锂离子电池锡基负极材料研究进展

合集下载

《锂离子电池硅基负极材料制备与性能研究》

《锂离子电池硅基负极材料制备与性能研究》

《锂离子电池硅基负极材料制备与性能研究》一、引言随着科技的飞速发展,对便携式电子设备的需求与日俱增,作为这些设备的主要能源,锂离子电池的性能日益受到重视。

而负极材料作为锂离子电池的关键组成部分,其性能直接影响到电池的整体性能。

近年来,硅基负极材料因其高比容量、低放电平台等优点,逐渐成为研究的热点。

本文将详细介绍锂离子电池硅基负极材料的制备方法及其性能研究。

二、硅基负极材料的制备(一)原料选择与准备制备硅基负极材料,需要的主要原料包括硅源、导电剂和粘结剂等。

其中,硅源的选择对最终材料的性能具有重要影响。

常用的硅源有微米硅、纳米硅等。

此外,还需选择导电性能良好的导电剂和具有良好粘结性的粘结剂。

(二)制备方法目前,制备硅基负极材料的方法主要有化学气相沉积法、球磨法、溶胶凝胶法等。

本文采用溶胶凝胶法进行制备。

该方法首先将硅源、导电剂和粘结剂混合均匀,形成溶胶状混合物,然后通过热处理使混合物凝胶化,最后进行烧结得到硅基负极材料。

三、硅基负极材料的性能研究(一)材料结构与形貌分析通过X射线衍射(XRD)、扫描电子显微镜(SEM)等手段对制备的硅基负极材料进行结构与形貌分析。

XRD可以确定材料的晶体结构,SEM则可以观察材料的微观形貌和颗粒大小。

(二)电化学性能测试采用恒流充放电测试、循环伏安法(CV)等手段对硅基负极材料的电化学性能进行测试。

恒流充放电测试可以了解材料的比容量、首次效率、库伦效率等;CV曲线则可以反映材料的氧化还原反应过程及电极反应的可逆性。

(三)性能对比分析将所制备的硅基负极材料与商业石墨负极材料进行性能对比分析。

在相同条件下进行充放电测试,比较两者的比容量、循环性能、倍率性能等。

同时,分析硅基负极材料的优势与不足,为后续研究提供参考。

四、实验结果与讨论(一)实验结果通过上述制备方法和性能测试手段,得到了硅基负极材料的结构与形貌数据、电化学性能数据以及性能对比分析结果。

(二)结果讨论结合实验结果和前人研究,对硅基负极材料的制备过程、结构与性能关系进行深入分析。

锡基作为锂离子电池负极材料的研究进展

锡基作为锂离子电池负极材料的研究进展

锡基作为锂离子电池负极材料的研究进展在锂离子电池技术不断发展过程中,以碳为负极的电池具有良好的循环性,技术成熟依然是目前主流的负极材料,但却基本达到了碳的理论容量。

不能够进一步满足当代对大容量小体积电池的要求。

因此必须开发新的理论容量高的负极材料,在研究过程中出现了不少的代替碳的负极材料。

锡基就是其中一种。

在1997年,日本的富士公司首先发现了无定形锡基氧化物(TOC)具有很长的循环寿命和较大的可逆容量。

此后,在全世界掀起了研究锡基材料的浪潮,开发了多种含锡的材料类型,包括金属锡,锡基氧化物,锡基合金,硫化锡等。

锡基负极材料在锂离子的嵌入和脱出过程中可以形成Sn,其中的x小于Lix4.4。

也就是说一个锡原子可以与4.4个锂原子相结合形成合金。

从而计算出锂的理论容量大概在990mAh/g,远大于碳基材料(理论容量372mAh/g),这使得锡基作为锂离子电池负极材料具有广大的潜力。

但是锡基作为负极材料时锂离子的嵌入和脱出会使体积发生巨大改变。

因此需要对锡基材料作进一步的研究,下面会从不同方面的锡基进行综述,来进一步了解锡基材料的优劣性。

2.1金属锡材料及复合材料锡和锂能够形成Sn。

纯净的Sn作为负极材料时,锂离子的嵌入和脱出Li4.4过程其体积变化率高达100%—300%,而且电极易发生破裂与粉碎,导致电池的可逆容量下降。

在Yang S等人[13]的文章中证实了此点,他们制作了厚度为12µm 到15µm的纯锡作为电极的电池。

在随后的研究中发现纯锡电极在前15次循环中的容量为600mAh/g,但在下面的循环中迅速降到了100~200mAh/g。

X射线研究分析可以看出晶体的尺寸变小了,由此可知以纯锡作为负极材料会发生严重变形。

目前的解决方法主要有两种,一种是将锡可以纳米化并加入碳材料,这一种情况与碳—硅复合材料类似,在上面已经提到过。

另一种方法是电镀制备锡薄膜电极。

2.1.1纳米化方法纳米化的研究中有Wang等人[14]以石墨为分散剂,采用高能机械研磨法SiO/和金属Li的混合物发生反应,并还原成金属Sn,得到纳米簇会均匀的SnO分布含锂的弹性石墨基质。

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展摘要:当前全球范围内的石油和其他传统能源越来越稀缺,迫切需要有效开发和利用可再生能源,例如太阳能、风能和潮汐能。

