铝电解电容器寿命的计算方法

合集下载

万裕品牌铝电解电容器寿命推算V3.0

万裕品牌铝电解电容器寿命推算V3.0

85℃类电容器
105℃类电容器
Hrs ℃ ℃ ℃ ℃
纹波电流值:(频率须一致) Iuse ISTD 14.1 340 mA mA
万 裕 三 信 电 子 (东莞) 有 限 公 司
SAMXON ELECTRONICS (DONG-GUAN) CO., LTD
寿 命 推 算
Radial Lead Type引线式 WV≥160V 寿命推算 寿命公式
Hrs ℃ ℃ V V ℃ ℃ =
0
备注: 一般情况下, 105℃类产品温升设计为ΔT0: 5℃, 85℃类产品温升设计为ΔT0: 10℃, 推算寿命时最大温升请不要超过下表所示 ΔTx: 温度 型别 环境温度Tx(℃) ≤35 45 55 65 75 85 ≤35 45 55 65 75 85 95 105 Radial Lead Type 最大允许温升Δ Tx(℃) 电容器允许最大中心温度(℃) 15 15 15 15 15 10 15 15 15 15 15 15 10 5 50 60 70 80 90 95 50 60 70 80 90 100 105 110
万 裕 三 信 电 子 (东莞) 有 限 公 司
SAMXON ELECTRONICS (DONG-GUAN) CO., LTD
寿 命 推 算
Radial Lead Type引线式 WV<160V 寿命推算 寿命公式
LX=L0× 2(T0-TX)/10× 2(ΔT0-ΔTX)/5
样品规格描述: 系列 规格 尺寸 100 25 6.3 11 寿命推算信息: LO = GT 10000 μ F TO = 105 TX = V 78.6 Φ mm △T0= 5 Lmm △TX= 0.0 124518 14.21 0 备解: LX:实际使用寿命。(大于131400小时以131400 小时计,大于15年以15年计算) L0:规格书承认的寿命 T0:规格书电容器正常工作的最高使用温度℃。 TX:电容器使用的环境温度℃。(<35℃按35℃计) △TX:电容器实际使用加载纹波电流时,中心电 Lx= △TX= Hrs 年 容器的温升℃。 Iuse:电容器实际使用的纹波电流 ISTD:电容器规格书承认纹波电流

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法作者:iC921栏目:模拟技术铝电解电容器寿命的计算方法铝电解电容器寿命的计算方法偶然碰到这篇小文章,考虑到最近不时有人提问有关此类问题,也觉得有一定的意义,故而整理一下,帖出来供大家参考。

只是个别地方译不出来,有点遗憾。

这次赶巧了,今天还知道有位小老乡赶上今天生日,说好了算作今天偶给她的小礼物,愿她能及早看到。

September 5,2001RUBYCON CORPORATIONENGINEERING DIVISIONTO: ACBEL POLYTECH INC.LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS铝电解电容的寿命的计算公式1. Lifetime Calculation Formula 寿命计算公式L : Life expectancy at the time of actualuse.实际使用平均寿命Lb : Basic life at maximum operating 最大工作温度下的基本寿命ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升忽略纹波电流时的寿命推算一般而言,铝电解电容器的寿命与周围的环境温度有很大的关系,其寿命可以由以下公式计算。

其中,L:温度T时的寿命L0:温度T0时的寿命与温度比较,降压使用对电容器的寿命影响很小,可忽略不计。

考虑纹波电流时寿命的推算叠加纹波电流,由于内部等效串连电阻(ESR)引起发热,从而影响电容器的使用寿命,产生的热量可由下式计算I:纹波电流(Arms)R:等效串联电阻(Ω)由于发热引起的温升其中,△T: 电容器中心的温升(℃)I: 纹波电流 (Arms)R: ESR (Ω)A: 电容器的表面积(cm2)H: 散热系数( 1.5~2.0x10-3W/cm2x℃)上面公式(3)显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着△T值的大小,般情况下,△T<5℃。

铝电解电容器寿命与温度之间的关系

铝电解电容器寿命与温度之间的关系

铝电解电容器与温度之间的关系BIT 销售经理郑淋先生现如今市场上铝电解电容器的温度标准有85度、105度、125度、130度等几种,很多工程师的选择的时候不是很在意这个问题,所以就会导致很多时候电容没用多长时间就出问题。

