光二极管(LED)●参数●屏幕大小,分辨率,灰度级,刷新频率●显示存储器(VRAM)●容量=分辨率*灰度级位数●带宽=容量*帧频●打印机3.外存储器a)磁盘存储器●组成●存储区域:磁头,柱面,扇区●硬盘存储器:磁盘驱动器,磁盘控制器,盘片●工作过程:寻址,读盘,写盘对应的控制字,串行读写●性能指标●容量●记录密度●平均存取时间●数据传输率b)磁盘阵列RAID——利用磁盘廉价的特点提高存储性能,可靠性和安全性c)光盘存储器d)固态硬盘SSD——采用FLASH Memory记录数据(三)IO接口1.主要功能a)设备选址功能:地址译码和设备选择b)传送命令c)传送数据:实现数据缓冲和格式转换d)反应IO设备的工作状态2.基本结构a)设备选择电路,命令寄存器和命令译码器,数据缓冲寄存器DBR,设备状态标记,控制逻辑电路b)内部接口和外部接口3.编址a)统一编址——与存储器共用地址,用访存命令访问IO设备b)独立编址:单独使用一套地址,有专门的IO指令4.分类a)数据传送方式:并行接口,串行接口b)主机访问IO设备的控制方式●程序查询接口●中断接口●DMA接口c)功能选择的灵活性●可编程接口●不可编程接口(四)IO方式1.程序查询方式:CPU与IO串行工作,鼠标,键盘2.程序中断方式a)中断系统●中断的基本概念●工作流程●中断请求●分类●中断请求标记触发器INTR●中断响应●中断响应的条件●中断判优●软件:查询程序●硬件:排队器●优先级的设置●中断处理●中断隐指令●关中断●保存断点PC●引出中断服务程序●中断服务程序●单重中断与多重中断●中断服务程序的具体步骤●中断屏蔽技术●屏蔽字●程序执行轨迹b)程序中断方式●工作流程●CPU占用情况●中断响应(隐指令)●中断服务程序3.DMA方式a)DMA控制器●组成●主存地址计数器:存放要交换数据的主存地址●传送长度计数器:记录传送数据的长度●数据缓冲寄存器:暂存每次传送的数据●DMA请求触发器:设备准备好数据后将其置位●控制/状态逻辑:由控制和时序电路及状态标志组成●中断机构:数据传送完毕后触发中断机构,提出中断请求●主要功能●传送前:接受外设的DMA请求,向CPU发出总线请求,接管总线控制权●传送时:管理总线,控制数据传送,确定主存单元地址及长度,能自动修改对应参数●传送后: 向CPU报告DMA操作的结束b)传送过程●预处理:CPU完成寄存器初值设置等准备工作●数据传送:CPU继续执行主程序,DMA控制器完成数据传送●后处理:CPU执行中断服务程序做DMA结束处理。
02318自考计算机组成原理(名词解释)总结

第一章1.主机:由CPU、存储器与I/O接口合在一起构成的处理系统称为主机。
2.CPU:中央处理器,是计算机的核心部件,由运算器和控制器构成。
3.运算器:计算机中完成运算功能的部件,由ALU和寄存器构成。
4.ALU:算术逻辑运算单元,负责执行各种算术运算和逻辑运算。
5.外围设备:计算机的输入输出设备,包括输入设备,输出设备和外存储设备。
6.数据:编码形式的各种信息,在计算机中作为程序的操作对象。
7.指令:是一种经过编码的操作命令,它指定需要进行的操作,支配计算机中的信息传递以及主机与输入输出设备之间的信息传递,是构成计算机软件的基本元素。
8.透明:在计算机中,从某个角度看不到的特性称该特性是透明的。
9.位:计算机中的一个二进制数据代码,计算机中数据的最小表示单位。
10.字:数据运算和存储的单位,其位数取决于具体的计算机。
11.字节:衡量数据量以及存储容量的基本单位。
1字节等于8位二进制信息。
12.字长:一个数据字中包含的位数,反应了计算机并行计算的能力。
一般为8位、16位、32位或64位。
13.地址:给主存器中不同的存储位置指定的一个二进制编号。
14.存储器:计算机中存储程序和数据的部件,分为内存和外存。
15.总线:计算机中连接功能单元的公共线路,是一束信号线的集合,包括数据总线.地址总线和控制总线。
16.硬件:由物理元器件构成的系统,计算机硬件是一个能够执行指令的设备。
17.软件:由程序构成的系统,分为系统软件和应用软件。
18.兼容:计算机部件的通用性。
19.软件兼容:一个计算机系统上的软件能在另一个计算机系统上运行,并得到相同的结果,则称这两个计算机系统是软件兼容的。
20.程序:完成某种功能的指令序列。
21.寄存器:是运算器中若干个临时存放数据的部件,由触发器构成,用于存储最频繁使用的数据。
22.容量:是衡量容纳信息能力的指标。
23.主存:一般采用半导体存储器件实现,速度较高.成本高且当电源断开时存储器的内容会丢失。
计算机组成原理总结

计算机组成原理总结第一章1,冯诺依曼计算机的特点?1)计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成;2)指令和数据以同等地位存放在存储器中,并可按地址寻访;3)指令和数据均用二进制数表示;4)指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;5)指令在存储器中按顺序存放,通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序;6)机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。
2,计算机由哪几部分组成(图)?(课本图1.7、1.8)运算器、存储器、控制器、输入设备和输出设备3,计算机的硬件设备(字长,容量,速度)?1)字长:机器字长是指CPU —次能处理数据的位数,通常与CPU的寄存器的位数有关;2)容量:存储器中可存二进制代码的总量,存储器的容量应该包括主存容量和辅存容量。
a)主存容量:指主存中存放二进制代码的总位数;b)辅存容量:通常用字节数来表示;4,高级语言和低级语言相比有什么特点?()1)高级语言(c、C++、java):编程效率高,运行效率低,可移植性好;2)低级语言(汇编语言):编程效率低,运行效率高,可移植性差。
第三章1,什么是总线,有哪些分类?总线:是连接多个部件的信息传输线,是各部件共享的传输介质;2,什么是系统总线,有哪些分类?系统总线:指CPU,主存,I/O 设备各大部件之间的信息传输线;—>片内总线:芯片内部的总线(课本P4J );系统总线:指CPU 「主存,"0设备各大部件之间的信息传输线;―数据总线:用剌专输各功能部<牛之间的数据信息「是双向 的f 位数与仪器字氏存储字长有关;一>地址总线:主要用来支出数据总线是哪个的源数据或目的数 据在主存单元的地址或I/O 设备的地址;—控制总线:用来发岀各种控制信号的传输线;—>通信总线:用于计算机系统之间或计算机系统与其他系统之间的通信;一*串行通信:在单条T 立宽的传输牡(T5T53安顺序分时 小;并行通信:数据在多条并行1位宽的传输线上”同时由源传1一>送到目的地.3, 总线宽度与总线带宽的区别?1) 总线宽度:指 数据总线的根数,用bit 表示;2) 总线带宽:课理解为总线的传输速率,单位时间内总上传输数据的位数,用每秒 传输信息的字节数来判定,单位, Mbps 。
计算机组成原理知识点

计算机组成原理知识点1. 冯·诺依曼体系结构:计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。
2. 运算器:计算机的核心部分,负责执行各种算术运算和逻辑运算。
3. 控制器:负责控制指令的执行次序和操作,包括指令的获取、解码和执行。
4. 存储器:用于存储计算机程序和数据,包括主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。
5. 输入设备:用于将外部数据或指令输入到计算机,包括键盘、鼠标、扫描仪等。
6. 输出设备:用于将计算机处理后的结果输出到外部,包括显示屏、打印机、音响等。
7. 指令集:计算机能够执行的全部指令的集合。
8. 指令的执行过程:指令的获取、解码、操作和存储四个步骤。
9. 计算机的时钟:用于统一各个部件的工作节奏。
10. 运算器的设计:包括算术逻辑单元(ALU)和寄存器的设计。
11. 控制器的设计:包括指令寄存器、程序计数器和指令译码器的设计。
12. 存储器的分类:根据访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。
13. 存储器的层级结构:由高速缓存、主存储器和辅助存储器组成,速度逐级递减,容量逐级递增。
14. 输入输出控制方式:包括程序控制方式、中断方式和直接存储器访问方式。
15. 总线的作用:用于数据和控制信息在计算机各个部件之间传输。
16. 总线的分类:根据传输数据的方式可以分为数据总线、地址总线和控制总线。
17. 中央处理器(CPU)的功能:包括指令的获取、解析、运算和存储。
18. 中央处理器的核心部分:由运算器和控制器组成。
19. 中央处理器的指令周期:包括取指周期、执行周期和存储周期。
20. 中央处理器的性能指标:包括时钟频率、主频和执行速度。
21. 程序和指令:程序是指一系列有序的指令集合,指令是计算机能够识别和执行的最小指令单元。
22. 计算机的存储方式:包括字节顺序、地址分配和寻址方式。
23. 输入输出设备的原理:包括数据传输、数据缓冲和数据控制。
计算机组成原理内容总结