但是,这些新能源供应不稳定且持续不断,因此需要先转换成电能再输出,这促进了可充电电池的研究。

传统的铅酸电池,镍镉电池和镍氢电池存在使用寿命短、能量密度低和环境污染等问题,极大地限制了它们的大规模应用。

当前,电池行业的首要任务是找到可替代传统铅酸电池和镍镉电池的可充电电池,迫切需要开发无毒、无污染的电极材料和电池隔膜以及无污染的电池。

与传统的二次化学电池相比,锂离子电池由于其吸引人的特性已经在电子产品中占主导地位,显示出广阔的发展前景。

关键词:锂离子电池;负极材料;研究进展引言国际能源结构正从传统化石能源的主导地位逐渐转变为低碳、清洁和安全的能源,以二次电池为代表的电化学储能技术已成为最有前途的储能技术之一。

锂离子电池因其比能量高、工作电压高、循环寿命长和体积小等特点得到了广泛关注。

锂离子电池主体由正极、隔膜、负极、封装壳体四部分组成,就提高电池的比能量而言,提高负极的性能相对于改进正极、隔膜、封装壳体更为容易。

负极又包括了电流集流体(通常是铜箔)、导电剂(通常是乙炔黑)、粘结剂(通常是聚偏氟乙烯)和具有与锂离子可逆反应的活性材料。

电极的性能几乎取决于活性材料的性能。

1嵌入型负极材料嵌入型负极材料嵌入机制可以描述为,材料结构中可以容纳一定的外来的锂离子,相变形成新的含锂的化合物,并且能在随后的充放电过程中脱出外来的锂离子,恢复到先前的原始结构。

嵌入型负极材料,包括已经商业化锂离子电池负极材料石墨、非石墨化的碳材料(如石墨烯、碳纳米管、碳纳米纤维)、TiO2以及钛酸锂等。

其中碳质材料的优点包括良好的工作电压平台,安全性好以及成本低等。

但是也存在一些问题,如高电压滞后、高不可逆容量的缺点。

钛酸盐负极材料具有优异的安全性、成本低、长循环寿命的优点,但能量密度低。

石墨作为层状碳材料,是首先被商业化和人们所熟知的LIB负极材料,也是最成功的嵌入型负极材料,锂离子嵌入后可生成层状LiC6,其放电平台在0.2V(vs.Li+/Li)以下,有优异的嵌/脱锂动力学性能,是比较完美的LIB负极材料。

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析目前锂电池负极材料的研究主要集中在碳基材料、硅基材料、金属氧化物等方面。