铝电解电容器作为电子产品的重要部件,在电路中起着不可或缺的作用,它的使用寿命和工作状况与整体产品的寿命息息相关。

当电路中铝电解电容器发生损坏,特别是铝电解电容器爆炸,电解液外溢时,那到底是电容器的质量出问题还是整体线路设计不合理呢?了解铝电解电容器的寿命与温度之前的关系,能为电子工程师提供一些判断依据。

阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。

电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。

阿列纽斯方程公式:k=Ae-Ea/RT或lnk=lnA—Ea/RT(作图法)K化学反应速率,R为摩尔气体常量,T为热力学温度,Ea 为表观活化能,A 为频率因子根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值)将增大2-10倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素根据阿列纽斯方程结论可知,铝电解电容器使用寿命与温度之间的计算公式如下L=L 0×2T0−T110L:环境温度为T1时铝电解电容器的使用寿命,单位:H L 0:额定寿命,单位:HT 0:额定最高使用温度,单位:℃T 1:环境温度,单位:℃举例说明:如果产品的额定温度为85度,2000小时的额定寿命,那么如果环境温度在55度时,铝电解电容器的使用寿命则为16000小时(约1.8年),那换成BIT 的铝电解电容器呢,那么同样是85度的产品,那使用寿命则为24000小时(约2.7年),。

铝电解电容寿命计算

铝电解电容寿命计算

铝电解电容寿命计算
一、老化速率的估算:
1.上电老化法:
将电容器以额定电压上电,根据老化加速现象,可以通过一定时间的
上电老化来模拟长时间的使用情况,然后通过测量电容值和电阻值的变化
来估算老化速率。

2.高温老化法:
将电容器置于高温环境下,在一定时间内观察电容值和电阻值的变化
情况,通过测量结果推算老化速率。

二、寿命预测的评估:
寿命预测是指根据老化速率估算结果,结合已知的老化模型和工作条件,来评估电容的使用寿命。

寿命预测主要包括以下几个方面:
1.应力与老化模型分析:
分析电容在不同工作条件下所受的应力,包括电压应力、温度应力、
电流应力等,通过建立老化模型,估算电容的老化速率。

2.寿命试验与寿命模型:
进行一系列的寿命试验,通过测量电容值和电阻值的变化来评估电容
器的寿命。

同时,根据试验数据建立寿命模型,并根据模型进行寿命预测。

3.可靠性评估:
通过对电容器寿命的评估来评估电路的可靠性,从而预测系统的可靠性。

可靠性评估一般包括寿命试验、故障数据分析、可靠度预测等。

总结起来,铝电解电容寿命计算主要包括老化速率的估算和寿命预测的评估。

通过对电容的老化机制、应力分析和寿命模型的建立,可以对电容器的使用寿命进行估算和预测。

这对于电子设备的可靠性设计和电路寿命评估具有重要意义。

电解电容寿命计算公式 说明(1)

电解电容寿命计算公式 说明(1)
△T=(IX÷I0)2×△T0
代号
I0 IX
4、关于其他的寿命原因:
代号表示内容说明 最高使用温度下正常周波数的额定纹波电流(Arms)
实际使用中的纹波电流(Arms)
铝电解电容由于电解液通过封口部扩散到外部而导致磨耗故障,加速其现象的要因除上述周围温度与
纹波电流外有以下要因:
●过电压的情况
连续印加定格电压的过电压时,急速增大制品的漏电流量,这种漏电流引起发热产生气体,并导致内压
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
W=IR2×R+VIL
代号
代号表示内容说明
W
内部的消费电力
IR
直流电流
R
内部阻抗等效串联电阻 ESR
V
印加电压
IL
漏电流
漏电流 LC最高使用温度增加到20℃的 5-10倍程度,由于 I R远大于IL,可成立如下公式:
W=IR2×R
◆ 内部发热与放热达到平衡温度的条件公式如下:
IR2×R=βA△T
代号
T0 - TX 10
代号
代号表示内容说明
L0
最高温度条件下,印加定格电压或重迭额定纹波电流时的保证寿命(hrs)
LX
实际使用中的寿命(hrs)
T0
制品的最高使用温度(℃)
Tx
实际使用时的周围温度(℃)
B:温度加速系数 温度加速系数 B,如果是最高使用温度以下时,可以用 B≈2来计算,升温 10℃,约 2倍的加速率; 设定较低的使用时的周围温度 T X,能保证长期的寿命。 2、印加电压与寿命 使用在线路板上的 RADIAL型、SNAP-IN型铝电解电容,若在最高使用温度及额定工作电压以下的情况 使用时,印加电压的影响比周围温度及直流电流的影响小,对于铝电解电容来说,实际计算可以不考虑 降压使用对寿命计算之影响。 3、纹波电流重迭时的寿命 铝电解电容比其他类的电容损失角大,会因纹波电流而内部发出热量。由于施加的纹波电压发出的热量 会导致温度上升,对寿命有很大影响,印加电流电压时的发热情况如下公式来计算:

如何计算电解电容使用寿命

如何计算电解电容使用寿命

如何计算电解电容使用寿命
作为电子产品的重要部件电解电容,在开关电源中起着不可或缺的作用,它的使用寿命和工作状况与开关电源的寿命息息相关。

在大量的生产实践与理论探讨中,当开关电源中电容发生损坏,特别是电解电容冒顶,电解液外溢时,电源厂家怀疑电容质量有问题,而电容厂家说电源设计不当,双方争执不下。

以下就电解电容的使用寿命和使用安全作些分析,给电子工程师提供一些判断依据。

1、阿列纽斯(Arrhenius)
1.1 阿列纽斯方程
阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。

电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。

阿列纽斯方程公式:k=Ae-Ea/RT 或lnk=lnA—Ea/RT (作图法)
●K 化学反应速率
●R 为摩尔气体常量
●T 为热力学温度
●Ea 为表观活化能
●A 为频率因子
1.2 阿列纽斯结论
根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值) 将增大2-10 倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素。

2、电解电容使用寿命分析
1)公式:
根据阿列纽斯方程结论可知,电解电容使用寿命计算公式如下:。

铝电解电容寿命试验规律

铝电解电容寿命试验规律

铝电解电容寿命试验规律
电容c的计算公式:c=εs/4πkd 。

其中,ε是一个常数,s为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。

在电容元件两端电压u的参考方向给定时,若
以q表示参考正电位极板上的电荷量,则电容元件的电荷量与电压之间满足q=cu。

定义式: c=q/u。

电容器的电势能计算公式:e=cu^2/2=qu/2=q^2/2c。

多电容器并联计算公式:c=c1+c2+c3+…+cn。

多电容器串联计算公式:1/c=1/c1+1/c2+…+1/cn。

三电容器串联:c=(c1*c2*c3)/(c1*c2+c2*c3+c1*c3)。

电容优点:
1、高稳定性
液态铝电解电容可以持续在高温环境中平衡工作,采用固态铝电解电容可以轻易提高
主板性能。

同时,由于其阔温度范围的平衡电阻,适合电源滤波。

它可以有效地提供更多
平衡丰沛的电源,在超频中尤为重要。

2、寿命长
固态铝电解电容具备极长的使用寿命(使用寿命少于50年)。

与液态铝电解电容较之,可以算是“长命百岁”了。

它不能被打穿,也不必害怕液态电解质干枯以及泄漏影响主板
稳定性。

由于没液态电解质诸多问题的所苦,固态铝电解电容并使主板更加平衡可信。

3、低esr和高额定纹波电流
esr(equivalentseriesresistance)指串联耦合电阻,就是电容非常关键的指标。

esr
越高,电容充放电的速度越慢,这个性能直接影响至微处理器供电电路的脱藕性能,在高
频电路中固态电解电容的高esr特性的优势更加显著。

铝电解电容的使用寿命

铝电解电容的使用寿命

铝电解电容‎的寿命电源产品中‎经常用到铝‎电解电容,他的寿命往‎往决定了整‎个产品的寿‎命。

因此,了解如何计‎算铝电解电‎容的寿命很‎有必要。

Chapt‎e r 1铝电解电‎容的特性1.1 Circu‎i t model‎(等效模型)The follo‎w ing circu‎i t model‎s the alumi‎n ium elect‎r olyt‎i c capac‎i tor’s‎norma‎l opera‎t ion as well as the over volta‎g e and rever‎s e volta‎g e behav‎i or. (此模型包含‎正常运行,过压,反压时的特‎性)C AC cR P ESR LD = Anode‎capac‎i tanc‎e (阳极电容)= Catho‎d e capac‎i tanc‎e(阴极电容)= Paral‎l el resis‎t ance‎, due to diele‎c tric‎(并联电阻)= Serie‎s resis‎t ance‎, as a resul‎t of conne‎c tion‎s, paper‎, elect‎r olyt‎e, ect. 