第一章计算机系统概论1、基本概念硬件:是指可以看得见、摸得着的物理设备(部件)实体,一般讲硬件还应包括将各种硬件设备有机组织起来的体系结构。
软件:程序(代码)+ 数据 + 文档。
由两部分组成,一是使计算机硬件能完成运算和控制功能的有关计算机指令和数据定义的组合,即机器可执行的程序及有关数据;二是机器不可执行的,与软件开发、过程管理、运行、维护、使用和培训等有关的文档资料。
固件:将软件写入只读存储器ROM中,称为固化。
只读存储器及其写入的软件称为固件。
固件是介于硬件和软件之间的一种形态,从物理形态上看是硬件,而从运行机制上看是软件。
响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。
处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。
CPI:执行一条指令所需要的平均时钟周期数,可用下式计算CPI=执行某段程序所需的CPU时钟周期数/该程序包含的指令条数。
MIPS:平均每秒执行多少百万条定点指令数,用下式计算MIPS=指令条数 /(程序执行时间× 106)FLOPS:平均每秒执行浮点操作的次数,用来衡量机器浮点操作的性能,FLOPS=程序中的浮点操作次数/程序执行时间(秒)指令流:在取指周期中从内存中读出的信息流称为指令流,它通过总线、CPU内部数据通路流向控制器。
数据流:在执行周期中从内存中读出的信息流称为数据流,它通过总线、CPU内部数据通路流向运算器。
2、冯·诺依曼计算机(1)主要设计思想由运算器、控制器、存储器、输入设备、输出设备五大部分构成计算机硬件系统概念结构;采用二进制代码表示数据和指令;采用存储程序控制方式(指令驱动)。
(2)主要组成部分及结构要求:能简要描述清楚其工作过程。
3、计算机如何区分指令和数据?从时间上来说,取指令事件发生在取指周期(取指令阶段),取数据事件发生在执行周期(执行指令阶段);从空间(处理部件)上来说,指令一定送给控制器,数据一定送给运算器。
(完整版)计算机组成原理重点整理

一.冯·诺依曼计算机的特点1945年,数学家冯诺依曼研究EDVAC机时提出了“存储程序”的概念1.计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成2.指令和数据以同等地位存放于存储器内,并可按地址寻访。
3.指令和数据均用二进制数表示。
4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。
5.指令在存储器内按顺序存放。
通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。
6.机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。
二.计算机硬件框图1.冯诺依曼计算机是以运算器为中心的2.现代计算机转化为以存储器为中心各部件功能:1.运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内。
2.存储器用来存放数据和程序。
3.控制器用来控制、指挥程序和数据的输入、运行以及处理运算结果4.输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式(鼠标键盘)。
5.输出设备可将机器运算结果转换为人们熟悉的信息形式(打印机显示屏)。
计算机五大子系统在控制器的统一指挥下,有条不紊地自动工作。
由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,两大不见往往集成在同一芯片上,合起来统称为中央处理器(CPU)。
把输入设备与输出设备简称为I/O设备。
现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器。
CPU与主存储器合起来又可称为主机,I/O设备又可称为外部设备。
主存储器是存储器子系统中的一类,用来存放程序和数据,可以直接与CPU交换信息。
另一类称为辅助存储器,简称辅存,又称外村。
算术逻辑单元简称算逻部件,用来完成算术逻辑运算。
控制单元用来解实存储器中的指令,并发出各种操作命令来执行指令。
ALU和CU是CPU的核心部件。
I/O设备也受CU控制,用来完成相应的输入输出操作。
《计算机组成原理》总结完整版

《计算机组成原理》总结完整版《计算机组成原理》学科复习总结★第⼀章计算机系统概论本章内容:本章主要讲述计算机系统的组成、计算机系统的分层结构、以及计算机的⼀些主要指标等需要掌握的内容:计算机软硬件的概念,计算机系统的层次结构、体系结构和计算机组成的概念、冯.诺依曼的主要思想及其特点、计算机的主要指标本章主要考点:概念1、当前的CPU由哪⼏部分组成?控制器、运算器、寄存器、cache (⾼速缓冲存储器)2、⼀个完整的计算机系统应包括哪些部分?配套的硬件设备和软件系统3、什么是计算机硬件、计算机软件?各由哪⼏部分组成?它们之间有何联系?计算机硬件是指计算机的实体部分,它由看得见摸得着的各种电⼦元器件,各类光、电、机设备的实物组成。
主要包括运算器(ALU)、控制器(CU)、存储器、输⼊设备和输出设备五⼤组成部分。
软件是计算机程序及其相关⽂档的总称,主要包括系统软件、应⽤软件和⼀些⼯具软件。
软件是对硬件功能的完善与扩充,⼀部分软件⼜是以另⼀部分软件为基础的再扩充。
4、冯·诺依曼计算机的特点●计算机由运算器、存储器、控制器、输⼊设备和输出设备五⼤部件组成●指令和数据以同等地位存于存储器内,可按地址寻访●指令和数据⽤⼆进制表⽰●指令由操作码和地址码组成,操作码⽤来表⽰操作的性质,地址码⽤来表⽰操作数在存储器中的位置●指令在存储器内按顺序存放●机器以运算器为中⼼,输⼊输出设备和存储器间的数据传送通过运算器完成5、计算机硬件的主要技术指标●机器字长:CPU ⼀次能处理数据的位数,通常与CPU 中的寄存器位数有关●存储容量:存储容量= 存储单元个数×存储字长;MAR(存储器地址寄存器)的位数反映存储单元的个数,MDR(存储器数据寄存器)反映存储字长主频吉普森法●运算速度MIPS 每秒执⾏百万条指令CPI 执⾏⼀条指令所需的时钟周期数FLOPS 每秒浮点运算次数◎第⼆章计算机的发展及应⽤本章内容:本章主要讲述计算机系统、微型计算机系统的发展过程以及应⽤。
(完整版)计算机组成原理知识点总结(唐朔飞版)

1、硬件:输入输出设备,控制器,存储器,运算器。
2、计算机技术指标:机器字长、存储容量、运算速度。
3、多总线结构的原理:双总线结构特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线和I/O总线分开的结构。
三总线1由主存总线用于CPU与主存之间的传输,I/O总线供CPU与各类I/O 设备之间传递信息,DMA总线用于高速IO设备与主存之间直接交换信息,任意时刻只能用一种总线,主存总线与DMA总线不能同时对主存进行存取。
三总线2CPU与Cache之间构成局部总线,而且还直接连到系统总线上,cache可通过系统总线与主存传输信息,还有一条扩展总线可以连接IO设备。
四总线由局部总线,系统总线,告诉总线,扩展总线构成。
4、总线判优分为集中式和分布式两种,集中式分为链式查询、计数器定时查询、独立请求方式(排队器)5、总线通信控制的四种方式:同步通信,异步通信,半同步通信,分离式通信。
6、波特率是每秒传输的位数,比特率是每秒传输的有效数据位数(bps)7、存储器技术指标:存储速度,存储容量和位价。
8、存储器分为主存,闪存,辅存和缓存。
9、分层原因:1缓存-主存层解决CPU与主存速度不匹配问题;2主存-辅存层解决系统存储容量的问题。
10、主存的技术指标:存储容量,存储速度(存取时间和存取周期表示)。
11、存储器带宽的计算方法:如存取周期为500ns,每个存取周期可访问16位,则带宽为32M位/秒。
带宽是衡量数据传输率的重要技术指标。
12、动态RAM的刷新方式:集中刷新(是在规定的一个刷新周期内,对全部存储单元集中一段时间逐行进行刷新,此刻必须停止读写操作‘死时间’)分散刷新(指对每行存储单元的刷新分散到每个存取周期内完成。
不存在死时间,整个系统速度降低)异步刷新(前两种方式的结合,即可缩短死时间,又充分利用最大刷新间隔为2ms的特点)。
13、动态RAM集成度远高于静态RAM;动态RAM行列地址按先后顺序输送,减少了芯片引脚,封装尺寸也减少;动态RAM功耗比静态RAM小;动态RAM的价格比静态RAM便宜;由于使用动态元件,因此速度比静态RAM低;动态RAM需要再生,需配置再生电路,也需要消耗一部分功率。
计算机组成原理知识点总结

计算机组成原理知识点总结计算机组成原理是计算机科学与技术专业的一门重要课程,涉及到计算机硬件的各个方面。
下面是对计算机组成原理的一些常见知识点的总结:1. 计算机的基本组成:计算机由中央处理器(CPU)、存储系统(主存储器和辅助存储器)、输入设备和输出设备组成。
2. 中央处理器(CPU):CPU是计算机的核心部件,负责执行指令和控制计算机的运算。
它包括运算器和控制器两个主要部件。
3. 存储系统:存储系统用于存储和访问计算机的数据和程序,分为主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)两种。
主存储器是CPU直接访问的内存空间,辅助存储器则用于长期存储数据。
4. 输入设备和输出设备:输入设备将外部数据和指令输入到计算机中,输出设备将计算机处理后的结果输出给用户。
常见的输入设备有键盘、鼠标等,输出设备有显示器、打印机等。
5. 数据表示与运算:计算机使用二进制系统来表示和处理数据。
常见的数值表示方法有原码、反码和补码。
计算机可以对数据进行加、减、乘、除等基本运算。
6. 指令与程序:计算机通过指令集来执行各种操作。
指令包括操作码和操作数,操作码表示要执行的操作,操作数表示操作的对象。
程序是一系列指令的集合,通过指令的顺序执行来实现特定功能。
7. 控制器:控制器负责解析和执行指令,控制计算机的各个部件的动作,保证指令的正确执行顺序。
控制器包括指令寄存器、程序计数器和时序控制等模块。
8. 总线:计算机中各个部件之间通过总线进行数据和控制信号的传输。
主要包括数据总线、地址总线和控制总线三种。
9. 中断和异常:中断是指计算机在执行中断指令或外部事件发生时,强制暂停当前程序的执行,转而执行中断处理程序。
异常是指计算机执行指令时遇到的错误或特殊情况,需要进行异常处理。
10. 存储器层次结构:计算机的存储器层次结构包括寄存器、高速缓存、主存储器和辅助存储器等多个层次。
不同层次的存储器根据访问速度和容量等特点,提供不同级别的数据存储和访问。
计算机组成原理知识点总结

