1.1.1角的概念的推广(2)

合集下载

角的概念推广--参考教案

角的概念推广--参考教案

第五单元5.1《角的概念推广》教案创设情境在东京奥运会女子单人10米台跳水决赛中,来自中国的跳水选手全红婵以优异成绩获得金牌!在跳水比赛中,有“向前翻腾一周半”和“向后翻腾两周半”的动作,你知道这两个动作分别表示的旋转的角度是多少吗? 生活中随处可见超出0°〜360°范围的角,请你尝试着举一些例子。

一、探索新知 我们规定,一条射线绕其端点按逆时 针方向旋转形成的角叫作正角,如图1所示.按顺时针方向旋转形成的角叫作负角,如图2所示.如果一条射线没有做任何旋转,就称它形成了一个零角,如图3所示.通过以上的定义,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简便起见,我们把“角α”或“α∠”简记为 “α”.今后我们可以用小写希腊字母α,β,γ,…来表示角. 在前面关于跳水的问题中,若“向前翻腾一周半”记为540α=︒,那么“向后翻腾两周半”则记为900α=-︒.理解记忆相关正角、负角、零角、任意角的概念和性质了解和区分相关角度的特征让学生在理解的基础上加深概念的记忆,为后面能够正确运用知识点解题做铺垫图1图2 O AB 图3为了便于研究,我们将角的顶点与原点重合,角的始边与x轴的非负半轴重合. 这样,角的终边在第几象限,就说这个角是第几象限角.例如,从图4中可以看出,690︒为第四象限角.从图5中可以看出,210-︒为第二象限角.如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限(也称界限角),例如,0︒,90︒,180︒,270︒,360︒等一些角.二、例题讲解例1 在平面直角坐标系中,分别画出下列各角,并指出它们是第几象限角.(1)225︒;(2)300-︒.解(1)以x轴的非负半轴为始边,逆时认真观察角度数值与图像的联系加深对知识的理解图5图4针方向旋转225︒即形成225︒角,如图6.因为225︒角的终边在第三象限内,所以225︒角是第三象限角.⑵以x轴的非负半轴为始边,顺时针方向旋转300︒即形成300-︒角,如图7所示. 因为300-︒角的终边在第一象限内,所以300-︒角是第一象限角.三、巩固练习1.判断下列说法是否正确:(1) 锐角是第一象限的角,钝角是第二象限的角;(2) 小于90°的角一定是锐角;(3) 直角是第一象限或第二象限的角;(4) 第一象限的角不可能是负角,并且一定是锐角.2.如图所示,已知锐角45AOB∠=︒,写出认真读题,积极思考,掌握解题的基本思路及时有效巩固所学内容,加深对定义的理解展示问题解决的基本方法,培养学生分析解决问题的能力培养与提升学生独立思考、探究问题的能力图6图7下图中箭头所示角的度数.(1):(2):3.在平面直角坐标系中,分别画出下列各角,并指出它们各是第几象限角.(1)210︒(2)330︒(3)310-︒(4)420-︒第2课时教学过程教学活动学生活动设计思路创设情境 同学们分小组分别绘制在平面直角坐标系中,分别画出了330-︒,30︒,390︒角,如图8所示,观察其终边有何联系?并分析330-︒,390︒与30︒在数值上有什么关系?二、探索新知一般地,所有与角α终边相同的角,连同角α在内,可以组成一个集合{}|+360,S k k ββα==⋅︒∈Z任意的与α终边相同的角都可以表示成α与整数个周角(360°的整数倍)的和. 二、例题讲解例1. 与100︒角终边相同的角组成的集合. 解 {}|100+360,S k k ββ==︒⋅︒∈Z .例2. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别判断它们各是第几象限的角.(1)600︒; (2)230-︒.解 (1)因为600240360︒=︒+︒,所以结合老师给出的问题,积极主动的思考,得出初步结论.在理解的基础上熟记相关概念和结论认真读题,积极思考,掌握解题的基本思路激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.直观展示新知和结论,突出本节教学重点展示问题解决的基本方法,培养学生分析解决问图8S2|β=︒+90三、巩固练习角终边相同的角的集合为:。