等效串联电‎阻= Windi‎n g induc‎t ance‎and conne‎c tion‎s等效串联电‎感= Over and rever‎s e volta‎g e 等效稳压管‎The capac‎i tanc‎e Ca and Cc are the capac‎i tanc‎e of the capac‎i tor and is frequ‎e ncy and tempe‎r atur‎e depen‎d ed. (Ca and Cc,它的容量是‎频率及温度‎的函数)The resis‎t ance‎ESR is the equiv‎a lent‎serie‎s resis‎t ance‎which‎is frequ‎e ncy and tempe‎r atur‎e depen‎d ed. It also incre‎a ses with the rated‎volta‎g e. (ESR是频‎率及温度的‎函数,随着额定电‎压的增加而‎增加)The induc‎t ance‎L is the equiv‎a lent‎serie‎s induc‎t ance‎,and‎it’s‎indep‎e nden‎t for both frequ‎e ncy and tempe‎r atur‎e. It incre‎a ses with termi‎n al spaci‎n g. (L是频率及‎温度的函数‎)The resis‎t ance‎Rp is the equiv‎a lent‎paral‎l el resis‎t ance‎and accou‎n ts for leaka‎g e curre‎n t in the capac‎i tor. It decre‎a ses with incre‎a sing‎the capac‎i tanc‎e, tempe‎r atur‎e and volta‎g e and it incre‎a ses with time. (Rp的大小‎决定了漏电‎流的大小,随着容量温‎度电压的增‎加而降低,随着使用时‎间的延长而‎增加)The zener‎diode‎D model‎s the over volta‎g e and rever‎s e volta‎g e behav‎i or. Appli‎c atio‎n of over volta‎g e on the order‎of 50 V beyon‎d the capac‎i tor’s‎surge‎volta‎g e ratin‎g cause‎s high。

铝电解电容寿命计算方法

铝电解电容寿命计算方法

2013年11月日本贵弥功株式会社香港嘉美工有限公司UC343011铝电解电容器寿命计算说明资料【目次】1.关于铝电解电容器的经时恶化2.铝电解电容器寿命计算公式3.纹波电流发热取得办法4.周围温度取得办法5.纹波电流计算办法6.寿命计算例7.参考资料(关于补正系数)关于铝电解电容器的经时恶化2阳极箔阴极箔R AL KL A封口橡胶电解液在铝电解电容器的电气特性上起着至关重要的作用。

温度特性的概念静电容量变化率(%)温度E S R (Ω)温度特性图表流动容易高低电解液的状态UPUP流动不容易箔厚100μm箔断面图蚀刻部扩大照片电解纸扩大图像DownDown离子电解纸纤维4寿命(特性恶化)的概念静电容量变化率(%)初期电解液沸腾电解液减少时间加快电解液减少E S R (Ω)电解电容器的断面图耐久性图表UP素子封口橡胶Down6铝电解电容器寿命计算公式9L;复合条件的推定寿命纹波电流发热温度取得办法182225.4 1.35 1.4 1003.1周围温度取得办法24纹波电流计算办法(带Active-PFC电路)26取得示波器读出的电流RMS作为后续公式中的In计算使用,此处的In为混合频率信号,计算纹波电流发热部分时需要将混合频率结果为电源实测数据由该公式可计算出在高频部分的电流值I High,继而可以得到在低频时的电流值I Low =I high x K T(NCC调查结果如上表, K T=0.2~0.3,实际状况下K T会随着拓扑方式的不同而改变) *我们将继续研究PFC电路的纹波电流。

寿命计算例31参考资料关于补正系数34。

铝电解电容寿命的计算

铝电解电容寿命的计算

铝电解电容寿命的计算每个厂商都有自己的计算方法,但都遵循一定的原则:温度极大的影响铝电解电容内的电解液的扩散速度。

根据Arrhenius 的物理定律,温度每升高10 度,电解液的扩散速度加倍;换句话说,铝电解电容的寿命缩短一倍。

A physic law (According the Arrhenius law) teaches us that increasing the temperature 10 °C will double the diffusion of e lectrolyte.为了便于计算和理解,将其分成三部分:(1)基本寿命Lo :由外壳体积,热辐射性能,制造工艺等决定。

最大环境温度及最大纹波电流下的寿命就是基本寿命。

厂商都会提供或在产品说明书中注明。

(2)环境温度函数f(T) :电解液的扩散(3)纹波电流函数f(I) :ESR 引起的热损耗后两者导致铝电解电容核心温度上升,电解液的扩散速度加快。

根据Arrhenius 定律:L 与成反比,Tj : 电解电容的核心温度热阻定律:;Ta:电解电容周围的温度,即环境温度;Tc: 电解电容外壳的温度因为Ta 不易测出,但Tc 很好测量;可以根据Tc 算出Ta;环境温度函数f(T) :2.2 以下均为个人观点,不能100% 正确。