计算机组成原理知识点总结计算机组成原理是计算机科学与技术的基础课程之一,涉及到计算机系统的硬件和软件组成,以及它们之间的交互关系。
以下是一些计算机组成原理的重要知识点总结:1. 计算机的分类:计算机可以根据规模、用途和结构等方面进行分类。
常见的分类有超级计算机、服务器、工作站、个人电脑、嵌入式系统等。
2. 计算机的基本组成:计算机由硬件和软件两部分组成。
硬件包括中央处理器(CPU)、内存、输入输出设备和存储设备等。
软件包括系统软件和应用软件。
3. 冯·诺依曼体系结构:冯·诺依曼体系结构是现代计算机体系结构的基础,它包含了存储器、算术逻辑单元(ALU)、控制单元和输入输出单元。
4. 存储器层次结构:计算机的存储器层次结构从高速缓存到主存再到辅助存储器,层层递进,速度和容量逐渐增大,成本逐渐减小。
5. 数据表示和运算:计算机使用二进制表示数据,并且可以进行不同进制间的转换。
在计算过程中,计算机使用算术逻辑运算对数据进行操作。
6. 指令集体系结构:指令集体系结构是计算机硬件和软件的接口,定义了计算机的指令集和指令执行方式。
常见的指令集体系结构有精简指令集(RISC)和复杂指令集(CISC)。
7. CPU的工作原理:CPU执行计算机指令的过程包括取指令、译码指令、执行指令和写回结果等步骤。
这些步骤是由控制单元和算术逻辑单元(ALU)完成的。
8. 输入输出系统:计算机通过输入输出设备与外部环境进行交互。
输入输出系统包括输入输出控制器、输入输出接口和输入输出设备等。
9. 总线:计算机内部各个硬件部件之间通过总线进行通信和数据传输。
总线包括数据总线、地址总线和控制总线。
10. 中断和异常:中断是计算机在执行过程中响应外部事件的一种机制,可以中断当前的执行流程。
异常是由于程序错误或硬件错误而引起的计算机响应机制。
以上是计算机组成原理的一些重要知识点总结,它们构成了计算机系统的基础,对于理解计算机的工作原理和设计原则非常重要。
计算机组成原理知识点总结

计算机组成原理知识点总结1.计算机系统结构:计算机系统由硬件和软件两个部分组成。
硬件包括中央处理器(CPU)、内存、存储、输入输出设备等;软件包括系统软件和应用软件。
计算机的基本组成包括控制器、运算器、存储器和输入输出设备。
2.布尔代数和逻辑运算:布尔代数是一种逻辑运算的数学体系,计算机的工作原理是基于逻辑运算的。
布尔代数的基本运算有与、或、非、与非等。
逻辑电路是基于这些布尔运算的组合与设计电路,并且逻辑门是构成逻辑电路的基本元件,包括与门、或门和非门等。
3. 数据表示和编码方式:计算机内部使用二进制表示和存储数据。
十进制数可以转换为二进制数,通过位于和非显示十进制数。
计算机采用不同的编码方式来表示字符和数据,例如ASCII码、Unicode等。
4.计算机中的算术运算:计算机进行算术运算包括加法、减法、乘法和除法等。
算术运算是通过逻辑运算和位操作实现的,例如加法器、乘法器和除法器。
5.存储器层次结构:存储器是计算机中用于存储和访问数据的设备。
存储器层次结构包括寄存器、高速缓存、主存储器和辅助存储器等。
存储器的访问速度和容量呈反比,存储器层次结构的设计目标是在速度和容量之间找到一个平衡点。
6.输入输出设备:计算机通过输入输出设备与外部世界交互,包括键盘、鼠标、显示器、打印机等。
输入输出设备通过中断机制和设备控制器实现与CPU的数据交换。
7.中央处理器:中央处理器是计算机的核心,执行指令并控制计算机的运行和运算。
中央处理器由控制器和运算器组成,控制器负责解释和执行指令,运算器负责算术和逻辑运算。
8.指令的执行过程:计算机按照程序顺序依次执行指令,指令的执行过程包括取指令、解码、执行和访存。
指令集架构是计算机硬件和软件交互的接口。
9.总线和IO结构:总线是计算机内部各个部件之间传输数据和信号的通道,包括地址总线、数据总线和控制总线。
IO结构包括存储器映射IO和端口映射IO两种方式。
10.中断和异常处理:计算机中断是指暂停当前程序的执行,转而执行其他程序或处理异常情况。
(完整版)计算机组成原理知识点总结

第2章数据的表示和运算主要内容:(一)数据信息的表示1.数据的表示2.真值和机器数(二)定点数的表示和运算1.定点数的表示:无符号数的表示;有符号数的表示。
2.定点数的运算:定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法。
(三)浮点数的表示和运算1.浮点数的表示:浮点数的表示范围;IEEE754标准2.浮点数的加/减运算(四)算术逻辑单元ALU1.串行加法器和并行加法器2.算术逻辑单元ALU的功能和机构2.3 浮点数的表示和运算2.3.1 浮点数的表示(1)浮点数的表示范围•浮点数是指小数点位置可浮动的数据,通常以下式表示:N=M·RE其中,N为浮点数,M为尾数,E为阶码,R称为“阶的基数(底)”,而且R为一常数,一般为2、8或16。
在一台计算机中,所有数据的R都是相同的,于是不需要在每个数据中表示出来。
浮点数的机内表示浮点数真值:N=M ×2E浮点数的一般机器格式:数符阶符阶码值 . 尾数值1位1位n位m位•Ms是尾数的符号位,设置在最高位上。
•E为阶码,有n+1位,一般为整数,其中有一位符号位EJ,设置在E的最高位上,用来表示正阶或负阶。
•M为尾数,有m位,为一个定点小数。
Ms=0,表示正号,Ms=1,表示负。
•为了保证数据精度,尾数通常用规格化形式表示:当R=2,且尾数值不为0时,其绝对值大于或等于0.5。
对非规格化浮点数,通过将尾数左移或右移,并修改阶码值使之满足规格化要求。
浮点数的机内表示阶码通常为定点整数,补码或移码表示。
其位数决定数值范围。
阶符表示数的大小。
尾数通常为定点小数,原码或补码表示。
其位数决定数的精度。
数符表示数的正负。
浮点数的规格化字长固定的情况下提高表示精度的措施:•增加尾数位数(但数值范围减小)•采用浮点规格化形式尾数规格化:1/2≤M <1 最高有效位绝对值为1浮点数规格化方法:调整阶码使尾数满足下列关系:•尾数为原码表示时,无论正负应满足1/2 ≤M <1即:小数点后的第一位数一定要为1。
计算机组成原理必看总结

一,冯.诺依曼机的特点:1.计算机由运算器,存储器,控制器和输入设备,输出设备五大部件组成2.指令和数据以同等地位存于存储器内,并可按地址访问3.指令和数据均用二进制代码表示4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。
5.指令在存储器内按顺序存放6.以运算器为中心计算机与日常使用的袖珍计算机的本质区别在于自动化程度的高低二,计算机的硬件指标(1)机器字长:C P U一次能处理数据的位数,通常与C P U寄存器位数有关(2)存储容量:包括主存和辅存,是存放二进制代码的总和,可以用位或字节来衡量。
(3)运算速度:可以用MI P S,C PI (每执行一条指令所需要的时钟周期数)或F L OP S (每秒浮点运算次数)。
三,电子管-----晶体管--------中小规模集成电路----------大规模集成电路计算机分类方法很多,按信息的形式可以分为数字计算机和模拟计算机,前者以离散型数字脉冲形式传递,而后者的信息是以连续型电波形式传递的,两者结合为数字模拟混合式计算机。
1 94 6年研制成功的第一台计算机称为EN I A C.数控机床是计算机在过程控制方面的应用,邮局实现信息自动分拣是计算机在模式识别方面的应用。
计算机在过程控制应用中,除计算机外,A/D转换器是重要部件,能把模拟量转换成计算机能识别的信号。
计算机发展至今,虽然与早期相比面貌全非,但存储程序的特点不变四,摩尔定律:微芯片上集成的晶体管数目以每三年翻两番的规律递增,由于受到物理极限的制约,不能永远生效五,什么是总线?特点?总线是连接多个部件的信息传输线,是各个部件共享的传输介质。
而且在某一个时刻允许有一个部件向总线发送信息,但多个部件可以同时从总线上接受相同的信息。
总线周期:申请分配阶段,寻址阶段,传送阶段,结束阶段六,总线控制包括:总线判优控制和总线通信控制。
前者又分为集中式和分布式良种,其中集中式总线判优逻辑有链式查询,计数器定时查询,独立请求方式。
计算机组成原理(重点知识总结)

