七年级数学上册有理数及其运算2.11有理数的混合运算知能演练提升(新版)北师大版
七年级数学北师大版上册2.11 有理数的混合运算(含答案)

2.11 有理数的混合运算专题一 有理数的混合运算1.下列各组运算中,结果为负数的是( )A .﹣(﹣3)B .(﹣3)×(﹣2)C .﹣|﹣3|D .﹣(﹣2)32.在算式4﹣|﹣3口5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .﹣C .×D .÷3.计算﹣23÷(﹣23)2等于( ) A .18 B .﹣18 C .4 D .﹣44.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( )A .ab >0B .a+b <0C .(b ﹣1)(a+1)>0D .(b ﹣1)(a ﹣1)>05.计算[()2]3×[()2]2的值为( )A .1B .C .()2D .()46.有理数a 等于它的倒数,有理数b 等于它的相反数,则a 2013+b 2013等于( )A .1B .﹣1C .±1D .27.已知119×21=2499,则119×213﹣2498×212=( )A .431B .441C .451D .4618.计算:36÷4×(﹣14)= . 9.现有四个有理数3,4,﹣6,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式 .10.定义新运算:对任意实数a 、b ,都有a ⊗b=a 2﹣b .例如3⊗2=32﹣2=7,那么2⊗1= .11.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T 恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为 元.12.计算: (1))1279543(+--÷361; (2)|97|-÷2)4(31)5132(-⨯--;(3)322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--;(4)3333232832)1312)(23(--+÷--.13.先阅读,再解题: 因为,211211⨯=- 3213121⨯=-, 4314131⨯=- , …… 所以)501491(...)4131()3121()211(50491...431321211-++-+-+-=⨯++⨯+⨯+⨯ 501491...41313121211-++-+-+-= 5011-=5049=. 参照上述解法计算:51491...751531311⨯++⨯+⨯+⨯状元笔记:【知识要点】1.掌握有理数混合运算的法则,熟练地进行有理数加、减、乘、除、乘方的混合运算.2.通过玩“24点”游戏开拓思维,在运算过程中能合理使用运算律简化运算,更好地掌握有理数的混合运算.【温馨提示】有理数混合运算的规律:(1)先乘方,再乘除,最后加减;(2)同级运算从左到右按顺序运算; (3)若有括号,先小再中最后大,依次计算.【方法技巧】进行有理数混合运算需注意:要按照运算顺序进行运算,在同级运算中,按从左到右顺序进行计算;要正确使用符号法则,确定各步运算结果的符号.参考答案:1.C2.C 解析:将符号代入,填入“×”号时,计算出来的值最小.3.B4.C 解析:a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0故C正确,D错误.5.C6.C 解析:由题意得a=,b=﹣b,∴a=±1,b=0.∴a2013+b2013=(±1)2013=±1.7.B 解析:119×213﹣2498×212=119×213﹣(119×21﹣1)×212=119×213﹣119×213+212=441.此题用了整体代入的思想,注意把2498写成119×21﹣1的形式是解题的关键.8.9.答案不唯一,如4﹣(﹣6)÷3×10=24,3×(10﹣4)﹣(﹣6)=24等10.3 解析:根据公式a⊗b=a2﹣b,得2⊗1=22﹣1=4﹣1=3.11.210或20012.(1)-26. (2)-11/3. (3)-169/196.(4)-19819 .13.5125。
北师大版初中数学七年级上册2.11 有理数的混合运算

1 3.-1 ቤተ መጻሕፍቲ ባይዱ 的绝对值与(-2)3的和是_______.
15 4.(-3)2÷ 5 ×0- 4 =_______.
二、选择题
1.下列各数中与(-2-3)5相等的是( )
A.55
B.-55
C.(-2)5+(-3)5
D.(-2)5-35
1 2.某数的平方是 4 ,则这个数的立方是( )
4、计算:
5 (1)-33×(-5)+16÷(-2)3-|-4×5|+( 8 -0.625)2
14 (2)(-1)-(-5 2 )× 11 +(-8)÷[(-3)+5]
TB:小初高题库
(3)[0-(-3)]×(-6)-12÷[(-3)+(-8)÷6]
北师大初中数学
3
11
(4)25× 4 -(-25)× 2 +25× 4
相信自己,就能走向成功的第一步
TB:小初高题库
北师大初中数学
教师不光要传授知识,还要告诉学生学会生活。数学思维 可以让他们更理性地看待人生
TB:小初高题库
北师大初中数学
四、代数求值:当x=-1,y=-2,z=1时,求(x+y)2-(y+z)2-(z+x)2的值.