角的概念的推广2

角的概念的推广2

角的记法 “旋转”定义角之后,角的范围扩大了。 1、角有正负之分
如 : 300 , 190 , 660
2、角可以任意大
体操动作:转体2周(720°),转体3周(1080°) 3、零角 (一条射线没有旋转)
2、“象限角” 为了研究方便,我们往往在平面直角坐标系内 来讨论角: 使角的顶点与坐标原点重合,角的始边与x轴 的非负半轴重合,角的终边在第几象限,我们 就说这个角是第几象限的角。
例2、写出与下列各角终边相同的角的集合S, 并把S中在-360°~720°间的角写出来: ⑴120° ⑵-36° 解:⑴ S={a|a=120°+k· 360°,k∈Z} S中在-360°~720°间的角是 -1×360° +120°=-240° 0×360° +120°= 120° 1×360° +120°= 480° ⑵S={a|a=-36°+k· 360°,k∈Z} S中在-360°~720°间的角是-36°,324°,684°
y


O

注:角的终边落在坐标轴 上,则此角不属于任何一 x 个象限。
是第一象限角, 是第二象限角, 不是象限角.
3、终边相同的角
观察:图⑴中哪些角的终边相同? 图⑵中哪些角的终边相同?
思考:终边相同的角有什么关系?
图⑴中390°,-330°,30°的终边相同且有如 下关系:
390°=30°+360° -690°=30°-2×360°
-330°=30°-360° ……
结论:所有与a终边相同的角连同a在内可 以构成一个集合: | = +k 360 , k Z } S={ 注意:⑴k∈Z, ⑵a是任意角,
⑶ k· 360°与a之间是“+” ⑷终边相同的角不一定相等, 但相等的角终边相同, 终边相同的角有无数多个,它们的差是 360°的整数倍。