第一章计算机系统概论1.冯•诺依曼计算机模型。
1)计算机由运算器、存储器、控制器和输入/输出五个部件组成;2)存储器以二进制形式存储指令和数据;3)存储程序工作方式;4)五部件以运算器为中心进行组织。
现代计算机以存储器为中心。
2.计算机系统性能指标:字长,主频,主存容量,RASIS特性,兼容性。
第三章系统总线1.总线是连接两个或多个功能部件的一组共享的信息传输线;一个部件发出的信号可以被连接到总线上的其他所有部件所接收。
总线按连接部件不同分为:片内总线、系统总线、通信总线。
系统总线按传输信息不同分为:数据总线(双向,其位数与机器字长和存储字长有关,总线宽度)、地址总线(由CPU输出,单向)、控制总线。
2.总线性能指标:(1)总线宽度:它是指数据总线的根数。
(2)总线带宽:总线的数据传输速率即单位时间内总线上传输数据的位数,单位为MBps(3)时钟同步/异步:总线上的数据与时钟同步工作的总线称同步总线,与时钟不同步工作的总线称为异步总线。
(4)总线复用:为了提高总线的利用率,优化设计,特将地址总线和数据总线共用一条物理线路,只是某一时刻该总线传输地址信号,另一时刻传输数据信号或命令信号。
(5)信号线数:即地址总线、数据总线和控制总线三种总线数的总和。
(6)总线控制方式:包括并发工作、自动配置、仲裁方式、逻辑方式、计数方式等。
3.总线裁决:决定哪个总线主控设备将在下次得到总线使用权的过程称为总线裁决。
•两类总线裁决方式:集中式和分布式集中式裁决方式:使用总线控制器;分布式裁决方式:控制逻辑分散在各个部件或设备中。
集中式裁决方式:链式查询,计数器定时查询,独立请求查询。
总线通信控制:同步通信(通信双方由统一时标控制数据传送)异步通信(采用应答方式,不互锁,半互锁,全互锁)。
第四章存储器1.存储器的主要性能指标容量,速度,价格。
存储器的分类2.按存储介质分类:1)半导体存储器(双极型和MOS型)2)磁表面存储器3)磁芯存储器4)光盘存储器按存取方式分类1)随机存储器2)只读存储器(静态SRAM,动态DRAM)3)串行访问存储器3.半导体只读存储器:掩膜只读存储器ROM可编程ROM(PROM)可擦除和编程的ROM(EPROM)电擦除电改写只读存储器(EEPROM)闪速存储器(flash memory)4.主存的指标存储容量,存储速度(时间和周期)和存储器带宽。
计算机组成原理知识点总结

计算机组成原理知识点总结计算机组成原理是计算机科学的重要分支,它研究计算机硬件系统的组成和工作原理。
以下是计算机组成原理的一些重要知识点的总结:1. CPU:中央处理器(CPU)是计算机的核心,它执行所有计算和控制计算机的操作。
CPU由控制器和算术逻辑单元(ALU)组成。
控制器从内存中读取指令,解码它们,并执行相应的操作。
ALU执行算术和逻辑运算。
2. 存储器:计算机存储器分为两种类型:主存储器和辅助存储器。
主存储器通常是随机存储器(RAM),用于存储程序和数据。
辅助存储器包括硬盘、光盘和闪存,用于长期存储数据。
3. 总线:总线是计算机内部各组件之间进行通信的路径。
其中包括地址总线、数据总线和控制总线。
地址总线用于指定内存中的位置,数据总线用于传输数据,控制总线用于控制操作。
4. 输入输出设备:计算机输入输出设备包括键盘、鼠标、显示器、打印机等。
它们使用户能够与计算机进行交互,并获得输出结果。
5. 指令集架构:指令集架构定义了计算机的指令集和处理器的操作方式。
其中包括精简指令集计算机(RISC)和复杂指令集计算机(CISC)。
6. 流水线:流水线是一种优化CPU性能的方式,它将指令分成多个阶段,并同时执行多个指令。
流水线可以提高CPU的处理速度,但也会增加延迟和资源竞争。
7. 缓存:缓存是一种性能优化技术,它使用快速的存储器来存储最常用的数据和指令,以减少对主存储器的访问。
8. 中断和异常:中断和异常是一种处理外部事件的方式。
当一个事件发生时,CPU会停止当前的操作,并调用相应的处理程序。
9. 多处理器系统:多处理器系统指的是具有多个处理器的计算机系统。
多处理器系统可以提高计算机的性能和可靠性,但也需要解决诸如并发、共享资源等问题。
以上是计算机组成原理的一些重要知识点的总结。
这些知识点在计算机科学和工程中都是非常重要的基础知识,理解它们对于理解计算机系统的工作原理和优化计算机性能都非常有帮助。
(完整版)计算机组成原理知识点总结

《计算机组成原理》(白中英)复习第一章计算机系统概论电子数字计算机的分类(P1)通用计算机(超级计算机、大型机、服务器、工作站、微型机和单片机)和专用计算机。
计算机的性能指标(P5)数字计算机的五大部件及各自主要功能(P6)五大部件:存储器、运算器、控制器、输入设备、输出设备。
存储器主要功能:保存原始数据和解题步骤。
运算器主要功能:进行算术、逻辑运算。
控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。
输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。
输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。
计算机软件(P11)系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类(P65)按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关(随机访问):随机存储器RAM ——在程序的执行过程中可读可写只读存储器ROM ——在程序的执行过程中只读存取时间与物理地址有关(串行访问):顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM ——静态RAM 、动态RAM只读存储器ROM ——MROM 、PROM 、EPROM 、EEPROM Flash Memory高速缓冲存储器(Cache)辅助存储器——磁盘、磁带、光盘存储器的分级(P66)存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器(cache)、主存储器、外存储器。
主存储器的技术指标(P67)存储容量:存储单元个数M ×每单元位数N存取时间:从启动读(写)操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间,时间单位为ns。
存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标。
计算机组成原理知识点总结

分四个阶段( 1 )申请分配阶段:由需要使用总线额的主模块提出申请, 经总线仲裁机构决定下一 传输周期的总线使用权授予某一申请者。
( 2 )寻址阶段:取得了使用权的主模块通过总线发出本次要访问的从模块的地址及有 关命令,启动参与本次传输的从模块。
( 3 ) 传数阶段:主模块和从模块进行数据交换,数据由源模块发出,经数据总线流入 目的模块。
( 4 )结束阶段:主模块的有关信息均从系统总线上撤除,让出总线使用权。
连续进行两次独立的存储器操作所需的最小时间间隔;震荡周期,时钟频率的倒数,是计算机最基本的、最小的时间单位,在一个时钟周期内, CPU 仅完成一个最基本的动作,即微指令。
CPU 每取出并执行一条指令所需的全部时间成为指令周期,及完成一条指令的时间存储器操作到完成该操作所需的全部时间。
寻道时间+等待时间三种方法( 1 )链式查询( 2 ) 计数器定时查询( 3 )独立请求方式硬件方法、软件方法优先级包含响应优先级和处理优先级,响应优先级是指 CPU 响应各中断源请求的优先次序,这种次序往往是硬件线路已经设置好的,不便于改动。
处理优先级是指 CPU 实际对各中断源请求的处理优先次序。
如果不采用屏蔽技术,则响应的优先次序就是处理的优先次序。
“存控”内有排队器( central processing unit )中央处理器( program counter ) 程序计数器( instruction register )指令寄存器( control unit )控制单元( arithmetic logic unit )算数逻辑单元( accumulator )累加器( mutiplier_quotient register )乘商寄存器( memmory address register )存储地址寄存器( memory data register )存储器数据缓存寄存器( million instruction per second )每秒执行百万条指令数( cycle per instruction )执行一条指令所需要的时钟周期()机器主频的倒数(floating point operation per second )浮点运算次数每秒,衡量运算速度1 GB = 1024 MB1 MB = 1024 KB1 KB = 1024 Bytes(字节)1 Byte = 8 bits (位)(peripheral component interconnect) 外围部件互连总线忙总线同意信号总线请求( main memory )主存(ramdom access memory) 随机存取存储器(read only memory)只读存储器高速缓冲存储器h=Nc/(Nc+Nm) Nc 为访问 cache 的次数, Nm 为访问主存的次数设 tc 为命中时的 cache 访问时间, tm 为未命中的主存访问时间, 1-h 表示未命中率, cache-主存系统的平均访问时间 ta 为 ta=htc+(1-h)tme 表示访问效率: e=tc/ta * 100%=tc/( htc+(1-h)tm) * 100%缓存的地址分为两段:高 c 位表示缓存的块号,低 b 位表示块内地址,2c =C 表示缓存块数,且 C 远小于 M。
计算机组成原理总结精选全文完整版

可编辑修改精选全文完整版第一章计算机系统概论1. 什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3计算机系统:由计算机硬件系统和软件系统组成的综合体。
计算机硬件:指计算机中的电子线路和物理装置。
计算机软件:计算机运行所需的程序及相关资料。
硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。
5. 冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8●计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;●指令和数据以同同等地位存放于存储器内,并可以按地址访问;●指令和数据均用二进制表示;●指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;●指令在存储器中顺序存放,通常自动顺序取出执行;●机器以运算器为中心(原始冯•诺依曼机)。
7. 解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。
解:P9-10主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。
CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。
主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;由存储体、各种逻辑部件及控制电路组成。
存储单元:可存放一个机器字并具有特定存储地址的存储单位。
存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。
存储字:一个存储单元所存二进制代码的逻辑单位。
存储字长:一个存储单元所存二进制代码的位数。
存储容量:存储器中可存二进制代码的总量;(通常主、辅存容量分开描述)。
机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。
指令字长:一条指令的二进制代码位数。
计算机组成原理总结