能力提高:
5 41 1、计算:(-4)×(- 7 )÷(- 7 )-( 2 )3
2
1
2、计算:-1-{(-3)3-[3+ 3 ×(-1 2 )]÷(-2)}
11 3、计算:(-5)-(-5)× 10 ÷ 10 ×(-5)
C.0
D.不能确定
5.下列语句中,错误的是( )
北师大版初中数学七年级上册 有理数的混合运算

24点游戏
从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌 面上的数字进行混合运算(每张牌必须用一次且只能用一次, 可以加括号),使得运算结果 为24或-24.其中红色扑克牌代 表负数,黑色扑克牌代表正数,J, Q,K分 别代表11, 12, 13.
(1)小飞抽到了
,他运用下面的方法凑成了24:
谢谢收看!
侵权必究
STRUGGLE
STRUGGLE
探究
现有四个有理数3,4,-6,10,将这四个 数(每个数只能用一次)进行加减乘除四则运算, 使其结果等于24,请写出一个UGGLE
练一练
D A
侵权必究
STRUGGLE
3.计算:
(1)2 (5) 23 3 1 ;
2
(2)(3)3 1 1 5 (2)3 8 1 2017 .
先算小括号; 再算中括号;
最后算大括号里面的.
侵权必究
STRUGGLE
5、有理数带有乘方的运算:
3
22
1 5
上式含有哪几种运算? 先算什么,后算什么?
侵权必究
STRUGGLE
归纳总结
有理数混合运算的法则:
(1)先算乘方,再算乘除,最后算加减;
(2)如果有括号,先算括号里面里的.
3
+
2
2
×(
1 5
=0 —从高级到低级运算, 即先算乘除,再算加减.
侵权必究
STRUGGLE
4、有理数带有括号的运算:
-3-{[-4+ (1-1.6× )] ÷(-2)}÷2
解:原式=-3-{[-4+ (1-1)] ÷(-2)}÷2 =-3-[(-4) ÷(-2)]÷2 =-3-2÷2
2018-2019学年七年级数学上册第二章有理数及其运算2.7有理数的乘法第2课时知能演练提升新版北

7 有理数的乘法第二课时知能演练提升一、能力提升1.n个不等于零的有理数相乘,它们的积的符号().A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数的大小决定2.下列运算过程有错误的个数是().①×2=3-4×2;②-4×(-7)×(-125)=-(4×125×7);③9×15=×15=150-;④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50.A.1B.2C.3D.43.(xx·福建龙岩新罗区校级期中改编)若|x|=3,|y|=5,且xy<0,则x+y的值是().A.2B.-2C.-8D.2或-24.计算:(1)×30= ;(2)-2.125××(-8)= .5.大于-3且小于4的所有整数的和为,积为.6.比较大小:173××(-3.1)(-173)××0.1.7.(xx·西藏拉萨城关区校级期中)计算:(1)-0.75×(-0.4)×1;(2)0.6×.8.学习了有理数的乘法以后,老师布置了一道作业题:计算-3.14×35.2+6.28×(-23.3)-1.57×36.4.小刚一看感叹说:“这么麻烦的数据,需要算很久啊!”聪明的同学,你能用运算律帮助小刚简化一下计算过程吗?二、创新应用9.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:71×(-8).不一会儿,不少同学算出了答案,老师把班上同学的解答归类写到黑板上:解法一:原式=-×8=-=-575.解法二:原式=×(-8)=71×(-8)+×(-8)=-575.解法三:原式=×(-8)=72×(-8)-×(-8)=-575.对这三种解法,大家议论纷纷,你认为哪种解法最好?理由是什么?知能演练·提升一、能力提升1.C2.A3.D4.(1)25(2)-525.306.=7.解 (1)原式=.(2)原式=-=-1.8.解-3.14×35.2+6.28×(-23.3)-1.57×36.4=-3.14×35.2+3.14×(-46.6)-3.14×18.2=-3.14×(35.2+46.6+18.2)=-3.14×100=-314.二、创新应用9.解解法三最好.理由:将带分数分成整数和真分数,利用乘法对加法的分配律简化了运算过程.。
七年级数学上册《有理数的混合运算》教案 (新版)北师大版

《有理数的混合运算》教案知识目标:熟悉有理数混和运算的顺序,并能运用这种运算顺序进行计算能力目标:通过本节课的学习能熟练掌握有理数的运算,提高运算能力及观察问题、分析问题、解决问题的能力,学会用类比的方法分析问题情感目标:培养严谨的思维品质、合作学习和不怕困难的精神二.学方法和手段创设问题情境发现式讨论式合作学习三.学习方法通过问题情境引入新知的学习欲望,学生通过观察、合作、辨析、对比、分析去解决问题四.教学设计思路首先创设问题情境,让学生观察式子有哪几种运算,从而引出有理数的混合运算的定义,并且让学生自已举出有理数的混合运算的其它例子,从而加强对概念的理解,并且强调不需要同时含有加、减、乘、除、乘方运算,只含有部分运算符号也是混合运算。
通过小学四则混合运算的运算顺序进行对比,从而让学生自然引出有理数的混合运算的运算顺序,明确一级运算、二级运算、三级运算的概念,先算高级运算后算低级运算。
接着通过7个例子:让学生明确运算顺序,形式是学生自已寻找,其它同学更正评价。
接着老师讲评例1,计算:,同时要求学生进一步的明确方法,进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法。
之后让学生辨析思考题通过学生自己发现分析,从而加深学生对有理数运算中含有括号的理解。
接着试一试计算:让学生在下面练习,找一个同学上台演板。
一个学生上来讲评。
之后练习书本后的三道练习题。
三位同学上台演板。
之后学生评价,老师最后小结更正。
通过这个过程主要强化学生的技巧的熟练程度,进一步的加深对运算顺序的理解认识。
最后小结本节课的内容和布置作业。
总体说来本节课分为这样一个流程,通过这样一个活动教学力求让学生掌握所学的知识,提高对数学思维的严谨性、逻辑性和敏捷性。