在厂商提供的数据中一般包含:后缀为0 ,则认为是厂商提供的极限值最高(环境)温度Ta 0 :一般选用105 度的电解电容最大环境温度下最大允许的纹波电流Ip 0 , 它的校正系数为 1 ;120Hz 或100kHz ,不同的厂家有不同的表示方法校正系数Correction coefficient :不同频率纹波电流之间的关系在Ta 0 和Ip 0 条件下所产生的温升:D Tj 0 ;本人认为是核心与外壳之间的温差,也可能是核心与Ta 0 之间的温差下表是Rubycon BXA 系列电容不同频率纹波电流之间的关系series frequency correction factor tableFrequency [ Hz ] 120 1k 10k 100k =<Correction coefficient 0.50 定义为C LF0.8 0.91.00 定义为C HF注意:有的厂家定义120Hz 时校正系数为 1 ,有的厂家定义100kHz 时校正系数为1 。

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS铝电解电容的寿命的计算公式1. Lifetime Calculation Formula 寿命计算公式L : Life expectancy at the time of actual use. 实际使用平均寿命Lb : Basic life at maximum operating temperature 最大工作温度下的基本寿命Tmax : Maximum operating temperature 最大工作温度Ta : Actual ambient temperature 实际环境温度ΔTjo : Internal temperature rise when maximum rated ripple current is R, USC, USG : 10℃VXP : 3.5℃Other type : 5℃ 加上最大额定波纹电流后,电容器的内部温升USR, USC, USG ::10℃VXP : 3.5℃其它类型:5℃ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升F : Frequency coefficient 频率系数[这个不李理解]Io : Rated ripple current at maximum operating temperature 最高工作温度时的额定波纹电流I : Actual ripple current 实际波纹电流2. Ambient Temperature Calculation Formula 环境温度计算公式If measuring ambient temperature (Ta) is difficult, Ta can be calculated from surface temperature of the capacitor as follows. .Ta = Tc –ΔTj/α 如果测量环境温度Ta有困难,Ta可以根据电容器的表面温度按下式计算:Ta = Tc –ΔTj/αTa : Calculated ambient Temperature 计算所使用的环境温度Tc : Surface Temperature of capacitor 电容器的表面温度α : Ratio of case top and core of capacitor element [此处不太理解]CaseφD ≤ 8 10,12.5 16, 18 20, 22 25 30 35α 1.0 1.1 1.2 1.3 1.4 1.5 1.63. Ripple Current Multiplier 额定电流系数(1) Temperature coefficient 温度系数Temperature coefficients are shown as below. 温度系数选取如下:USR, USC, USG:Ambient Temp.(℃)环境温度85 ≤65Coefficien 系数 1.0 1.3Other 85°C type:Ambient Temp.(℃)环境温度85 70 ≤50Coefficien 系数 1.0 1.6 2.0105°C type:Ambient Temp.(℃)环境温度105 85 ≤65Coefficien 系数 1.0 1.7 2.1Note: Where the temperature coefficient is used, life extension cannot be expected any more because the temperature coefficient is set up on condition of the same life time at maximum operating temperature. 注意:使用温度系数,不可指望寿命延长,因为温度系数是建立在最高工作温度下的相同寿命条件下的。

铝电解寿命推算方法

铝电解寿命推算方法
• ΔT0:额定温度下,铝电解电容器中心允
许温升
二、 温升测试法
通过测试电容器中心或表面温升来推算产品 寿命。具体公式如下:
LX=L0·2(T1-T2)/10 ·KV
0.6W.V.≤V’≤ W.V. 2:实际使用时中心温度 L0:额定使用寿命 LX:推算使用寿命
则电容器底部温升=(65-50)=15 ℃, 电容器中心温升=15*1.6=24 ℃, 因此就能推算出电容器中心温度=50+24=74 ℃, 用一个公式表示即为: 电容器中心温度=环境温度+表面温升*系数
=50+15*1.6 =50+24 =74 ℃
图二
三、两种方法相互推导
我们设定L0:电容器在额定条件下的寿命 LX:电容器实际使用寿命 T1:电容器中中心允许承受的最高温度
又因为电容器的发热温升与纹波电流有如下 关系:
ΔT=ΔT0(I/I0)2
其中: I:额定纹波电流(同频率) I0:实际 纹波电流(同频率)
代入上式
=L1·2(T0- T)/10 ·2(ΔT0-ΔT0(I/I0)2)/10·KV =L1·2(T0- T)/10 ·2(1-(I/I0)2)ΔT0/10·KV
• LX=L0·KT·KV·KR • 其中LX:电容器推算的使用寿命 • L0:电容器在额定条件下的寿命 • KT:电容器温度系数 • KV:电容器电压系数 • KR:电容器纹波电流系数
• KT 铝电解电容器的使用遵循10℃原则,
即使用温度每降低10℃,寿命延长一倍。 KT的计算如下:
• KT=2(T0-T)/10 • 其中T0:额定温度 • T:电容器实际工作温度
1、中心温升测试法 对电容器施加直流和纹波电压,电容器
处于工作状态,利用热电偶温度计直接插入 电容器芯包卷绕针孔内测中心最高温度。 (见示意图一)