计算机体系结构(Computer Architecture)主要研究硬件和软件功能的划分,确定硬件和软件的界面,哪部分功能由硬件系统来完成,哪部分功能由软件系统来完成。
计算机组成原理(Computer Organization)是依据计算机体系结构,在确定且分配了硬件子系统的概念结构和功能特性的基础上,设计计算机各部件的具体组成,以及它们之间的连接关系,实现机器指令级的各种功能和特性,这点上说计算机组成原理是计算机体系结构的逻辑实现。
计算机实现(Computer Implementation)是计算机组成的物理实现,包括中央处理器、主存储器、输入输出接口和设备的物理结构,所选用的半导体器件的集成度和速度,器件、模块、插件、底板的划分,电源、冷却、装配等技术,生产工艺和系统调试等各种问题。
总之,就是将完成逻辑设计的计算机组成方案转换成真实的计算机,也就是将满足设计、运行、价格等各项要求的计算机系统真正地制作并调试出来。
计算机组成原理【考查目标】1. 理解单处理器计算机系统中各部件的内部工作原理,组成结构以及相互连接方式,具有完整的计算机系统的整机概念.2. 理解计算机系统层次化结构概念,熟悉硬件与软件间的界面,掌握指令集体系结构的基本知识和基本实现方法3. 能够运用计算机组成的基本原理和基本方法,对有关计算机硬件系统中的理论和实际问题进行计算,分析,并能对一些基本部件进行简单设计.一, 计算机系统概述(一) 计算机发展历程第一台电子计算机ENIAC诞生于1946年美国宾夕法尼亚大学.ENIAC 用了18000电子管,1500继电器,重30吨,占地170m2,耗电140kw,每秒计算5000次加法.冯•诺依曼(VanNeumann)首次提出存储程序概念,将数据和程序一起放在存储器,使编程更加方便.50年来,虽然对冯•诺依曼机进行很多改革,但结构变化不大,仍称冯•诺依曼机.一般把计算机的发展分为五个阶段:发展阶段时间硬件技术速度/(次/秒) 第一代1946-1957 电子管计算机时代40 000第二代1958-1964 晶体管计算机时代200 000第三代1965-1971 中小规模集成电路计算机时代1 000 000第四代1972-1977 大规模集成电路计算机时代10 000 000第五代1978-现在超大规模集成电路计算机时代100 000 000字积分机和计算机EDVAC(Electronic Discrete Variable Automatic Computer)电子离散变量计算机组成原理是讲硬件结构的系统结构是讲结构设计的摩尔定律微芯片上的集成管数目每3年翻两番.处理器的处理速度每18个月增长一倍.每代芯片的成本大约为前一代芯片成本的两倍新摩尔定律全球入网量每6个月翻一番.数学家冯·诺依曼(von Neumann)在研究EDVAC机时提出了“储存程序”的概念.以此为基础的各类计算机通称为冯·诺依曼机.它有如下特点:①计算机由运算器,控制器,存储器,输入和输出五部分组成②指令和数据以同等的地位存放于存储器内,并可按地址寻访③指令和数据均用二进制数表示④指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置⑤指令在存储器内按顺序存放⑥机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成图中各部件的功能·运算器用来完成算术运算和逻辑运算并将的中间结果暂存在运算器内·存储器用来存放数据和程序·控制器用来控制,指挥程序和数据的输入,运行以及处理运行结果·输入设备用来将人们熟悉的信息转换为机器识别的信息·输出设备将机器运算结果转为人熟悉的信息形式运算器最少包括3个寄存器(现代计算机内部往往设有通用寄存器)和一个算术逻辑单元(ALU Arithmetic Logic Unit).其中ACC(Accumulator)为累加器,MQ(Multiplier-Quotient Register)为乘商寄存器,X为操作数寄存器,这3个寄存器在完成不同运算时,说存放的操作数类别也各不相同.计算机的主要硬件指标(4.a) 主机完成一条指令的过程——以取数指令为例(4.b) 主机完成一条指令的过程——以存数指令为例(二) 计算机系统层次结构1. 计算机硬件的基本组成计算机硬件主要指计算机的实体部分,通常有运算器,控制器,存储器,输入和输出五部分.CPU 是指将运算器和控制器集成到一个电路芯片中.2. 计算机软件的分类计算机软件按照面向对象的不同可分两类:系统软件:用于管理整个计算机系统,合理分配系统资源,确保计算机正常高效地运行,这类软件面向系统.(包括:标准程序库,语言处理程序,OS,服务程序,数据库管理系统,网络软件)应用软件:是面向用户根据用户的特殊要求编制的应用程序,这类软件通常实现用户的某类要求.3. 计算机的工作过程(1)计算机的工作过程就是执行指令的过程指令由操作码和操作数组成:操作码指明本指令完成的操作 地址码指明本指令的操作对象 (2)指令的存储 指令按照存储器的地址顺序连续的存放在存储器中.(3)指令的读取 为了纪录程序的执行过程,需要一个记录读取指令地址的寄存器,称为指令地址寄存器,或者程序计数器.指令的读取就可以根据程序计数器所指出的指令地址来决定读取的指令,由于指令通常按照地址增加的顺序存放,故此,每次读取一条指令之后,程序操作码 地址码计数器加一就为读取下一条指令做好准备.(4)执行指令的过程在控制器的控制下,完成以下三个阶段任务:1)取指令阶段按照程序计数器取出指令,程序计数器加一2)指令译码阶段分析操作码,决定操作内容,并准备操作数3)指令执行阶段执行操作码所指定内容(三) 计算机性能指标1. 吞吐量,响应时间(1) 吞吐量:单位时间内的数据输出数量.(2) 响应时间:从事件开始到事件结束的时间,也称执行时间.2. CPU时钟周期,主频,CPI,CPU执行时间(1) CPU时钟周期:机器主频的倒数,T C(2)主频:CPU工作主时钟的频率,机器主频Rc(3)CPI:执行一条指令所需要的平均时钟周期(4)CPU执行时间:T CPU=In×CPI×T CIn执行程序中指令的总数CPI执行每条指令所需的平均时钟周期数T C时钟周期时间的长度3. MIPS,MFLOPS(1)MIPS:(Million Instructions Per Second)Te:执行该程序的总时间=指令条数/(MIPS×)In:执行该程序的总指令数Rc:时钟周期Tc的到数MIPS只适合评价标量机,不适合评价向量机.标量机执行一条指令,得到一个运行结果.而向量机执行一条指令,可以得到多个运算结果.(2) MFLOPS: (Million Floating Point Operations Per Second) MFLOPS=Ifn/(Te×)Ifn:程序中浮点数的运算次数MFLOPS测量单位比较适合于衡量向量机的性能.一般而言,同一程序运行在不同的计算机上时往往会执行不同数量的指令数,但所执行的浮点数个数常常是相同的.特点:1.MFLOPS取决于机器和程序两方面,不能反映整体情况,只能反映浮点运算情况2.同一机器的浮点运算具有一定的同类可比性,而非同类浮点操作仍无可比性当前微处理器的发展重点①进一步提高复杂度来提高处理器性能②通过线程进程级的并发性提高处理器性能③将存储器集成到处理器芯片来提高处理器性能④发展嵌入式处理器软件开发有以下几个特点1)开发周期长2)制作成本昂贵3)检测软件产品质量的特殊性计算机的展望一、计算机具有类似人脑的一些超级智能功能要求计算机的速度达1015/秒二、芯片集成度的提高受以下三方面的限制•芯片集成度受物理极限的制约•按几何级数递增的制作成本•芯片的功耗、散热、线延迟计算机辅助设计CAD 计算机辅助制造CAM计算机辅助工艺规划 Computer Aided Process Planning CAPP 计算机辅助工程 Computer Aided Engineering CAE 计算机辅助教学 Computer Assisted Instruction CAI科学计算和数据处理工业控制和实时控制网络技术应用虚拟现实办公自动化和管理信息系统 Computer Aided DesignCAD,CAM,CIMS ComputerAided Manufacturing多媒体技术 ComputerIntegrated Manufacturing System人工智能,模式识别,文字/语音识别,语言翻译,专家系统,机器人…二, 数据的表示和运算(一) 数制与编码1. 