这些材料在锂电池中都有其独特的优势和局限性,而且针对不同种类的锂电池,对负极材料的要求也有所不同。

对这些负极材料的研究和发展,将有助于提高锂电池的性能和推动新一代电池技术的发展。

碳基材料一直是锂电池负极材料的主要研究方向之一。

石墨、石墨烯、碳纳米管等碳材料,因其导电性好、比表面积大、化学稳定性高等特点,被广泛应用于锂电池负极材料中。

通过控制碳材料的结构和微观形貌,可以有效提高其对锂离子的嵌入/脱嵌能力,提高其循环稳定性和倍率性能。

不过,碳材料在储锂过程中很难实现高容量储存,这一问题已成为碳基负极材料的研究难点之一。

硅基材料也是当前锂电池负极材料的研究热点。

与碳材料相比,硅具有更高的理论储锂容量,因此被认为是一种非常有前景的锂离子电池负极材料。

硅材料在锂离子嵌入/脱嵌过程中会发生体积膨胀,导致材料结构破坏,电化学活性和循环寿命大大降低。

为了解决硅材料的这一问题,研究者们通过合成纳米结构的硅材料、设计多孔结构、以及与碳等材料的复合等方法,取得了一些积极的进展,但仍然存在一定的挑战。

在未来,锂电池负极材料的研究将朝着以下几个方向发展:通过材料设计与合成新型的碳基材料,以提高其储锂容量,并且降低材料的制备成本。

研究者也将继续探索碳材料的微观结构与电化学性能之间的关系,找出铁电影响碳材料电化学行为的机理。

将进一步发展硅基负极材料的制备技术,通过纳米结构设计、表面涂层等方法,提高硅材料的循环稳定性和倍率性能。

也将探索硅基材料与其他材料的复合应用,以扩展硅材料在锂电池中的应用范围。

对金属氧化物的研究也将继续深入,以寻找新型金属氧化物材料,并且改进其结构与性能。

研究者也将进一步研究金属氧化物的嵌入/脱嵌机制,以解决其循环稳定性问题。

随着锂电池技术的不断发展和应用需求的不断增加,对锂电池负极材料的研究也将持续深入。

锂离子电池负极材料的研究及应用进展

锂离子电池负极材料的研究及应用进展

锂离子电池负极材料的研究及应用进展一、本文概述随着全球能源危机和环境污染问题日益严重,可再生能源及其存储技术受到了广泛关注。

锂离子电池作为一种高效、环保的能源存储技术,广泛应用于电动汽车、移动电子设备以及大规模储能系统中。

而负极材料作为锂离子电池的重要组成部分,其性能直接影响着电池的能量密度、循环寿命和安全性。

因此,研究和开发高性能的锂离子电池负极材料对提升电池性能、推动锂离子电池技术的发展具有重要意义。

本文旨在综述锂离子电池负极材料的研究现状和应用进展。

我们将简要介绍锂离子电池的基本工作原理和负极材料的主要性能指标。

然后,我们将重点综述各类负极材料的制备方法、性能特点以及在实际应用中的表现。

在此基础上,我们将讨论当前负极材料研究领域的热点问题和发展趋势,包括硅基负极材料、锂金属负极材料以及新型二维负极材料等。

我们将展望锂离子电池负极材料的未来发展方向,以期为相关领域的科研工作者和工程技术人员提供有益的参考和启示。

二、锂离子电池负极材料分类锂离子电池的负极材料是影响电池性能的关键因素之一,其性能直接影响到电池的容量、能量密度、循环寿命和安全性能。

根据材料的性质和应用需求,锂离子电池的负极材料主要分为以下几类:碳材料:碳材料是目前商业化锂离子电池中应用最广泛的负极材料,主要包括石墨、软碳和硬碳等。

石墨具有良好的层状结构,可以提供较高的比容量和良好的循环稳定性。

软碳和硬碳则具有较好的嵌锂能力和较高的能量密度。

合金材料:合金材料如锡、硅、锗等具有较高的理论比容量,是下一代锂离子电池负极材料的热门候选。

然而,合金材料在充放电过程中存在较大的体积变化,容易导致电池循环寿命下降。

目前的研究主要集中在如何缓解合金材料的体积变化和提高其循环稳定性。

氧化物材料:氧化物材料如过渡金属氧化物(如CoO、Fe2O3等)和锂氧化物(如Li4Ti5O12)等也具有一定的应用潜力。

这些材料具有较高的能量密度和良好的循环稳定性,但导电性较差,需要进行改性以提高其电化学性能。

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析1. 传统负极材料传统的锂离子电池负极材料主要包括石墨、金属氧化物和合金材料。

石墨作为最为常见的负极材料,具有很高的首次放电比容量和循环稳定性,但其比容量有限,且在大电流放电时易发生热失控。

金属氧化物和合金材料因其高的理论比容量和能量密度受到了广泛关注,但其电化学活性较差,循环性能不稳定。

传统负极材料在满足高能量密度和高循环稳定性需求上存在着一定的局限性。

二、锂电池负极材料研究的展望1. 高能量密度随着对电池能量密度要求的不断提高,未来的锂电池负极材料需要具有更高的理论比容量和能量密度。

开发高容量、高电化学活性的负极材料是未来研究的重点之一。

新型碳材料、硅基材料以及金属氧化物和合金材料都有望成为未来高能量密度锂电池的重要负极材料。

2. 循环稳定性循环稳定性是锂电池的重要性能指标之一。

当前硅基材料、金属氧化物和合金材料的循环性能仍然存在一定的问题,未来需要通过界面工程、复合材料设计等方法来提高负极材料的循环稳定性。

3. 安全性锂电池的安全性一直是备受关注的问题。

传统锂电池负极材料在大电流放电时易发生热失控,导致安全隐患。

未来需要开发更安全稳定的负极材料,以确保电池的安全性能。

4. 可持续发展随着对环境友好性要求的提高,未来的锂电池负极材料需要考虑其资源可持续性和环境影响。

新型锂电池负极材料的开发需要注重材料的资源可再生性和环境友好性。

三、结语在锂电池的快速发展背景下,锂电池负极材料的研究与发展对于提高电池性能和满足应用需求具有重要意义。

当前,新型碳材料、硅基材料和金属氧化物材料被认为是未来锂电池负极材料的重要发展方向。

未来,随着材料科学和电化学领域的不断进步,相信锂电池负极材料将会不断取得新的突破,为电池技术的发展注入新的动力。

我们也需要注重锂电池负极材料的可持续发展和环保性,努力推动锂电池技术的可持续发展。

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展2010-11-10 14:45:06 中国石墨碳素网文/苗艳丽杨红强岳敏天津市贝特瑞新能源材料有限责任公司随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。

为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。

作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。

动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。

国外政府及企业在动力锂离子电池研发上均做出了很大的努力。

我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。

“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。

与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。

在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。

一、动力锂离子电池负极材料简介1.动力锂离子电池负极材料特性锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。

锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。

2.动力锂离子电池负极材料主要类型早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。

锂-钠离子电池用锡基负极材料的制备及电化学性能研究

锂-钠离子电池用锡基负极材料的制备及电化学性能研究

锂-钠离子电池用锡基负极材料的制备及电化学性能研究锂/钠离子电池用锡基负极材料的制备及电化学性能研究近年来,随着能源需求的增长和可再生能源的推广,锂离子电池成为了最常见和最重要的可再充电电池。