五.设计理念根据新的课程改革的基本理念:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展,数学的教学必需面向全体学生,体现基础性、普及性和发展性的基本精神。
北师大版七年级数学上册 2.11 有理数混合运算专题 练习(含答案)

2019-2020有理数混合运算专题(含答案)一、解答题1.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5;(2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24) 2.计算: ()()241110.5123⎡⎤---⨯⨯--⎣⎦3.计算: (1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭; (4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.4.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.5.计算:(1)6(4)(2)-+--- (2)310.1252(8)73⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(3)(-225)-(+4.7)-(-0.4)+ (-3.3) (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)(12-59+712)×(-36) (7)113(5)77(7)12()3322-⨯+⨯--÷-(8)—2391224⨯6.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-.7.计算:()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭.8.计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)313+(-237)+523+(-847); (3)(-103)+(+134)+(-97)+(+100)+(-114); (4)(-212)+(-0.38)+(-12)+(+0.38); (5)(-9512)+1534+(-314)+(-22.5)+(-15712);(6)[(+1317)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+417)].9.计算:(1)8×|-6-1|+2612×653;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8).10.计算:(1)2+(-8)-(-7)-5; (2)312+223+12⎛⎫-⎪⎝⎭-13⎛⎫- ⎪⎝⎭;(3)(-3)×6÷(-2)×12;(4)34⎛⎫-⎪⎝⎭×12⎛⎫-⎪⎝⎭÷124⎛⎫-⎪⎝⎭.11.计算(1)1142()(2)(2)(3)5353++----+(2)(﹣2)3×3﹣(﹣3)+6﹣|﹣5|12.计算:(1)514-(-223)+(-314)-(+423);(2)(-3594812-+)×(-24);(3)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.13.计算:(1)-32-|(-5)3|×22()5--18÷|-(-3)2|; (2)3571()491236--+÷. 14.计算题:(1)(-20)-(+3)-(-5) (2) 51192533812812-+-- (3) |-3|×(-5)÷(-213) (4) 75336964-+-⨯() (5) (1)0572-+÷-⨯ (6)(159916-)×4 (7) 222222792777()()()-⨯-+⨯--⨯- (8) 22018112(1)()663--÷-⨯ 15.计算:(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017 16.计算:()()241110.4263⎡⎤---÷⨯--⎣⎦; 17.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++- 18.观察下列等式111111111,,,12223233434=-=-=-⨯⨯⨯将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. ⑴.猜想并写出:()11n n =+ ;⑴.直接写出下列各式的计算结果: ⑴.111112233420162017++++=⨯⨯⨯⨯ ; ⑴. ()11111223341n n ++++=⨯⨯⨯⨯+ ; ⑴.探究并计算:1111144771020112014++++⨯⨯⨯⨯. 19.阅读下列材料:计算:112÷(13–14+112). 解:原式的倒数为(13–14+112)÷112 =(13–14+112)×12 =13×12–14×12+112×12 =2.故原式=12. 请仿照上述方法计算:(–142)÷(16–314+23–27). 20.计算题(1)32215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭(2)17-8-24-3÷+⨯()()(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭ (4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭参考答案1.(1)0;(2)8.【解析】试题分析:(1)先计算乘方,然后再计算乘除,最后计算加减即可;(2)先分别进行乘方、绝对值化简、乘法分配律,然后再按运算顺序进行计算即可.试题解析:(1)原式=16÷(-8)-18×4+2.5=-2-0.5+2.5=-2+2=0;(2)原式=-1+0+12-6+3=8.2.-0.5【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.详解:原式=111[14]23--⨯⨯-=﹣1﹣16×(﹣3)=﹣1+1 2=-0.5.点睛:本题要注意正确掌握运算顺序以及符号的处理.3.(1)-12;(2) 11425;(3) 323;(4)1.