进位计数制及其相互转换1)进位计数制进位计数制是指按照进位制的方法表示数,不同的数制均涉及两个基本概念:基数和权.基数:进位计数制中所拥有数字的个数.权:每位数字的值等于数字乘以所在位数的相关常数,这个常数就是权.任意一个R 进制数X,设整数部分为n 位,小数部分为m 位,则X 可表示为:X =a n-1r n-1 + a n-2r n-2 + ┅ + a 0r 0 + a -1r -1 + a -2r -2 + ┅ + a -m r -m(X)r = ∑--=mn i i i r K 12)不同数制间的数据转换(1)二,八,十六进制数转换成十进制数利用上面讲到的公式: (N)2=∑Di•2i,(N)8=∑Di•8i, (N)16=∑Di•16i,进行计算.(2)十进制数转换成二进制数通常要对一个数的整数部分和小数部分分别进行处理,各自得出结果后再合并.◆对整数部分,一般采用除2取余数法,其规则如下:将十进制数除以2,所得余数(0或1)即为对应二进制数最低位的值.然后对上次所得商除以2,所得余数即为二进制数次低位的值,如此进行下去,直到商等于0为止,最后得的余数是所求二进制数最高位的值.◆对小数部分,一般用乘2取整数法,其规则如下:将十进制数乘以2,所得乘积的整数部分即为对应二进制小数最高位的值,然后对所余数的小数部分部分乘以2,所得乘积的整数部分为次高位的值,如此进行下去,直到乘积的小数部分为0,或结果已满足所需精度要求为止.(3)二进制数,八进制数和十六进制数之间的转换八进制数和十六进制数是从二进制数演变而来的:由3位二进制数组成1位八进制数;由4位二进制数组成1位十六进制数.对一个兼有整数和小数部分的数以小数点为界,小数点前后的数分别分组进行处理,不足的位数用0补足.对整数部分将0补在数的左侧,对小数部分将0补在数的右侧.这样数值不会发生差错.2. 真值和机器数真值:数据的数值通常以正(+)负(-)号后跟绝对值来表示,称之为“真值”.机器数:在计算机中正负号也需要数字化,一般用0表示正号,1表示负号.把符号数字化的数成为机器数.3. BCD码(Binary Coded Decimal以二进制编码的十进制码)在计算机中采用4位二进制码对每个十进制数位进行编码.4位二进制码有16种不同的组合,从中选出10种来表示十进制数位的0~9,用0000,0001,…,1001分别表示0,1,…,9,每个数位内部满足二进制规则,而数位之间满足十进制规则,故称这种编码为“以二进制编码的十进制(binary coded decima1,简称BCD)码”.在计算机内部实现BCD码算术运算,要对运算结果进行修正,对加法运算的修正规则是:如果两个一位BCD码相加之和小于或等于(1001)2,即(9)10,不需要修正;如相加之和大于或等于(1010)2,或者产生进位,要进行加6修正,如果有进位,要向高位进位.4. 字符与字符串在计算机中要对字符进行识别和处理,必须通过编码的方法,按照一定的规则将字符用一组二进制数编码表示.字符的编码方式有多种,常见的编码有ASCII码,EBCDIC码等.1)ASCII码(American Standard Code for Information Interchange 美国信息交换标准码)ASCII码用7位二进制表示一个字符,总共128个字符元素,包括10个十进制数字(0-9),52个英文字母(A-Z和a-z),34专用符号和32控制符号.2)EBCDIC码为Extended Binary Coded Decimal Interchange Code的简称,它采用8位来表示一个字符.3)字符串的存放向量存储法:字符串存储时,字符串中的所有元素在物理上是邻接的.串表存储法:字符串的每个字符代码后面设置一个链接字,用于指出下一个字符的存储单元的地址.5. 校验码Check Digit数据校验码是一种常用的带有发现某些错误或自动改错能力的数据编码方法.其实现原理,是加进一些冗余码,使合法数据编码出现某些错误时,就成为非法编码.这样,可以通过检测编码的合法性来达到发现错误的目的.合理地安排非法编码数量和编码规则,可以提高发现错误的能力,或达到自动改正错误的目的.码距:码距根据任意两个合法码之间至少有几个二进制位不相同而确定的,仅有一位不同,称其码距为1.1)奇偶校验码(Parity Bit)WIKI(开销最小,能发现数据代码中一位出错情况的编码,常用于存储器读写检查或ASCII字符或其它类型的信息传输的检查)P216 它的实现原理,是使码距由1增加到2.若编码中有1位二进制数出错了,即由1变成0,或者由0变成1.这样出错的编码就成为非法编码,就可以知道出现了错误.在原有的编码之上再增加一位校验位,原编码n位,形成新的编码为n+1 位.增加的方法有2种:奇校验:增加位的0或1要保证整个编码中1的个数为奇数个.偶校验:增加位的0或1要保证整个编码中1的个数为偶数个.2)海明校验码(Hamming Code)P100实现原理,在数据中加入几个校验位,并把数据的每一个二进制位分配在几个奇偶校验组中.当某一位出错就会引起有关的几个校验组的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为自动纠错提供了依据.假设校验位的个数为r,则它能表示2r个信息,用其中的一个信息指出“没有错误”,其余2r-1个信息指出错误发生在哪一位.然而错误也可能发生在校验位,因此只有k=2r-1-r个信息能用于纠正被传送数据的位数,也就是说要满足关系:2r k+r+13)CRC校验码(Cyclic Redundancy Check 循环冗余校验)P144CRC校验码一般是指k位信息之后拼接r位校验码.关键问题是如何从k位信息方便地得到r位校验码,以如何从位k+r信息码判断是否出错.将带编码的k位有效信息位组表达为多项式:式Ci中为0或1.若将信息位左移r位,则可表示为多项式M(x).xr.这样就可以空出r位,以便拼接r位校验位.CRC码是用多项式M(x).xr除以生成多项式G(x)所得的余数作为校验码的.为了得到r位余数,G(x)必须是r+1位.设所得的余数表达式为R(x),商为Q(x).将余数拼接在信息位组左移r位空出的r位上,就构成了CRC码,这个码的可用多项式表达为: M(x)·xr+R(x)=[Q(x)·G(x)+R(x)]+R(x)=[Q(x)·G(x)]+[R(x)+R(x)]=Q(x)·G(x)因此,所得CRC码可被G(x)表示的数码除尽.将收到的CRC码用约定的生成多项式G(x)去除,如果无错,余数应为0,有某一位出错,余数不为0.(二) 定点数的表示和运算1. 定点数的表示1)无符号数的表示无符号数就是指正整数,机器字长的全部位数均用来表示数值的大小,相当于数的绝对值.对于字长为n+1位的无符号数的表示范围为: 0-12)带符号数的表示 (真值范围-n-1n)带符号数是指在计算机中将数的符号数码化.在计算机中,一般规定二进制的最高位为符号位,最高位为“0”表示该数为正,为“1”表示该数为负.这种在机器中使用符号位也被数码化的数称为机器数.根据符号位和数值位的编码方法不同,机器数分为原码,补码和反码.(1)原码表示法机器数的最高位为符号位,0表示正数,1表示负数,数值跟随其后,并以绝对值形式给出.这是与真值最接近的一种表示形式.原码的定义:(2)补码表示法机器数的最高位为符号位,0表示正数,1表示负数,其定义如下:(3)反码表示法机器数的最高位为符号,0表示正数,1表示负数.反码的定义:原码补码反码整数(mod ) (mod()) 小数(mod 2) (mod(2-))=0.0000=1.0000=0.0000 =0.0000=1.1111负数原码求反+1 负数每位求反移码移码表示中零也是唯一的真值的移码和补码仅差一个符号位.若将补码的符号位由0改为1或从1改为0即可得到真值的移码乘法运算可用移码和加法来实现,两个n位数相乘,总共要进行n次加法运算和n次移位运算·三种机器数的最高位均为符号位.符号位和数值位之间可用“.”