然而,由于锂资源的有限性和成本的高昂,科研人员开始探索替代锂离子电池的新型离子电池,其中钠离子电池备受瞩目。

锡材料由于其丰富的资源和适合储能的电化学特性而成为了制备锂/钠离子电池负极材料的理想选择。

锡具有丰富的氧化态,可以提供多种电化学反应,从而实现高容量储能。

然而,锡材料在充放电循环过程中存在一些问题,如体积膨胀大、容量衰退快等。

因此,要提高锡基负极材料的电化学性能,就需要解决这些问题。

目前,关于锂/钠离子电池用锡基负极材料的制备及电化学性能研究主要集中在以下几个方面。

首先,关于制备方法的研究。

为了解决锡材料的体积膨胀问题,在制备锡基负极材料时,采用合适的方法控制其形貌和结构,以实现高容量的储能。

常见的制备方法有溶剂热法、溶胶-凝胶法、电化学沉积法等。

研究结果表明,合理选择制备方法可以有效改善锡基负极材料的充放电性能。

其次,关于表面改性的研究。

通过改变锡基负极材料的表面性质,可以增强其电化学性能。

常见的表面改性方法有包覆、合金化和导电添加剂掺杂等。

这些方法可以提高锡材料的电导率和储锂/钠的动力学性能,从而改善电池的循环性能和倍率性能。

第三,关于纳米结构的研究。

将锡材料制备成纳米结构可以提高其电化学性能。

纳米结构具有较大的比表面积和短的离子和电子传输距离,有利于提高锡材料的充放电速率和循环性能。

因此,通过控制制备条件,如温度、反应时间等,可以实现锡基负极材料的纳米结构化。

最后,关于界面再设计的研究。

锂/钠离子电池的性能不仅与负极材料有关,还与电解液和电池的界面反应有关。

因此,通过界面再设计可以调节电池的界面性能,从而提高电池的循环寿命和安全性。

常见的界面再设计方法有选择性固体电解质薄膜形成和界面包覆等。

总之,锂/钠离子电池用锡基负极材料的制备及电化学性能研究是当前热点的课题之一。

锂离子电池新型负极材料的研究

锂离子电池新型负极材料的研究

锂离子电池新型负极材料的研究本文着重介绍了锂离子电池负极材料金属基(Sn基材料、Si基材料)、钛酸锂、碳材料(碳纳米管、石墨烯等)的性能、优缺点及改进方法,并对这些负极材料的应用作了进一步展望。

锂离子电池因具有能量密度高、工作电压高、循环寿命长、自放电小及环境友好等显著优点,已被广泛用于3C电子产品(Computer,ConsumerElectronic和Communication)、储能设备、电动汽车及船用领域。

锂离子电池的能量密度(170Wh/kg),约为传统铅酸蓄电池的3~4倍,使其在动力电源领域具有较强的吸引力。

而负极材料的能量密度是影响锂离子电池能量密度的主要因素之一,可见负极材料在锂离子电池化学体系中起着至关重要的作用,其中研究较为广泛的锂离子电池负极材料为金属基(Sn基材料、Si基材料)、钛酸锂、碳材料(碳纳米管、石墨烯等)等负极材料。

金属基材料1.1锡基材料目前锡基负极材料主要有锡氧化物和锡合金等。

1.1.1锡氧化物SnO2因具有较高的理论比容量(781mAh/g)而备受关注,然而,其在应用过程中也存在一些问题:首次不可逆容量大、嵌锂时会存在较大的体积效应(体积膨胀250%~300%)、循环过程中容易团聚等。

研究表明,通过制备复合材料,可以有效抑制SnO2颗粒的团聚,同时还能缓解嵌锂时的体积效应,提高SnO2的电化学稳定性。

Zhou等通过化学沉积和高温烧结法制备SnO2/石墨复合材料,其在100mA/g的电流密度下,比容量可达450mAh/g以上,在2400mA/g电流密度下,可逆比容量超过230mAh/g,实验表明,石墨作为载体,不仅能将SnO2颗粒分散得更均匀,而且能有效抑制颗粒团聚,提高材料的循环稳定性。

1.1.2锡合金SnCoC是Sn合金负极材料中商业化较成功的一类材料,其将Sn、Co、C三种元素在原子水平上均匀混合,并非晶化处理而得,该材料能有效抑制充放电过程中电极材料的体积变化,提高循环寿命。