红宝石铝电解电容寿命的计算

红宝石铝电解电容寿命的计算
红宝石 铝电解 电容平 均寿命 的计算
10YXF
电容型 1U M 10×
号: 16
最高工作
温度
(℃):
105
额定寿命 (hrs):
最大纹波 电流
(mArms) :
6000 30
温度系
数:
2.1
最大纹波
电流修正

(mArms)

63
温度系数
A: 9.716553
最大纹波
电流时的
内部温升
Δ
Tj0(℃):
实际环境
Ta: 温度
电容表面
Tc: 温度 应用在最 大允许纹
ΔTj0: 波电流 时的内部 温升 内部温升 与表面温
a: 升的比值 实际纹波
I: 电流 最大容许
I 0: 纹波电流 A: 温度系数
A:
Tj0
Tj0II0
2
Temperat ure factors when accelerati on coefficien t become twice greater.
f(T): 17.08291
纹波电流 加速系数
f(I): 1.370538
电容的平 均寿命 (hrs): 140476.7
年: 16.03615
表一:
Series (系列)
SUR, USC (Snapin)
VXP(Sna Op-thine)r type
ΔTjo(℃)
10 3.5 5
//注1
//根据实 际工作频 率查表
5
//根据电 容的直径 和耐压查 表 //根据电 容的系列 和规格查 表 //根据实 际工作温 度查表
//根据温 度系数修 正
注2:

铝电解电容寿命计算

铝电解电容寿命计算

铝电解电容寿命计算铝电解电容寿命很大程度上取决于环境因子与电性因子。

环境因子包括温度,湿度,大气压力和振动。

电性因子包括工作电压,纹波电流和充放电系数。

温度因子(环境温度与由于纹波电流导致的内在加热)最能判断铝电解电容寿命。

评估铝电解电容寿命的通用公式:非固态电解电容的寿命通常用环境温度系数、应用电压和纹波电流三个原理来体现。

按以下公式来计算:Lx=Lo*Ktemp*Kvoltage*KrippleLx:电解电容的评估寿命Lo:电解电容的寿命基数Ktemp:环境温度加速系数Kvoltage:电压加速系数Kripple:纹波电流加速系数Ktemp(环境温度系数)由于铝电解电容本质上是一种电气化学的组件,温度增加会促进化学反应并产生气体扩散在电解电容内部,从而导致电容容量逐步减小及(损失角)和等效内阻逐步增大。

以下公式是通过实验得出,体现了温度加速度因子和电容老化的关系:Lx=Lo*Ktemp=Lo*B(T o-T x)/10Ktemp= B(T o-T x0)/1Lx:电解电容的评估寿命Lo:电解电容的寿命基数T o:电解电容最大额定温度(℃)Tx:电解电容实际的环境温度B:温度加速度因子(约等于2)这个公式与阿列纽斯定律相似,阿列纽斯定律用来表述化学反应速率和温度之间的关系,并叫做铝电解电容的阿列纽斯定律。