(对于小数)或“,”(对于整数)隔开·当真值为正时,原码,补码和反码的表示形式均相同,即符号位用“0”表示,数值部分与真值部分相同·当真值为负时,原码,补码和反码的表示形式不同,其它符号位都用“1”表示,而数值部分有这样的关系,即补码是原码的“求反加1”,反码是原码的“每位求反”.2. 定点数的运算1)定点数的位移运算左移,绝对值扩大;右移,绝对值缩小.算术移位规则码制添补代码正0:算术移位:带符号数移位;逻辑移位:无符号数移位;2)原码定点数的加/减运算;对原码表示的两个操作数进行加减运算时,计算机的实际操作是加还是减,不仅取决指令中的操作码,还取决于两个操作数的符号.而且运算结果的符号判断也较复杂.例如,加法指令指示做(+A)+(-B)由于一操作数为负,实际操作是做减法(+A)-(+B),结果符号与绝对值大的符号相同.同理,在减法指令中指示做(+A)-(-B)实际操作做加法(+A)+(+B),结果与被减数符号相同.由于原码加减法比较繁琐,相应地需要由复杂的硬件逻辑才能实现,因此在计算机中很少被采用.3)补码定点数的加/减运算;(1) 加法整数 [A]补 + [B]补= [A+B]补(mod 2n+1)小数 [A]补 + [B]补= [A+B]补(mod 2)(2) 减法整数 [A]补 - [B]补= [A+(-B)]补=[A]补+ [-B]补(mod 2n+1)小数 [A]补 - [B]补= [A+(-B)]补=[A]补 + [-B]补(mod 2)无需符号判定,连同符号位一起相加,符号位产生的进位自然丢掉4)定点数的乘/除运算(1)一位乘法<1>原码定点一位乘法两个原码数相乘,其乘积的符号为相乘两数的异或值,数值两数绝对值之积.设 [X]原=X0 X1 X2 …Xn[Y]原=Y0 Y1 Y2 …Yn[X·Y]原=[X]原·[Y]原= (X0⊕Y0)∣(X1 X2 …Xn)·(Y1 Y2 …Yn)符号∣表示把符号位和数值邻接起来.原码两位乘和原码一位乘比较原码一位乘原码两位乘符号位操作数绝对值绝对值的补码移位逻辑右移算术右移移位次数n最多加法次数n有的机器为方便加减法运算,数据以补码形式存放.乘法直接用补码进行,减少转换次数.具体规则如下:[X·Y]补=[X]补(-Y0 + 0. Y1 Y2… Yn )<3>布斯法“布斯公式”: 在乘数Yn后添加Yn+1=0.按照Yn+1 ,Yn相邻两位的三种情况,其运算规则如下:(1) Yn+1 ,Yn =0( Yn+1 Yn =00或11),部分积加0,右移1位;(2) Yn+1 ,Yn =1( Yn+1 Yn =10) ,部分积加[X]补,右移1位;(3) Yn+1 ,Yn =-1( Yn+1 Yn =01) ,部分积加[-X]补,右移1位最后一步不移位.(2)两位乘法<1>原码两位乘法,因此实际操作用Yi-1,Yi,C三位来控制,运算规Yi-1 Yi C 操作0 0 0 0 0 1 0 1 00 1 11 0 0 1 0 1 1 1 0 +0, 右移2位0→C+X, 右移2位0→C+X, 右移2位0→C+2X, 右移2位<2>补码两位乘法根据前述的布斯算法,将两步合并成一步,即可推导出补码两位乘的公式.1 11求部分积的次数和右移操作的控制问题.当乘数由1位符号位和以n(奇数)位数据位组成时,求部分积的次数为(1+n)/2,而且最后一次的右移操作只右移一位.若数值位本身为偶数n,可采用下述两种方法之一:①可在乘数的最后一位补一个0,乘数的数据位就成为奇数,而且其值不变,求部分积的次数为1+(n+l)/2,即n/2+1,最后一次右移操作也只右移一位.②乘数增加一位符号位,使总位数仍为偶数,此时求部分积的次数为n/2+1,而且最后一次不再执行右移操作.笔算除法和机器除法的比较笔算除法机器除法商符单独处理符号位异或形成心算上商余数不动低位补“0”减右移一位的除数余数左移一位低位补“0”减除数2 倍字长加法器 1 倍字长加法器上商位置不固定在寄存器最末位上商1>恢复余数法被除数(余数)减去除数,如果为0或者为正值时,上商为1,不恢复余数;如果结果为负,上商为0,再将除数加到余数中,恢复余数.余数左移1位.2>加减交替法当余数为正时,商上1,求下一位商的办法,余数左移一位,再减去除数;当余数为负时,商上0,求下一位商的办法,余数左移一位,再加上除数.<2>定点补码一位除法(加减交替法)1〉如果被除数与除数同号,用被除数减去除数;若两数异号,被除数加上除数.如果所得余数与除数同号商上1,否则,商上0,该商为结果的符号位.2〉求商的数值部分.如果上次商上1,将除数左移一位后减去除数;如果上次商上0,将余数左移一位后加除数.然后判断本次操作后的余数,如果余数与除数同号商上1,如果余数与除数异号商上0.如此重复执行n-1次(设数值部分n位).3〉商的最后一位一般采用恒置1的办法,并省略了最低+1的操作.此时最大的误差为2-n.5)溢出概念和判别方法当运算结果超出机器数所能表示的范围时,称为溢出.显然,两个异号数相加或两个同号数相减,其结果是不会溢出的.仅当两个同号数相加或者两个异号数相减时,才有可能发溢出的情况,一旦溢出,运算结果就不正确了,因此必须将溢出的情况检查出来.判别方法有三种:1〉当符号相同的两数相加时,如果结果的符号与加数(或被加数)不相同,则为溢出.2〉当任意符号两数相加时,如果C=Cf,运算结果正确,其中C为数值最高位的进位,Cf为符号位的进位.如果C≠Cf ,则为溢出,所以溢出条件=C⊕Cf .3〉采用双符号f s2f s1.正数的双符号位为00,负数的双符号位为11.符号位参与运算,当结果的两个符号位甲和乙不相同时,为溢出.所以溢出条件= fs2⊕fs1 ,或者溢出条件= fs2fs1 + fs2fs1(三) 浮点数的表示和运算1. 浮点数的表示1)浮点数的表示范围;浮点数是指小数点位置可浮动的数据,通常以下式表示:N=M×R E其中,N为浮点数,M(Mantissa)为尾数(可正可负),E(Exponent)为阶码(可正可负),R(Radix)称为“阶的基数(底)”,而且R为一常数,一般为2,8或16.在一台计算机中,所有数据的R都是相同的,于是不需要在每个数据中表示出来.因此,浮点数的机内表示一般采用以下形式::Ms E M位Ms是尾数的符号位,设置在最高位上.E为阶码(移码),有n+1位,一般为整数,其中有一位符号位,设置在E的最高位上,用来表正阶或负阶.M为尾数(原码),有m位,由Ms和M组成一个定点小数.Ms=0,表示正号,Ms=1,表示负.为了保证数据精度属数通常用规格化形式表示:当R=2,且尾数值不为0时,其绝对值大于或等于(0.5)10.对非规格化浮点数,通过将尾数左移或右移,并修改阶码值使之满足规格化要求.浮点数的表示范围以通式N=M×R E设浮点数阶码的数值位取m位,尾数的数值位取n位2)IEEE754标准(Institute of Electrical and Electronics Engineers美国电气和电子工程协会)S 阶码(含尾数阶符)数符小数点位置:符号位S阶码尾数总位数短实数 1 8 23 32长实数 1 11 52 64临时实数 1 15 64 80另有一位符号位S,处在最高位.由于IEEE754标准约定在小数点左部有一位隐含位,从而实际有效位数为24位.这样使得尾数的有效值变为1.M .例如,最小为x1.0…0,,最大为x1.1…1.规格化表示.故小数点左边的位横为1,可省去.阶码部分采用移码表示,移码值127,1到254经移码为-126到以采用非规格化数表示,减少下溢精度损失.非规格化数的隐含位是0,不是1.2. 浮点数的加/减运算加减法执行下述五步完成运算:1)“对阶”操作比较两浮点数阶码的大小,求出其差ΔE,保留其大值E,E=max(Ex, Ey).当ΔE≠0时,将阶码小的尾数右移ΔE位,并将其阶码加上ΔE,使两数的阶码值相等.2)尾数加减运算执行对阶之后,两尾数进行加减操作.3)规格化操作规格化的目的是使得尾数部分的绝对值尽可能以最大值的形式出现.4)舍入在执行右规或者对阶时,尾数的低位会被移掉,使数值的精度受到影响,常用“0”舍“1”入法.当移掉的部分最高位为1时,在尾数的末尾加1,如果加1后又使得尾数溢出,则要再进行一次右规.5)检查阶码是否溢出阶码溢出表示浮点数溢出.在规格化和舍入时。
《计算机组成原理》总结完整版