锂离子电池中金属氧化物负极的研究进展

锂离子电池中金属氧化物负极的研究进展

锂离子电池中金属氧化物负极的研究进展锂离子电池是一种高效率、低耗能的充电电池,其采用的是锂硫化物为正极和金属氧化物为负极的设计。

而锂离子电池中金属氧化物负极是至关重要的部分,它直接影响到整个电池的性能和使用寿命。

本文就探讨一下关于锂离子电池中金属氧化物负极的研究进展。

一、金属氧化物负极的基本情况金属氧化物负极起到阴离子扩散的作用,是锂离子电池的重要组成部分。

锂离子在电池内部传递的过程中经过负极,通过在负极上嵌入和脱嵌等过程完成电极的充放电。

金属氧化物负极通常包括二氧化钛(TiO2)、氧化钒(V2O5)、氧化铁(Fe2O3)、氧化锰(Mn2O3)等。

其中,二氧化钛是电化学性能最佳的金属氧化物,可以作为锂离子电池的理想负极材料。

但是,由于其电极电位较高,充放电容量较低,不能满足大规模的商业应用需求。

二、金属氧化物负极的研究进展1、掺杂改性为了提高金属氧化物负极材料的性能,研究人员开始探索掺杂改性的方法。

例如,将氧化钒材料中的钒原子部分替换为其他过渡金属元素,如铜、铁、锰等,可以显著增加其电容量和导电率,提高其充放电性能。

此外,还有些研究者对金属氧化物进行了复合掺杂改性,或是对其进行表面改性等,均有一定的成功经验。

2、纳米结构材料纳米材料具有着很好的性质,其能够提高材料的表面积,增大材料的活性位点数量,从而达到提高其电容量的目的。

研究人员利用纳米材料制备了锂离子电池中的金属氧化物负极材料,并取得了一定的成功。

例如,利用溶剂热法制备的纳米二氧化钛材料,其比表面积可以达到200平方米/克以上,具有良好的电化学性能和稳定性。

3、异质结构材料利用一个物质与另一个物质组成异质结构,可以有效提高材料的电化学性能。

由于异质结构的特殊性质,可以在负极材料中形成保护膜层,从而增加其充放电容量和稳定性。

例如,将二氧化钛与碳或钛酸锶(SrTiO3)等材料制备成复合材料,可以有效提高其性能。

4、新型金属氧化物为了提高锂离子电池中金属氧化物负极的性能,研究人员还在探索新型金属氧化物负极材料。

锂离子电池硅基负极材料研究与进展

锂离子电池硅基负极材料研究与进展

Research progress in silicon -based anode materials for lithium -ion batteries
HAO Haobo 1,2 , CHEN Huimin 1 , XIA Gaoqiang 2 , FAN Xiecheng 2 , ZHAO Peng 1,2
Key words: lithium-ion battery; silicon anode material; review; SiO; carbon coating
收稿日期: 2020-10-15
基金项目: 新疆维吾尔自治区高校科研计划科学研究重点项目(XJEDU2019I025)
通信作者: 陈惠敏, 教授, 主要从事功能材料的制备研究。 E-mail: chm@ cjc. edu. cn
为了克服纯硅负极材料在锂离子电池应用中存在的
这些缺陷, 提高锂离子电池性能, 研究者进行了多种改
进研究, 包括硅的纳米化
成硅 / 金 属 合 金

[28-34]
[23-27]
[8-17]
, 合成氧化亚硅
[18-22]
, 合
以及对硅材料进行表面碳包
。 本文对锂离子电池硅基负极材料的研究进展进
行了综述, 并对硅基负极材料的发展趋势进行了展望。
摘 要: 随着消费类电子产品及新能源汽车的发展, 高能量密度的锂离子电池逐步成为了研究热点。 当前使用的石
墨负极材料的理论比容量为 372 mAh / g, 亟需研发高容量的负极材料。 硅作为负极材料, 其比容量为石墨的 10 倍,
且脱锂电位低, 被认为是最具潜力的新型负极材料。 纯硅负极材料在锂离子电池应用中, 由于其巨大的体积膨胀效

锡基纳米材料作为锂离子电池负极材料的实验与研究

锡基纳米材料作为锂离子电池负极材料的实验与研究

1 . 2 二氧化锡和二氧化锡/ 碳凝胶 复合材 料的制备
二氧化锡碳 凝胶复合材料是通过真空渗入法制备. 将制备好的碳凝胶固体浸入到含锡( I I ) 配合物
的溶液中, 并在真空下保存3 h . 锡配合物是以草酸锡为原料制备而成. 被含锡配合物溶液填充的碳凝胶 固  ̄ 8 5 o c 下干燥过夜 , 然后在马弗炉中以5  ̄ C / m i n 的速率升温焙烧 , 直至4 0 0 %时 , 再烧1 h .
N a n o w i r e E l e c t r o d e【 J 】 . S c i e n c e , 2 0 1 0 ,3 3 0 ( 6 0 1 0 ) : 1 5 1 5 — 1 5 2 0 .
[ 2 】K o Y D ,K a n g J G ,P a r k J G ,e t 1.S a e f - s u p p o  ̄ e d S n 0 2 n a n o w i r e e l e c t r o d e s f o r h i g h - p o w e r l i t h i u m- i o n b a k e i r e s 【 J 】 . N a n o t e e h n o l o g y , 2 0 0 9 , 2 0 ( 4 5 ) : 4 5 5 7 0 1 . [ 3 ]L e i D N ,Z h a n g M,Ha o Q Y ,e t 1.Mo a r p h o l o g y e f e c t o n t h e p e r f o r m a n c e s o f S n O 2 n a n o r o d a r r a y s a s a n o d e s or f
这就大大阻碍 了其商业化应用. 研究者尝试 了许多方法来解决这个问题 , 比如 , 构建不同的纳米结构如 纳 米棒[ 2 - 5 ] 、 中空状 [ 6 - 8 ] 、 纳米纤 维[ 9 1 等. 然而, 由于其高表面能, 导致纳米水晶很容易聚合 , 并且难以控制具体大小. 把纳米颗粒镶嵌在碳基 结构上被证明是一种能抑制凝聚的有效方法. 碳凝胶有着优异的高比表面积和可调的孔径分布. S u n g - Wo o H u a n g 将氧化锡溶胶浸入间苯二酚一 甲醛 ( R F ) 湿凝胶中, 或将四氯化锡溶液浸入在碳凝胶 电极 中, 成功

锂离子电池锡基负极材料的研究现状

锂离子电池锡基负极材料的研究现状
51 0 6; 2 Ch mi t n v r n n g n e i g De at e t S u h Ch n r l i e st , a g h u 0 0 . e sr a d En io me t y En i e rn p rm n , o t i a No ma Un v r i Gu n z o y
5 0 6 . p r n f t n h s sWu i ies y Ja g n5 9 2 , hn ) 0 ;3 De at t ha 0 me o Ma c Un t
A b t a t Th e e r h p o r s ft b s d c t o e m a e i l f rLi o te i swa e i w e , ncu i gt es o a em e h n s n h r p r to s r c : e r s a c r g e so n— a e a h d t ra s o - n bat re sr v e d i l d n h t r g c a im a d t ep e a a i n i i 0 i ,tn o i e i lo n t T e a t l lo p i t d o tt e p o l m nd t e s l to a ,t a a r v d e e e c o t e r s a c e s o h s ftn i x d ,tn a l y a d e c h r i e a s o n e u h r b e a h o u i n w y h t c n p o i e r f r n e t h e e r h r ft i c r s a c r a e erha e . K e w o d : -o a t re ; tn o i e so a e m e h n s ; ee to h m ia h r c e y r s Lii n b t i s e i x d ;t r g c a i m l c r c e c l a a tr c