【解析】【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=12-; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦=-3-2215252-+⨯() =-3-(-5+1125) =-3+5-1125=2-1125=14125; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭ =(13732-)×(-2)823-⨯-() =53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2=[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.4.(1)7;(2)9【解析】【分析】(1)注意运算顺序,先算乘除再算加减,减去一个数等于加上这个数的相反数,减法变为加法;(2)注意运算顺序,先算乘方再算乘除最后算加减.注意()201811-=,1-的偶次方为1,奇次方为1-.【详解】(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.【点睛】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.(1)-8;(2)-1;(3)-10;(4)-1;(5)-0.2;(6)-19;(7)0;(8)-119.5.【解析】【分析】(1)先去括号,再按照从左到右的顺序计算即可,特别要注意符号的变化; (2)先把小数化为分数,再按照从左到右的顺序计算即可;(3)先去括号,再按照有理数加减法进行计算即可;(4)先去括号和绝对值,再按照有理数加减法进行计算;(5)先确定积的符号,然后把除法转化为乘法,按照有理数乘法法则进行计算; (6)依据乘法分配律进行计算即可;(7)原式逆用乘法分配律计算即可得到结果;(8)把—23924写成1-1024,再依据乘法分配律进行计算即可. 【详解】(1)()()642-+---=-6-4+2=-10+2=-8; (2)()310.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=(-37)×18×(-73)×(-8)=1×(-1)=-1; (3)(-225)-(+4.7)-(-0.4)+ (-3.3)=-2.4-4.7+0.4-3.3=-2.4-4.7-3.3+0.4=-10.4+0.4=-10 (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=35+44-3=2-3=-1 (5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-3471=-75125⨯⨯ (6)(12-59+712)×(-36) =157-36--36+-362912⨯⨯⨯()()()=-18-(-20)-21=-18-21+20=-39+20=-19 (7)()1135777123322⎛⎫⎛⎫-⨯+⨯--÷- ⎪ ⎪⎝⎭⎝⎭=-5×713+7×(-713)-12×(-713)=713×(-5-7+12)=0; (8)—2391224⨯=(1-1024)×12=124×12-10×12=0.5-120=-119.5【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算顺序,此题比较简单,但计算时要特别细心,不然很容易出错. 6.(1)−113(2)−32【解析】(1)()212582433-+-+÷-⨯=−4+3+(−8)×13=−1−83=−113. (2)()20171313224512864⎡⎤⎛⎫-+-⨯÷⨯- ⎪⎢⎥⎝⎭⎣⎦()131312242424128645⎡⎤=-⨯-⨯+⨯⨯⨯-⎢⎥⎣⎦()519418125⎡⎤=--+⨯⨯-⎢⎥⎣⎦ ()515125⎡⎤=+⨯⨯-⎢⎥⎣⎦ ()51151255⎡⎤=⨯+⨯⨯-⎢⎥⎣⎦()1112⎡⎤=+⨯-⎢⎥⎣⎦=32×(−1)=−32.7.1 3 -.【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的即可.【详解】原式=14 1[2274]625 -+⨯+-⨯=14 125625 -+⨯⨯=2 13 -+=13 -.【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.(1)-6.7;(2)-2;(3)-9912;(4)-3;(5)-35;(6)0【解析】【分析】根据有理数的加法运算律进行运算即可.【详解】解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].=1.3-8=-6.7;(2)3+(-2)+5+(-8).=3+5+.=9+(-11).=-2;(3)原式=[(-103)+(-97)]++100.=-200++100=-99;(4)(-2)+(-0.38)+(-)+(+0.38).=+[(-0.38)+(+0.38)].=-3+0.=-3;(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).=-25+12.5+(-22.5).=-25+[12.5+(-22.5)].=-25+(-10)=-35;(6)+[(+2.5)+(+6)+(+)].=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).=+[-3.5+(+2.5)]+[(-6)+(+6)].=1+(-1)+0.=0.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法运算律是解答本题的关键.9.(1)59;(2)-27.【解析】【分析】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算;(2) 先去掉绝对值号,并把小数化为分数,然后利用乘法分配律与有理数的乘法运算法则进行计算.【详解】解:(1)8×|-6-1|+2612×653=8×|-7|+532×653=56+3 =59;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8)= (−14−12+23)×24-54×(-52)×(-8),=-14×24−12×24+23×24-54×52×8=-6-12+16-25,=-43+16,=-27.