《计算机组成原理》总结完整版《计算机组成原理》是计算机科学与技术领域的一门重要课程,它主要涉及计算机硬件的组成与工作原理。
通过学习这门课程,我们可以全面了解计算机的内部组成结构以及各个部件的工作原理,为我们深入理解计算机的工作原理和性能优化提供了基础。
下面是我对这门课程的总结:一、计算机的基本组成计算机是由五大基本部件组成的:输入设备、输出设备、存储器、运算器和控制器。
其中,输入设备负责将外部数据输入到计算机内部,输出设备负责将计算机处理后的数据输出给外部,存储器用于存储数据和指令,运算器执行各种算术和逻辑运算,而控制器则控制整个计算机的工作。
二、存储器存储器是计算机的重要组成部分,可以分为主存和辅助存储器。
主存用于存储当前正在执行的指令和数据,辅助存储器则用于长期保存数据。
在主存中,数据的存储方式可以通过地址访问,而每个地址对应一个存储单元,每个存储单元又由多个位构成。
三、指令的执行计算机执行指令的基本过程是将指令从存储器中取出,经过译码后,交给运算器执行。
在执行指令之前,需要将指令和数据从辅助存储器加载到主存中,这样才能被运算器处理。
指令的执行过程包括取指令、分析指令、获取操作数、执行指令和写回结果五个阶段。
四、运算器的工作原理运算器是计算机的核心部件,负责执行各种算术和逻辑运算。
它主要由算术逻辑单元(ALU)和寄存器组成。
ALU用于进行各种算术和逻辑运算,而寄存器用于存储运算所需的操作数和结果。
五、控制器的工作原理控制器是计算机的指挥部,用于控制计算机的工作。
它通过解析指令中的操作码和地址码,产生各种控制信号,将其送往各个部件,以实现指令的执行。
控制器的工作原理通常采用有限状态自动机(FSM)来描述,通过不同状态和状态转移来控制各个部件的工作。
六、总线的作用和类型总线是计算机各个部件之间传输数据和控制信号的通道。
它可以分为数据总线、地址总线和控制总线。
数据总线被用于传输数据,地址总线用于传输存储单元的地址,而控制总线则用于传输控制信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机组成原理总结第一章计算机结构是对程序员可见的系统属性,这些特性对程序的运行逻辑有直接的影响。
计算机组织指计算机系统的各操作部件以及按照“计算机结构”的特性要求各部件的连接方式冯.诺依曼计算机特征:1、计算机内信息(数据和控制信息)用二进制表示。
2、计算机硬件由五大部分组成。
3、计算机的工作原理:存储程序的工作原理.4. 指令由操作码和地址码组成.5.指令在存储器中按执行顺序存放,由PC指明要执行的指令所在的单元地址,一般按顺序递增,但可按运算结果或外界条件而改变.6.机器以运算器为中心.总线按功能划分可分为CPU内部总线、局部总线、系统总线、外总线,按时序可分为同步总线和异步总线,按数据传送方式划分可分为并行总线和串行总线,按传送方向可分为单向总线和双向总线,按信息类型分为数据总线、地址总线、控制总线。
以CPU为中心的双总线结构:优点:总线上的负载不重,速度较高,缺点:增加了CPU的开销,降低了CPU的性能。
单总线结构:各部件通过一组总线相连,优点:简化操作,便于系统的扩展,CPU的效率提高了。
缺点:对总线的速率要求高了,负担重,而且控制管理也更复杂了。
机器语言:有二进制代码表示的指令(操作码、地址码)组成组成计算机的基本部件有中央处理器(CPU包括运算器和控制器,用于处理数据和控制程序(指令流)的执行,发出执行每条指令所需要的控制信号)、存储器(起存储、缓冲、传递信息的作用)和输入输出设备(输入设备用来输入原始数据和处理这些数据的程序,输出设备用来输出计算机的处理结果),各部分是有总线联系的光传输系统的组成:1、传输介质(传输线)为光缆 2、光源是发光二极管LED或激光二极管(前者的传输为几千米,后者为100千米) 3、接受信号的检测器利用光电二极管检测信号字长:一般与运算器中的二进制位数相等计算机系统可分为的几个层次第二章▲★超前进位思想:先行进位解决的问题是进位的传递速度。
其基本思想是:让各位的进位与低位的进位无关,仅与两个参加操作的数有关。
由于每位的操作数是同时给出的,各进位信号几乎可以同时产生,和数也随之产生,所以先行进位可以提高进位的传递速度,从而提高加法器的运算速度。
例:一个16位的ALU部件,要实现组内并行,组间并行运算。
所需器件为:74181芯片四块,74182一块。
74181:实现算术逻辑运算及组内并行。
74182:接收了组间的辅助函数后产生组间的并行进位信号CIII 、CII 、CI,分别将其送到各小组的加法器上。
计数器按时钟作用方式来分,有同步计数器和异步计数器;按计数顺序来分,有二进制、十进制两大类寄存器是计算机的一个重要部件,用于暂存数据、指令等。
它由触发器和一些控制门组成。
在寄存器中,常用的是正边沿触发D触发器和锁存器。
阵列”是指逻辑元件在硅芯片上以阵列形式排列ROM(只读存储器)主要由全译码的地址译码器和存储单元体组成,前者是一种“与”阵列,后者则是“或”阵列PLA(可编程序逻辑阵列)的与阵列、或阵列都是用户可编程的GAL(通用阵列逻辑)在它的输出有一个逻辑宏单元,通过对它的编程,可以获得多种输出形式第三章▲在原码、反码和补码中,补码对0的表示有一种形式,原码、反码对0的表示有两种形式▲一位十进制数,用BCD码表示需要4位二进制码,用ASCII码表示需7位二进制码有权码:表示一位十进制数的二进制码的每一位有确定的权。
无权码:表示二个十进制数位的二进制码的每一位没有确定的权。
8421码修正方法:如果两个一位BCD码相加之和小于或等于(1001)2,即(9)10,不需要修正;如相加之和大于或等于(10)10,要进行加6修正,并向高位进位,进位可以在首次相加或修正时产生。
余3码是在8421码基础上,把每个编码都加上0011而形成的。
其运算规则是:当两个余3码相加不产生进位时,应从结果中减去0011;产生进位时,应将进位信号送人高位,本位加0011。
格雷码(循环码)的编码规则:任何两个相邻编码只有一个二进制位不同,而其余三个二进制位相同。
其优点是从一个编码变到下一个相邻编码时,只有l位发生变化,用它构成计数器时可得到更好的译码波形。
格雷码的编码方案有多种,表3.3给出两组常用的编码值。
机器数有三种表示方式:原码、补码和反码。
机器数的长度受字长限制。
当字长为n时,补码表示范围:小数: -1~+(1-2-(n-1))整数: -2n-1~+(2n-1-1 )溢出:当运算结果超出机器数所能表示的范围时。
显然,两个异号数相加或两个同号数相减,其结果是不会溢出的。
仅当两个同号数相加或者两个异号数相减时,才有可能发生溢出的情况判断溢出的方法:1、当符号相同的两数相加时,如果结果的符号与加数(或被加数)不相同,则为溢出2、当任意符号两数相加时,如果C=Cf ,运算结果正确,其中C为数值最高位的进位,Cf 为符号位的进位。
如果C≠Cf ,则为溢出3、采用双符号位fS1 ,fS2 。
正数的双符号位为00,负数的双符号位为11。
符号位参与运算,当结果的两个符号位fS1 ,fS2 不相同时,为溢出浮点数(N=M*RE)规格化:当R=2,且尾数值不为0时,其绝对值应大于或等于(0.5)10机器零:当一个浮点数的尾数为0(不论阶码是何值),或阶码的值比能在机器中表示的最小值还小时,计算机都把该浮点数看成零值数据0有唯一的移码和补码编码正数补码移位规则:数符不变(单:符号位不变;双:第一符号位不变)。
空位补0(右移时第二符号位移至尾数最高位)。
负数补码移位规则:1数符不变(单:符号位不变;双:第一符号位不变)。
2左移空位补0 3右移空位补1(第二符号位移至尾数最高位)。
舍入方法:1、0舍1入(原码、补码)2、末位恒1(原码、补码)原码一位乘法运算规则:(1)操作数、结果用原码表示;(2)绝对值运算,符号单独处理;(3)被乘数(B)、累加和(A)取双符号位;(4)乘数末位(Cn)为判断位,其状态决定下步操作;(5)作n次循环(累加、右移)。
补码一位乘法(比较算法)运算规则:(1)A、B取双符号位,符号参加运算;(2)C取单符号位,符号参加移位,以决定最后是否修正;(3)C末位设置附加位Cn+1,初值为0,CnCn+1组成判断位,决定运算操作;(4)作n步循环,若需作第n+1步,则不移位,仅修正。
原码两位乘法运算规则:(1)绝对值相乘,符号单独处理。
(2)A、B取三符号位。
(3)C取双符号位,参加移位;C尾数凑足偶数位。
(4)CJ初值为0,根据每步操作决定其状态,不参加移位。
(5)作1/2n步循环;若需增加一步,则该步只还帐,不移位。
定点原码一位除法有恢复余数法和加减交替法两种方法原码不恢复余数法(加减交替法):ri+1=2ri+(1-2Qi)Y(ri为正,则Qi为1,第i+1步作2ri-Y;ri为负,则Qi为0,第i+1步作2ri+Y。
)运算规则:1)A、B取双符号位,X、Y取绝对值运算,X < Y 。
(2)根据余数的正负决定商值及下一步操作。
(3)求n位商,作n步操作;若第n步余数为负,则第n+1步恢复余数,不移位。
跳0跳1除法运算规则:①如果R≥0,且R的高K个数位均为0,则本次直接得商1后跟K-1个0,R左移K位后,减去除数D,得新余数。
②如果余数R<0,且R的高K个数位均为1,则本次商为0后跟K-1个1,R左移K位后,加上除数D,得新余数。
上述①、②条件中的K为1时,每次只能求得一位商。
▲规格化处理规则:当结果尾数的两个符号位的值不同时,表明尾数运算结果溢出。
此时应使结果尾数右移一位,并使阶码的值加1,这被称为向右规格化,简称右规。
当尾数的运算结果不溢出,但最高数值位与符号位同值,表明不满足规格化规则,此时应重复地使尾数左移、阶减减1,直到出现在最高数值位上的值与符号位的值不同为止,这是向左规格化的操作,简称左规例题:两浮点数相加,求X+Y。
已知:X=2010 ·0.11011011,y=2100 · (-0.10101100)解:X和Y在机器中的浮点补码表示形式为(双符号位):阶符阶码数符尾数X:0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 Y:0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 计算过程:①对阶操作阶差ΔE=[Ex]补+[-EY]补=00010+11100=11110 X阶码小,Mx右移2位,保留阶码E=00100。
[Mx]补=00 00 110 110 11下划线上的数是右移出去而保留的附加位。
②尾数相加[Mx]补+[MY]补=000011011011+1101010100=111000101011。
③规格化操作:结果的符号位与最高数值位同值,应执行左规处理,结果为11 00010101 10, 阶码为00 011。
④舍入:附加位最高位为1,采用0舍1入法处理,在所得结果的最低位+1,得新结果:[M]补=1100010110,M:- 0.11101010。
⑤判溢出阶码符号位为00,故不溢出、最终结果为:X+Y=2010 · (-0.11101010)定点运算部件由算术逻辑运算部件ALU、若干个寄存器、移位电路、计数器、门电路等组成。
▲运算器的主要功能是进行逻辑运算和算术运算▲算术/逻辑运算单元74181ALU可完成16种算术运算功能和16种逻辑运算功能ALU部件主要完成加减法算术运算及逻辑运算。
运算器的功能与组成概括为如下三句话:运算器,三大块(功能和组成),运算(ALU)、暂存(通用寄存器组)、乘除快(乘商寄存器),多路选通连起来(以便构成一个能协同运行的运算器整体)。
常用的数据校验码是奇偶校验码、海明校验码和循环冗余校验码。
(码距为1的不能校验)▲在检错码中,奇偶校验法能否定位发生错误的信息位?是否具有纠错功能?奇偶校验法不能定位发生错误的信息位,也不具有纠错功能。
奇偶检验法是为一个字节补充一个二进制位,用设置校验位的值为0或1,使字节的8位和该校验位含有1值的个数为奇数或偶数。
有当1的个数的奇偶性变化时,才能发现错误,并且只能发现一位错误奇数个位数,不能发现偶数个位数,也无法定位发生错误的信息位,更无法就错奇偶校验实现原理:是使码距由1增加到2。
通常是为一个字节补充一个二进制位,称为校验位,用设置校验位的值为0或1,使字节的8位和该校验位含有1值的个数为奇数或偶数。
在使用奇数个1的方案进行校验时,称为奇校验,反之,则称为偶校验。
海明校验特点:能检测出二位同时出错、亦能检测出一位出错并能自动纠错。
实现原理:在k个数据位之外加上r个校验位,从而形成一个k十r位的新码字,当某一位出错后,就会引起相关的几个校验位的值发生变化,从而达到检错、纠错的目的。