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展摘要:锂离子电池作为一种电源应用很广泛,但是在应用中存在一些不足,选取电化学性能良好的正负极材料是提高和改善锂离子电池电化学性能最重要的因素。

简单介绍锂离子电池的电化学反应原理和从新型碳材料、硅基负极材料、锡基负极材料三方面锂离子电池的研究状况,并展望了锂离子电池负极材料的发展趋势。

关键词:锂离子电池;负极材料;研究现状0 引言目前全球最具潜力的可充电电池是锂离子电池。

用碳负极材料的商品化的锂离子电池可逆比容量已达350 mA∙h/g,快接近理论比容量372mA∙h/g[1]。

随着全球化的加快,科技日新月异,电子产品日益普及,发展中的电动汽车等对电池能源提出了更高的要求,其中主要包括能量密度、使用寿命等[2]。

开发新型、廉价的负极材料是锂离子电池研究的热点课题之一。

就目前而言,主要有新型碳材料、锡基材料、硅基材料等,本文研究了这些新型负极材料的研究现状及未来的发展方向。

1锂离子电池的电化学反应原理锂离子电池是指用锂离子嵌入化合物作为正负极的二次电池.锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如LixCoO2,LixNiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到 4 V以上(vs.Li+/Li)[3].负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6等的有机溶液。

锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构成.充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态.锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关[3]。

2新型碳材料在新型碳负极方面,未来的发展将主要集中在高功率石墨类负极及非石墨类高容量碳负极,以满足未来动力和高能电池的需求。

关于锂离子电池负极材料的研究分析

关于锂离子电池负极材料的研究分析

关于锂离子电池负极材料的研究分析摘要:锂离子电池是绿色环保的可充电电池系统之一,具有电压高,循环寿命长,毒性低和安全性高的优点。

负极材料是锂离子电池的重要组成部分,传统商业石墨具有价格低廉和导电性好的优点,是最广泛的工业负极材料。

然而,石墨的放电容量较低,这限制了其在高能量密度电池中的应用。

能够提供高放电容量的新型负极材料的开发已成为突破锂离子电池广泛应用限制的关键。

关键词:锂离子电池;负极材料;研究引言:锂离子电池的比容量主要取决于正负极材料。

正极材料已经达到其各自理论比容量极限的情况下,锂离子电池比容量的提升只能依靠负极材料的发展。

在新型碳材料中,石墨烯自诞生以来就受到了研究人员的青睐。

锂离子可以储存在石墨烯片的两侧。

基于双电层吸附结构,石墨烯的理论比容量非常高,相当于传统石墨负极的2倍。

一锂离子电池负极材料的基本特点锂电子电池负极材料对锂离子电池性能的提升有着十分重要的作用,锂电子负极材料在使用的过程中要具备以下几个条件:第一,锂离子负极材料要为层状结构或者隧道结构,这样结构能够使得锂离子脱嵌,并在锂离子出现脱出、嵌入时不会出现明显的结构变化,从而使得锂离子电池电极具备良好的充放电能量,提高电池的使用寿命。

第二,锂离子要能够尽可能多的完成嵌入和脱出,从而使得电子具有较高的可逆性。

同时,在锂离子脱嵌的过程中电池本身要能够实现平稳的充电和放电。

第三,第一次不可逆电池的放电量比较小。

第四,锂离子电池负极材料要具备较强的安全性能。

第五,锂离子电池材料和电解质溶剂的相容性比较好。

第六,锂离子电池负极材料资源获取丰富、多样,价格低廉。

二锂离子电池负极材料的基本类型(1)碳材料①石墨。

碳材料按照结构可以划分为石墨和无定形碳元素。

石墨是锂离子电池常用的碳负极材料,具备良好的导电性和结晶度,且石墨本身还具备完整的层状晶体结构,十分适合锂离子的嵌入和脱出。

在工业领域会选择多鳞片的石墨来作为碳负极原材料。

②无定形碳。

锡基mofs的设计合成及其在锂离子电池中的应用_概述说明

锡基mofs的设计合成及其在锂离子电池中的应用_概述说明

锡基mofs的设计合成及其在锂离子电池中的应用概述说明1. 引言1.1 概述锡基的金属有机框架材料(MOFs)是一类具有独特结构和性能的材料,在能源领域中具有重要的应用潜力。