【点睛】本题考查有理数的混合运算,解题关键是运算顺序和运算法则的运用.10.(1)-4;(2) 6;(3) 92;(4)-16.【解析】【分析】(1)根据有理数加减法法则进行计算即可.(2)根据有理数加法结合律和交换律进行计算即可.(3)、(4)根据有理数乘除法法则进行计算即可【详解】(1)原式=2-8+7-5=9-13=-4.(2)原式=312-12+223+13=3+3=6.(3)原式=3×6×12×12=9 2 .(4)原式=314429⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1 6.【点睛】本题考查了有理数的混合运算,熟练掌握并灵活运用运算法则是解题关键. 11.(1)-3 (2)-20【解析】试题分析:(1)根据有理数的加减法法则进行计算即可;(2)先计算乘方,然后进行乘法运算,最后按运算顺序进行计算即可.试题解析:(1)原式=11422235353-+-=14122235533+--=3-6=-3;(2)原式=-8×3+3+6-5=-24+9-5=-20.12.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=514+223﹣314﹣423=514﹣314+223﹣423=2﹣2 =0;(2)原式=34×24+58×24﹣912×24=18+15﹣18 =15;(3)原式=(﹣3)×43×43×(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.13.(1) -31;(2)-26【解析】【分析】(1)根据幂的乘方、有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题.【详解】(1)-32-|(-5)3|×225-()-18÷|-(-3)2|=-9-125×425-18÷9=-9-20-2=-31,故答案为-31; (2)3571491236⎛⎫--+÷ ⎪⎝⎭=(3574912--+)×36=34-×3659-×36712+×36=-27-20+21=-26,故答案为-26.【点睛】本题主要考查了的乘方、有理数的乘除法和减法的基本性质. 14.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-39934;(7)0;(8)40. 【解析】 【分析】根据有理数的运算法则可解答本题. 【详解】解:(1)原式=(-20)+(-3)+5 =-23+5 =-18 (2)原式= 51925133881212--+-+()=-6+1 =-5(3)原式=3×(-5)35⨯-() =3⨯535⨯ =9 (4) =原式=7369-⨯+53363664⨯-⨯ =-28+30-27 =-25(5)()10572-+÷-⨯ =-1+0-14 =-15(6)原式=(-100+1416⨯) =-400+14=-39934(7)原式=227927-⨯-+- =227-⨯0 =0(8) ()201821121663⎛⎫--÷-⨯ ⎪⎝⎭=4-166⨯-⨯() =4+36 =40 【点睛】本题考查了有理数的加、减、乘、除、乘方的运算及它们的混合运算,正确理解运算法则及运算顺序是解题的关键. 15.0【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和积的乘方运算法则分别计算得出答案.【详解】(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017=4+[4×(﹣0.25)]2017×4=4﹣4=0.【点睛】此题主要考查了积的乘方运算、负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.16.2.6【解析】【分析】根据含乘方的有理数混合运算法则计算即可.【详解】原式=10.63(46)--⨯⨯-=1 1.8(2)--⨯-=﹣1+3.6=2.6.【点睛】本题考查了含乘方的有理数混合运算,解答本题的关键是明确含乘方的有理数混合运算的计算方法.17.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+. 【解析】【分析】1.(1)-(3)根据有理数的运算法则进行计算:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,注意灵活运用运算律.2.(4)先去括号,再合并同类项.【详解】(1)原式4204459=--÷=--=-(2)原式()()1113174201174202244=--+--⨯⨯=+--= (3)原式31512121211841510234=⨯-⨯-⨯+=--+= (4)原式2222222313x x x x x x x =-++-+-=--+【点睛】本题考核知识点:有理数运算和整式运算. 解题关键点:掌握有理数运算法则和整式运算法则.18.⑴. 111n n -+;⑴. 20162017,1n n +;⑴.6712014【解析】【分析】(1)观察所给算式,根据观察到的规律写出即可;(2)⑴、⑴都是根据得出的规律展开,再合并,最后求出结果即可;(3)根据观察到的规律展开,然后合并,即可求出结果.【详解】(1)()1n n 1=+ 11n n 1-+, 故答案为:11n n 1-+; (2)⑴原式=11111122334-+-+-+…+1120162017-=1-1201620172017=; ⑴原式=11111122334-+-+-+…+111n n -+=1-111n n n =++, 故答案为:20162017,n n 1+; (3)原式=3×1111111144771020112014⎛⎫-+-+-++- ⎪⎝⎭=3×112014⎛⎫- ⎪⎝⎭=6712014. 【点睛】本题考查了有理数的混合运算,能根据已知算式得出()1n n 1=+ 11n n 1-+这一规律是解题的关键. 19.–114. 【解析】【分析】 根据阅读材料介绍的方法,利用乘法分配律求出原式倒数的值,即可求出原式的值.