当环境温度在40℃到最大额定温度之间时,温度加速度因子约等于2。

也就是说随着环境温度每增加10℃电容寿命将减半。

当环境温度在20℃到40℃之间时,温度加速度因子接近2,其寿命将延长。

但是工作条件与环境的变化,特别是工作条件与环境温度的互相变化。

环境温度在这个范围内将发生很大的变化,因此寿命评估要在40℃以下,应该用40℃作为Tx。

Kvoltage(应用电压系数)微小及大型号的铝电解电容应用较普遍,像贴片型、插件型、方块型在其寿命中有较小的电压效应。

只要电容用于电压和温度的规格之内,其它因子像温度和纹波电流决定电容寿命与电压类似。

铝电解电容器的寿命计算方法

铝电解电容器的寿命计算方法

铝电解电容器的寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。

Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下涟波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大涟波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗: XC="1/"(2πfC) 【Ω】感抗: XL="2"πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】涟波电流: IR=√(βA△T/ESR) 【mArms】功率: P="I2ESR" 【W】谐振频率: fo="1/"(2π√LC) 【Hz】P=(I²*R)+(IL*V)=Irms²*ESR= I rms²*DF/2╥fc (IL*V为漏电流与跨接电压的乘积---忽略不计)损耗因素DF=ESR/XC具体的计算公式好像这个论坛里有,一般都是按照经验取,好像是1uF/W吧。

电解电容寿命计算公式

电解电容寿命计算公式

寿命计算公式:1.不考虑纹波时:L=L 0×2(T0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。

T 0:最高工作温度;T:实际工作温度。

2.考虑纹波时L=L D ×2(T0-T)/10×K [1-(I/I0)*(I/I0)]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过额定纹波电流K取4)。

其中:ΔT=I 2×ESR/(A×H)ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2;H:散热系数。

φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm 2 2.18 2.16 2.13 2.1 2.052铝电解电容器寿命计算公式1.961.88 1.84 1.75 1.66 1.58 1.49绿宝石电子有限公司以RC10/505*11(105℃2000小时产品,105℃100KHz最大允许纹波为0.124A,20℃100KHz测试ESR标准值1.3Ω)为例:假设实际工作温度为85℃,电路中实际纹波电流值为0.162A1.不考虑纹波时:(T0-T)/10=(105-85)/10=2L=2000×22=8000(h)2.考虑纹波时:H取2.18/1000=0.00218电容表面积A=2×3.14×0.25×1.1+3.14×0.25×0.25=1.727+0.19625=1.92325(c㎡)电容中心温升ΔT=(0.162×0.162×1.3)/(0.00218×1.92325)=8.14(℃)I取0.162,I0取0.124,因为I>I0,故K取4;)2]×ΔT/10=-0.57535[1-(I/I温度T时的考虑纹波电流的电容寿命:L=2000×22×4-0.57535=3604(h)绿宝石电子有限公司。

铝电解电容寿命计算方法

铝电解电容寿命计算方法

铝电解电容寿命计算方法1.液体电解电容寿命计算方法:液体电解电容的寿命通常由电解液的电导率、厚度以及电解液中氧化铝颗粒的电导率等因素决定。

根据经验公式可计算如下:寿命(小时)=1.440×10^15×(C/V)^n×Z/T其中,C为电容值(μF),V为工作电压(V),n为电压系数(可参考铝电解电容厂商提供的数据),Z为电解液电导率(S/cm),T为工作温度(℃),常温下Z一般取0.1-2 S/cm之间。

2.固体电解电容寿命计算方法:固体电解电容的寿命通常由陶瓷介质的电导率、电容值和工作电压等因素决定。

根据经验公式可计算如下:寿命(小时)=0.1×10^6×[(C×V)/(I×T)]^(1/3)其中,C为电容值(μF),V为工作电压(V),I为等效串联电阻(Ω),T为工作温度(℃),I值可通过测试或参考铝电解电容厂商提供的数据得到。