随着可再生能源需求的不断增加,锂离子电池作为一种高效、可靠的储能技术被广泛应用。

尽管传统锂离子电池已经取得了显著的发展,但其材料性能仍然存在很大限制。

为了克服这些局限性并提高锂离子电池的性能,使用新型材料如锡基MOFs成为一个备受关注的研究领域。

1.2 文章结构本文将对锡基MOFs在锂离子电池中的设计合成及应用进行详细阐述。

文章分为五个部分:引言、锡基MOFs的设计合成、锂离子电池背景知识、应用锡基MOFs在锂离子电池中的优势和挑战,以及最后的结论与展望。

1.3 目的本文旨在介绍锡基MOFs在锂离子电池领域中的重要性,并深入探讨其设计合成方法以及在锂离子电池中的应用。

通过该文章,读者将了解到锡基MOFs作为一种新型材料在锂离子电池中的优势和挑战,掌握其合理设计的原则和方法,并对未来发展方向有所展望。

2. 锡基MOFs的设计合成:2.1 MOFs的介绍:金属有机骨架材料(Metal-Organic Frameworks,MOFs)是由金属离子或簇合物与有机配体相互连接形成的一类晶态材料。

其具有高度可调性、大比表面积以及多种结构和功能优势。

MOFs能够通过控制组分和配位模式实现结构设计和功能拓展,因此引起了广泛的研究兴趣。

2.2 锡离子在MOFs中的应用:作为过渡金属离子,锡离子在MOFs中具有丰富的化学活性和多样化的配位方式。

锡基MOFs可以通过调整锡离子配位模式、改变有机配体结构以及控制晶体形貌等方法来实现多样化结构特征。

这种设计策略可以进一步调控材料的物理和化学性质,使其在各个领域具有潜在应用。

2.3 锡基MOFs的设计原则和方法:设计合成锡基MOFs需要考虑以下几个关键因素:首先,选择适当的锡离子和配体组分,确保它们之间能够有效地发生相互作用并形成稳定的结构。

负极材料发展历程

负极材料发展历程

负极材料发展历程长期以来,负极材料的发展一直是锂离子电池技术的关键领域之一。

在过去的几十年里,负极材料的研究和创新取得了巨大的进展。

最早期使用的负极材料是金属锂,但由于其高活性和容易产生副反应的特性,使用金属锂作为负极材料会导致电池充放电过程中产生严重的安全问题,限制了锂离子电池的应用。

随着对负极材料性能要求的提高,石墨材料作为锂离子电池的负极材料逐渐被引入。

石墨具有优异的导电性、循环稳定性和尺寸稳定性,能够有效地容纳锂离子,使得电池具有较高的能量密度和循环寿命。

然而,随着电动汽车等高能量密度应用的快速发展,对电池能量密度和循环寿命的要求逐渐提升,石墨材料已经无法满足这些需求。

因此,研究人员开始寻找其他更具活性和储锂容量的负极材料。

目前,广泛研究的替代材料包括硅、锡、磷、硅-碳复合材料等。

硅具有较高的理论储锂容量,能够实现更高的能量密度,但其体积膨胀率较大,容易引起电极结构的破坏。

为了解决这个问题,研究人员通过设计复合材料、使用多孔结构等方法来降低硅材料的体积膨胀率,以提高其循环稳定性。

与此同时,锡材料也被认为是一种有潜力的负极材料。

锡具有较高的储锂容量和电导率,但由于锡与锂反应形成的合金容易产生体积膨胀和割裂,目前仍面临循环稳定性和容量衰减的问题。

为了克服这些挑战,研究人员也在设计合金结构和包覆材料等方面进行了许多探索。

此外,磷材料也是近年来备受关注的负极材料之一。

磷材料具有良好的耐循环性能和较高的储锂容量,使其成为一种极具潜力的高能量负极材料。

然而,磷材料通常存在低电导率和体积膨胀等问题,限制了其实际应用。

为了克服这些限制,研究人员开始探索改进磷材料的导电性和稳定性的方法,以提高其电池性能。

综上所述,负极材料的发展经历了从金属锂到石墨再到替代材料的转变。

未来,随着对高能量密度和循环寿命要求的不断增加,研究人员将继续努力寻找更好的负极材料,以推动锂离子电池技术的进一步发展。

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展化学与生物工程学院化工08-1 3080313115 班继航摘要:锂离子电池的石墨负极材料已商品化,但还存在一些难以克服的弱点,所以寻找性能更为优良的非碳负极材料仍然是锂离子电池研究的重要课题。

本文综述了在锂离子电池中已实际使用的碳素类负极材料的特点和研究进展情况,并且介绍了正在探索中的锂离子电池非碳负极材料的研究现状。

关键词:锂离子电池负极材料非碳负极材料研究进展锂离子电池与其它二次电池相比具有电压高、比能量大、质量轻、环境友好等优点,目前已经广泛应用于便携式电子产品和电动工具等领域,并有望成为未来混合动力汽车和纯动力汽车的能源供给之一。

负极材料是决定锂离子电池综合性能优劣的关键因素之一,锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成的。

锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。

目前商业化石墨类碳负极材料虽然具有较好的循环性能,但由于存在较低的质量比容量(理论值为372 mAh/g )和较差的高倍率充放电性能,尤其是体积比容量相当有限。

因此进一步提高其容量的空间很小,远不能满足未来高容量长寿命电子设备的需求。

近年来,金属及合金类材料是研究得较多的新型高效储锂负极材994 料体系,其中锡金属与锡合金具有高质量比容量(锡的理论值为mAh/g)和低成本的优势,特别是具有高体积比容量(锡的理论值为7200 mAh/cm3,是碳材料体积比容量的10倍,因此现已成为目前国际上研究的主流负极材料之一。