【详解】(16–314+23–27)÷(–142) =(16–314+23–27)×(–42)=(–42)×16–(–42)×314+(–42)×23–(–42)×27=–7+9–28+12=–14,故原式=–114. 【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)4;(2)9;(3)16(4)4(5)22;(6)25【解析】试题分析:(1)根据有理数的加法法则计算即可;(2)根据有理数的加减乘除运算法则计算即可;(3)根据有理数的混合运算法则和运算律计算即可,解题时注意预算符号的变换(4)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可;(5)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可(6)根据乘法分配律计算即可.试题解析:(1)532215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭=(535+425)+(-523-13) =10-6=4;(2)17-8-24-3÷+⨯()()=17+4-12(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭=60×34+60×56-60×1115-60×712=45+50-44-35=16.(4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦=-9÷(-94) =9×49=4;(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭ =43×(-24)+18×(-24)-2.75×(-24)-1-23 =-32-3+66-1-8=22;(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭ =25×34+25×12-25×14=25×(34+12-14) =25×1。
七年级数学上册有理数及其运算2.6有理数的加减混合运算(第2课时)知能演练提升(新版)北师大版

2.6 有理数的加减混合运算第二课时知能演练提升一、能力提升1.将6+(-4)+(+5)+(-3)写成省略加号的和的形式为().A.6-4+5+3B.6+4-5-3C.6-4-5-3D.6-4+5-32.下列各式统一成加法正确的是().A.-5-(-7)+9=-5+(-7)+9B.-5-(-7)-(-9)=-5+7+9C.-5+(-7)-(-9)=-5+(-7)+(-9)D.-5-7-(-9)=-5+(-7)+(-9)3.若一个数是11,另一个数比11的相反数大2,则这两个数的和为().A.24B.-24C.2D.-24.(2017·安徽六安裕安区校级模拟)为计算简便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)写成省略加号的和的形式,并按要求交换加数的位置正确的是().A.-2.4+3.4-4.7-0.5-3.5B.-2.4+3.4+4.7+0.5-3.5C.-2.4+3.4+4.7-0.5-3.5D.-2.4+3.4+4.7-0.5+3.55.计算:(1);(2)3.587-(-5)+(-5.5)+(+7)-3.25-(+1.587).6.阅读下面的解题过程并填空:计算:53.27-(-18)+(-21)+46.73-15+21.解:原式=53.27+18-21+46.73-15+21(第一步)=(53.27+46.73)+(-21+21)+(18-15)(第二步)=100+0+3(第三步)=103.计算过程中,第一步把原式化成的形式;第二步是根据得到的,目的是使计算简化.你能根据以上的解题技巧计算下题吗?-21.7.小明和他的同学做游戏,把一副扑克牌只保留红桃、黑桃两种,抽到红桃牌加上上面的数,抽到黑桃牌减去上面的数.小明抽了5张牌,分别是黑10,红Q(12),红7,黑2,红8,小明最后的得数是多少?8.某公司财务处在一天中办理了5项现金业务:报销单据3.7万元,收到A公司贷款11.6万元,支出广告费7.8万元,收到B公司贷款2.4万元,购买办公用品1.3万元.问这一天该公司财务的总计是增加了还是减少了?增加或减少了多少万元?二、创新应用9.计算:14+(-3)-(-6)-(-27).解:14+(-3)-(-6)-(-27)=14+(-3)+(+6)+(+27)(第一步)=14-3+6+27(第二步)=(14+6)-(3+27)(第三步)=20-30(第四步)=-(30-20)(第五步)=-10.(第六步)上面的计算过程是否正确?如果不正确,错在第几步?并写出正确的计算过程.知能演练·提升一、能力提升1.D2.B3.C4.C5.解 (1)原式==12-8=4.(2)原式=3.587+5-5.5+7-3.25-1.587=(3.587-1.587)+(5+7)+(-5.5-3.25)=2+12-8.75=14-8.75=5.25.6.解省略括号和加号的和加法交换律和结合律原式=-21+3=-21-+3+=(-21+3)+=-18.7.解依题意,得-10+12+7-2+8=15.答:小明最后的得数是15.8.解设收入为正,则支出为负,根据题意,得-3.7+11.6-7.8+2.4-1.3=(11.6+2.4)+(-3.7-7.8-1.3)=14-12.8=1.2(万元),因此这一天该公司财务的总计是增加了,增加了1.2万元.二、创新应用9.解不正确,错在第三步.正确的计算过程如下:14+(-3)-(-6)-(-27)=14+(-3)+(+6)+(+27)=14-3+6+27=(14+6+27)-3=47-3=44.。
2024年北师大版七年级上册数学第二章有理数及其运算培优提升专题5:有理数的混合运算

·数学
13.(2023珠海期末)某市出租车采取“时距并计”的方式收费, 具体收费标准如下表:
起步价(3千米 超过3千米部分每千米费 等候费(不足1分钟以1分钟
以内)
用(不足1千米以1千米计) 计)
10元
2.6元
等候的前4分钟不收费,之 后每2分钟1元
某日上午,出租车司机小李的运营线路全是在某条东西走向
1 2 024
-f(2 024)=
1
.
·数学
8.(创新题)若“三角”
表示运算a-b+c,“方框”
表示运算x-y+z+w,求: × 表示的运算,并计
算结果.