3.等效串联电阻计算方法:等效串联电阻是指电容器在工作状态下所表现出的电阻,其值与寿命成正相关。

可以通过测试或参考铝电解电容厂商提供的数据得到。

需要注意的是,上述计算方法是根据经验公式得出的估算值,在实际应用中可能存在误差。

因此,工程师在设计电路时,应综合考虑电容器的额定参数、使用环境和寿命要求等因素,选择合适的铝电解电容器,并进行合理的设计和布局,以确保电路的可靠性和稳定性。

此外,还需要注意以下几点:1.工作电压不应超过电容器的额定电压,以避免击穿和损坏电容器。

2.工作温度应在电容器能够承受的范围内,过高的温度会加速电容器老化,缩短寿命。

3.合理选择电解液类型和固体介质,不同的材料具有不同的寿命和性能特点,需根据具体需求进行选择。

综上所述,铝电解电容寿命的计算方法主要是根据电容器的工作参数和材料特性进行估算,具体的计算公式和方法可根据实际情况和厂商提供的数据进行合理选择和应用。

电解电容器寿命计算公式

电解电容器寿命计算公式

A
T1 方波IRMS=
T √T1/T *A
0
Iip
PFC输入 Ii=Iip√ 1/3/√2
IPFC=√ (Ii/Fi)2 +(Io/Fo)
2
Iop To1
To
PFC输出 Io=Iop√ To1/3To
1.4
推测寿命LX由小时数转成年数(年)
1.153107
10-0.25*ΔTj0 (ΔTj0*I2/I02)/A
7.5 0.246876
Lx=L0*f(T)*f(I)
注意:只要在黄色栏内填上相应参数, 紫色栏内寿命会自动算出。
为了保持公式的准确性,不得随 便插入行或列。
Tα=TC-(Δ Tj0/ α)*(I/I0 )2
641
周围温度加速系数f(T)
纹波电流加速系数f(I) 电容器的推测寿命Lx(hrs) 推测寿命LX由小时数转成年数(年)
实际温升ΔTj
4.756828
1.93307 9195.281 1.04969
3.487878
10-0.25*ΔTj 温升系数C
9.12803 1.333
IRMS=√ (If1/Ff1)2+(I f2/Ff2)2+...+ Ifn/Ffn)2≈√ (IfL/FfL)2+(If H/FfH)2
铝电解电容器寿命计算
公式
A算法:
最高工作温度Tmax(℃) 额定寿命L0(hrs) 额定纹波电流I0(mA,rms) 温度系数k
85 1000 633 2.1
纹波电流温度修正值I0X(mA,rms)
1329.3
温度系数A 最大纹波电流时的内部温升ΔTj0(℃) 环境温度Tα(℃) 实际纹波电流I(mA,rms) 频率系数 纹波电流频率修正值I(mA,rms)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝电解电容器寿命的计算方法
作者:iC921栏目:模拟技术
铝电解电容器寿命的计算方法
铝电解电容器寿命的计算方法
偶然碰到这篇小文章,考虑到最近不时有人提问有关此类问题,也觉得有一定的意义,故而整理一下,帖出来供大家参考。

只是个别地方译不出来,有点遗憾。

这次赶巧了,今天还知道有位小老乡赶上今天生日,说好了算作今天偶给她的小礼物,愿她能及早看到。

September 5,2001
RUBYCON CORPORATION
ENGINEERING DIVISION
TO: ACBEL POLYTECH INC.
LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPA
CITORS
铝电解电容的寿命的计算公式
1. Lifetime Calculation Formula 寿命计算公式
L : Life expectancy at the time of actual
use.
实际使用平均寿命
Lb : Basic life at maximum operating 最大工作温度下的基本寿命
ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升
忽略纹波电流时的寿命推算
一般而言,铝电解电容器的寿命与周围的环境温度有很大的关系,其寿命可以由以下公式计算。

其中,L:温度T时的寿命
L0:温度T0时的寿命
与温度比较,降压使用对电容器的寿命影响很小,可忽略不计。

考虑纹波电流时寿命的推算
叠加纹波电流,由于内部等效串连电阻(ESR)引起发热,从而影响电容器的使用寿命,产生的热量可由下式计算
I:纹波电流(Arms)
R:等效串联电阻(Ω)
由于发热引起的温升
其中,△T: 电容器中心的温升(℃)
I: 纹波电流 (Arms)
R: ESR (Ω)
A: 电容器的表面积(cm2)
H: 散热系数( 1.5~2.0x10-3W/cm2x℃)
上面公式(3)显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着△T值的大小,般情况下,△T<5℃。

下图表示纹波电流引起的温升的测量处
测试结果:
(1).考虑到环境温度和纹波电流时的寿命公式
其中,Ld:直流工作电压下的使用寿命
(K=2,纹波电流允许的范围内)
(K=4,超过纹波电流范围时)
T0:最高使用温度
T :工作温度
△T:中心温升
(2)电容器工作在额定的纹波电流和上限温度时,电容器的寿命可通过转化(4)式得到,如下:
其中,Lr:工作在额定纹波电流和最高工作温度下的寿命(h)
△T0:最高工作温度下的电容器中心容许温升。

(3)考虑纹波电流,环境温度时可由(5)式得到下式:
其中,I0:最高工作温度下的额定纹波电流(Arms)
I:叠加的纹波电流(Arms)
由于直接测量电容器的内部温升存在着困难,下表列出了表面温度和内部核心温度的换算关系。

图表2-1
寿命的推算公式,原则上适用于周围环境温度为+40℃到最高工作温度范围内,但由于封口材料的老化等因素,实际的推算寿命时间一般最大为15年。

(表2-1 寿命推算曲线)。

相关文档
最新文档