然而,传统的建立在实验基础之上的研究方法浪费了大量的人力、物力和财力,由于锡基候选电极材料的多样性,因此从理论上去寻求锡基嵌锂材料,探索一种合金理论设计方法,并用于指导实验和分析实验结果,以及模拟和预测锡基材料的各种电化学性能,对未来合金电极材料的研究发展具有重要的指导意义。

一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(小于10m2/g),真密度高(大于2.0g/cm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿 日期 :20— 7 2 0 50 —5
作者简 介:张利华 (92 ) 18一 ,女。江西萍乡人 。在读硕士 。 事锂 电池锡基负极材料的研究。 从
基金项 目:国家 自然科学基金资助项 目 ( o 0602 N .2 330 )
4 5
维普资讯
peaainpo es itraain c a im n l t c e clp r r n e Wi h ih rrva il a aiis t rprt rc s, nee t gme hns a d ee r h mia e oma c . o l o co f t te hg e e e be cp ct ・ i h s e n—b sd maeil y ae tr sma a
b c me t a d tr latrs l e e i ig p o lmsa e rs le . eo he c t e ma e a f Ol xs n r be y e ov d ho i e l t
KE 7(I s:lhu - o a er ;t - ae a  ̄ sa ce r ci e hns Y、rI l I i i i b t ai t m n l e i bsd m t a sa d ; e t nm a i s n el n a o c m
电池 负极 材 料 。
关键词 :锂离 子电池 ;锡基负极材料 ;反应机理
中图分类号 :" 4 . 文献标识码 :A 文章编号 :10 — 38(06 1 o4 一 4 1 62 G1 06 00 20 )O 一 o5 o
P o rs ee r h o n- a e ah d o i in Re h r e beBatre r g esi R sa c f n Ti b sd C to efrL — o c a g a l t i e s
AB T C :T epor si H e rho n bsd m t i sf i i e Mrebe bt r s i rv w d E p a s i f ue 1 t S RA T h rg s a ft - ae a r l o L- o r e n c i e a r n e ga l a ei s e i e . m hs s o s O e t e e i c d 1h
张利华 ,陈永坤 ,王剑华 ,郭玉 忠
( 昆明理工大学新材料制备 与 加工重点实验室 ,云南 昆明 609 ) 503
摘 要 :介绍 了 锂离子 电池锡基负极 材料 的研究进展。重点介绍了锡基负极 材料的合成方法 、电极反应机理
及其 电化学性能。指 出锡基负极材料 由于其高的可逆容量 ,若能克服 目前存在 的问题 ,将有望月
云 南 冶 金
YUN NAN MET l AI J L RGY
De c.2 )6 ( 0
第3 5卷第 1 ( 期 总第 16期 ) 9
Vo.3 .N , 1 (u 9 ) 1 5 o Sm 16
锂离子 电池锡基负极 材料研究 进展
结果在 <c ne < ic S e }发表后 ,氧化物负极材料引起 了
人们 的广 泛注 意 ,被认 为是 很 有 前 景 的 负 极 材料 。
研究包括锡 的氧化物 、锡 的复合 氧化物 、锡化合 物 、锡合金及金属锡。本文将就它们 的电极反应机
理合 成方 法 、电化 学性 能 等研究 进展 情 况做 介绍 。
忆效应 、无污染 、自放电小 、寿命长等优点 ,近十 余年来始终成为世界各 国研究 开发的热点领域之
并取得了飞速发展。 目 ,其应用已经渗透到 前 包括移动电话 、笔记本电脑 、摄像机 、 数码相机等


形成钝化膜 (E ) S 1 ,引起初始容量的不可逆损失等
缺点 。因此 ,寻找更好的更可靠的新型的锂离子电 池负极材料成为人们的研究方向。1 7 Fj2 9 年 u L公 9 iJ 司研 究 人员 发 现无 定 形锡 基 复 合 氧化 物 ( 简称 TO C )有较好的循环寿命和较高的可逆容量 ,这一
锂离子电池 自 9 0年代开发成功 以来…,由于 其具有电压高 、体积小 、质量轻 、比能量高 、无记
质 、大容量、高可靠性锂离子电池的关键部分 。近 几年来 , 研究最广泛的锂离子电池负极材料是石墨 以及各种碳材料。但研究表明 ,碳材料存在较大的 容量损失和高倍率放电性能差 、在有机电解质 中易
众多民用及军用领域。另外 ,国内外也在竞相开发 电动汽车、航天和储能等方面所需的大容量锂离子
二次 电池 。
锂离子电池是 由电极材料 、电解质和隔膜等部 分组成 ,其性能在很大程度上取决 于电池组成材料 ( 尤其是正极和负极活性材料 )的性能和制备工艺。 因此研究高能锂离子电池的关键技术是采用在充放 电过程 中能可逆地嵌脱锂离子的正 、负极材料及选 用适 当的电解质。特别是 电极活性材料 ,它 是轻
2O 06年 2月
云 南 冶 金
YUN NAN M AU URGY
De c.2 0 06
第 3 卷第 1 ( 5 期 总第 16 ) 9期
V1 5 o o.3 .N .1 (u 9 ) Sm 16
Z NG L —h a C N Yo g u ,WA G in u , G O Y —zo g HA i u , HE n -k n N Ja —h a U u h n
( um n nvr t o c neadT cnl y um n 50 3 h a K n igU i s y f i c eh o g ,K n ig60 9 ,C i ) e i S e n o n
相关文档
最新文档