解:根据题意,得
×
=
1 4
-
1 2
+
1 6
×(-2-3-6+3)
=-112×(-8)=23.
9.(创新题)规定运算:a★b=-3ab-1. (1)求2★(-3)的值;
A.a+b
B.b-a
C.ba
D.ab
·数学
5.(创新题)规定符号(a,b)表示a,b两个数中较小的一个,符
号[a,b]表示a,b两个数中较大的一个.例如(2,1)=1,
[2,1]=2.请计算:(-2,3)+
-
2 3
,-
3 4
=
-83
.
·数学
6.(创新题)有个填写运算符号的游戏:在“1□2 □ 6 □ 9” 中的每个□内,填入+,-,×,÷中的某一个(可重复使 用),然后计算结果. (1)计算:1+2-6-9;
第二章 有理数及其运算
培优提升专题5:有理数的混合运算
◆类型1 有理数中的直接计算
1.(2023广州期末)下列有理数计算正确的是( B )
北师大版七年级上册数学七年级数学北师大版上册2.11. 有理数的混合运算

七年级 数学科导学案2。
11.有理数的混合运算主备人: 吕金凤 审核人: 授课人: 备课时间:【学习目标】课标要求:1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力。
目标达成:1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;学习流程:【课前展示】1:说一说 有理数的四则运算法则及运算律。
2:练一练 计算(1)-5.4+0.2-0.6+0.8 ; (2) 3× (-4)+(-28)÷7 ;(3) (-7)(-5)-90÷(-15) ; (4) -(-7)2 ;3:想一想 归纳有理数同级运算法则并试着计算下题1-21-55032)(⨯÷+【自学导航】 计算1-21-55032)(⨯÷+【合作探究】1-21-55032)(⨯÷+问题1:算式1-21-55032)(⨯÷+里含有哪几种运算?问题2:哪些运算是同一级运算?分别是几级运算?问题3:根据以上分析你能解答该题吗?你能归纳出有理数混合运算法则吗?【展示提升】典例分析 知识迁移例1 计算【强化训练】计算下列各题:(1)-3-[-5+(1-0.2×5)÷(-2)] (2)-14-×[ 2-(-3)2 ](3)(-2)2-(-52)×(-1).45113)2131(5114÷⨯-⨯)(【归纳总结 】1. 口 诀 歌同 级 运 算, 从 左 至 右;异 级 运 算, 由 高 到 低;)].95(32[3-22-+-⨯))(().31()2(6181-⨯-÷-)(若有括号,先算内部;简便方法,优先采用.【板书设计】2.10有理数的混合运算法则例【教学反思】。
七年级数学上册 第二章 有理数及其运算 2.11 有理数的混合运算知能演练提升 (新版)北师大版-(

11 有理数的混合运算知能演练提升一、能力提升1.计算-22-(-2)3×(-1)2-(-1)3的结果是().A.-30B.-1C.24D.52.计算-2×32-的结果是().A.0B.-54C.-3.已知119×21=2 499,则119×213-2 498×212等于().A.431B.4414.32×3.14+3×(-9.42)=.5.计算:-22××(-2)3=.6.空调是一种常用的电器,若空调开放热风或冷风时平均每分使室内温度升高或降低0.5 ℃(规定开放热风为正),则等式0.5×10=5表示空调在开放风,工作时间为,室温变化为;若空调开放冷风10 min,则室温变化可列式表达为,表示室温变化为.7.计算:(1)-9÷3+×12+32;(2)(-1)2 017-[(-2)3+32]÷.二、创新应用8.前进的道路:从起点——数字1出发,顺次经过每一个分岔口,选择+,-,×,÷四种运算之一进行运算,到达目的地时结果要恰好是10.你能找到前进的道路吗?道路不止1条,请你至少找出3条来,并列出你的算式.知能演练·提升一、能力提升1.D2.B3.B4.05.326.热10 min升高5 ℃(-0.5)×10=-5降低5 ℃7.解 (1)原式=-9÷3+×12-×12+9=-3+6-8+9=4.(2)原式=-1-(-8+9)×(-7)=-1+7=6.二、创新应用8.解①[1-(-2)]×3+(-4)+5=10;②[1-(-2)]÷3-(-4)+5=10;③[1-(-2)+3+(-4)]×5=10;④1×(-2)+3-(-4)+5=10.。
七年级数学上册 2.11 有理数的混合运算拓展训练专项教程教案 北师大版

§2.11有理数的混合运算(1)教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力.教学重点和难点重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.教学方法:启发式教学教学教学过程一、设疑自探1、复习引入①.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).②.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.2、设疑前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.审题:运算顺序如何确定?注意结果中的负号不能丢.计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.二.解疑合探例 3 计算:(1)(-3)×(-5)2; (2)[(-3)×(-5)]2;(3)(-3)2-(-6); (4)(-4×32)-(-4×3)2.审题:运算顺序如何?解:(1)(-3)×(-5)2=(-3)×25=-75.(2)[(-3)×(-5)]2=(15)2=225.(3)(-3)2-(-6)=9-(-6)=9+6=15.(4)(-4×32)-(-4×3)2=(-4×9)-(-12)2=-36-144=-180.注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)课堂练习计算:(1)-72; (2)(-7)2; (3)-(-7)2; (7)(-8÷23)-(-8÷2)3.例4 计算(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.审题:(1)存在哪几级运算?(2)运算顺序如何确定?解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4=4-(-25)×(-1)+87÷(-3)×1(先乘方)=4-25-29(再乘除)=-50.(最后相加)注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.课堂练习计算:(1)-9+5×(-6)-(-4)2÷(-8);(2)2×(-3)3-4×(-3)+15.3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号.小结教师引导学生一起总结有理数混合运算的规律.1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算.作业:计算:(1)-8+4÷(-2); (2)6-(-12)÷(-3);(3)3·(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15)(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5.板书设计§2.11有理数的混合运算(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习六、教学后记§2.11有理数的混合运算(2)教学目标1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;2.培养学生的运算能力及综合运用知识解决问题的能力.教学重点和难点重点:有理数的运算顺序和运算律的运用.难点:灵活运用运算律及符号的确定.教学方法:三疑三探教学教学过程一、设疑自探1、复习引入①.叙述有理数的运算顺序.②.三分钟小测试,计算下列各题(只要求直接写出答案):(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);2、自探例1当a=-3,b=-5,c=4时,求下列代数式的值:(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4) a2+2ab+b2.解:(1) (a+b)2=(-3-5)2 (省略加号,是代数和)=(-8)2=64; (注意符号)(2) a2-b2+c2=(-3)2-(-5)2+42 (让学生读一读)=9-25+16 (注意-(-5)2的符号)=0;(3) (-a+b-c)2=[-(-3)+(-5)-4]2 (注意符号)=(3-5-4)2=36;(4)a2+2ab+b2=(-3)2+2(-3)(-5)+(-5)2=9+30+25=64.分析:此题是有理数的混合运算,有小括号可以先做小括号内的,=1.02+6.25-12=-4.73.在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写二.解疑合探例2已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求x2-(a+b+cd)x+(a+b)1995+(-cd)1995值.解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.所以 x2-(a+b+c d)x+(a+b)1995+(-cd)1995=x2-x-1.当x=2时,原式=x2-x-1=4-2-1=1;当x=-2时,原式=x2-x-1=4-(-2)-1=5.三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)课堂练习1.当a=-6,b=-4,c=10时,求下列代数式的值:2.判断下列各式是否成立(其中a是有理数,a≠0):(1)a2+1>0; (2)1-a2<0;练习设计1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:3.计算:4.按要求列出算式,并求出结果.(2)-64的绝对值的相反数与-2的平方的差.5*.如果|ab-2|+(b-1)2=0,试求板书设计七、教学后记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11 有理数的混合运算
知能演练提升
一、能力提升
1.计算-22-(-2)3×(-1)2-(-1)3的结果是().
A.-30
B.-1
C.24
D.5
2.计算-2×32-的结果是().
A.0
B.-54
C.-18
D.18
3.已知119×21=2 499,则119×213-2 498×212等于().
A.431
B.441
C.451
D.461
4.32×3.14+3×(-9.42)= .
5.计算:-22××(-2)3= .
6.空调是一种常用的电器,若空调开放热风或冷风时平均每分使室内温度升高或降低0.5 ℃(规定开放热风为正),则等式0.5×10=5表示空调在开放风,工作时间为,室温变化为;若空调开放冷风10 min,则室温变化可列式表达为,表示室温变化为.
7.计算:
(1)-9÷3+×12+32;
(2)(-1)2 017-[(-2)3+32]÷.
二、创新应用
8.前进的道路:从起点——数字1出发,顺次经过每一个分岔口,选择+,-,×,÷四种运算之一进行运算,到达目的地时结果要恰好是10.你能找到前进的道路吗?道路不止1条,请你至少找出3条来,并列出你的算式.
知能演练·提升
一、能力提升
1.D
2.B
3.B
4.0
5.32
6.热10 min升高5 ℃(-0.5)×10=-5降低5 ℃
7.解 (1)原式=-9÷3+×12-×12+9=-3+6-8+9=4.
(2)原式=-1-(-8+9)×(-7)=-1+7=6.
二、创新应用
8.解①[1-(-2)]×3+(-4)+5=10;
②[1-(-2)]÷3-(-4)+5=10;
③[1-(-2)+3+(-4)]×5=10;
④1×(-2)+3-(-4)+5=10.。