角的概念推广教案

角的概念推广教案

角的概念推广优秀教案第一章:角的引入1.1 教学目标让学生了解角的定义和基本性质。

能够识别和比较不同类型的角。

能够用角度来描述角的大小。

1.2 教学内容角的定义:从一点引出两条射线所组成的图形。

角的性质:角的内部是两条射线的公共部分,外部是不共线的两条射线的夹角。

角的分类:锐角、直角、钝角、平角、周角。

1.3 教学方法通过实物演示和图形展示,引导学生直观地理解角的概念。

利用几何模型和练习题,让学生亲手操作,加深对角的认识。

1.4 教学资源角的概念引入PPT演示文稿。

实物模型和图片,如剪刀、三角板等。

1.5 教学步骤1.5.1 导入:利用实物或图片,引导学生观察和描述角的存在。

1.5.2 新课引入:讲解角的定义和性质,通过PPT演示文稿和实物模型进行辅助说明。

1.5.3 实例分析:展示不同类型的角,让学生区分和比较它们的大小。

1.5.4 练习巩固:提供一些练习题,让学生运用角的概念进行解答。

1.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的概念的理解程度。

第二章:角的大小比较2.1 教学目标让学生能够比较不同角的大小。

学会使用量角器测量角的大小。

2.2 教学内容角的大小比较:通过观察角的内部或外部,比较角的大小。

量角器的使用:量角器的结构和如何测量角的大小。

2.3 教学方法通过实际操作量角器,让学生学会正确测量角的大小。

提供练习题,让学生运用比较角大小的方法。

2.4 教学资源量角器演示文稿和实物量角器。

练习题和答案。

2.5 教学步骤2.5.1 导入:复习上一章的内容,引导学生回顾角的概念。

2.5.2 新课引入:讲解如何比较角的大小,通过PPT演示文稿和实物量角器进行辅助说明。

2.5.3 实例分析:提供一些角的大小比较实例,让学生实践和理解比较方法。

2.5.4 练习巩固:提供一些练习题,让学生运用角的大小比较方法进行解答。

2.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的大小比较的理解程度。

角的概念的推广

角的概念的推广

第三象限角的集合:
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
第四象限角的集合:
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
例1. 在 - 720到720之间,写 出与60角终边相同的角的集合M.
例1. 在 - 720到720之间,写 出与60角终边相同的角的集合M. 例2. 求终边为直线y x的角的集合.
例3. 已知 是第二象限角,
问:12 是第几象限角? 2 是第几象限角?
2
3 是第几象限角?
3
课堂练习
1. A {小于90的角},B {第一象限
的角},则A B ( )
A.{锐角}
B.{小于90的角}
C.{第一象限的角} D.以上都不对
2. 若90 135, 则 的范围是______, 的范围是_______ .
3. 与- 457角终边相同的角的集合是:
A.{ | k 360 457, k Z} B.{ | k 360 97, k Z} C.{ | k 360 263, k Z} D.{ | k 360 263, k Z}
角的概念的推广
一、复习
1.初中是如何定义角的?
二、角的概念的推广:
二、角的概念的推广: 1.“旋转”形成角.
二、角的概念的推广: 1.“旋转”形成角.
B
O

A
二、角的概念的推广: 1.“旋转”形成角.
B
O
A
二、角的概念的推广: 1.“旋转”形成角.
B

《角的概念的推广》——教学设计方案_

《角的概念的推广》——教学设计方案_

《角的概念的推广》——教学设计双滦职教中心:徐云教学目标设计:知识与技能1.理解并掌握“正角”“负角”“象限角”“终边相同的角”的定义2.掌握所有与α角终边相同的角的表示方法3.体会运动变化观点,深刻理解推广后的角的概念;过程与方法1.借助图片、视频、实物演示、动手绘制角等手段,让学生充分体会到多媒体等手段对数学教学的作用。

2.在老师的引导、及时评价下,同学之间的互相评价下,学生积极探究知识的形成过程。

情感、态度与价值观1.通过本节的学习,让学生意识到数学来源于生活,服务于生活,激发学习数学的兴趣。

2.体会数形结合思想,学会运用运动变化的观点认识事物.3.通过课堂上的学生自评、互评,教师评价,培养学生竞争意识和团队合作意识,锻炼学生的语言表达能力,提高分析问题和解决问题的能力。

教学重点研判:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法.教学难点体会:终边相同的角的概念、其符号表示、集合表示教学思想方法:本节教学方法采用任务驱动法、情景导入法、问题探究法、教师引导下的讨论法,通过课前预习展示、实例教具展示、观看视频等方式,在教师的带领下,学生轻松地接受新知识,真正做到了让学生成为课堂的主体。

积 探问题5、完成此题后讨论 填空完成下列等式,并在坐标系中作出下列各角30,390,330,7500,-6900指出这些角的终边有什么关系?(三).终边相同的角 (1).观察:它们的终边都与30角的相差3600的整数倍。

(2)猜想:它们的终边相同。

(3)画图:证实 (4).探究:终边相同的角都可以表示成一个0到360的角与)(Z k k ∈个周角的和。

(5).结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ在练习中边引导学生,边总结:(1)终边相同的角有何特点?(相差整数个周角)。

(2)用集合表示终边相同的角请注意以下问题: ①k Z ∈; ②是任意角;③0360⋅k 与之间是“+”号,如0360⋅k -30°,应看成0360⋅k +(-30°); (3)终边相同的角不一定相等,但是相等的一定终边相同,终边相同的角有无数多个,它们相差360的整数倍。

角的概念的推广

角的概念的推广

角的概念的推广§2角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与角终边相同的角(包括角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。

2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。

二、教学重、难点重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。

难点:把终边相同的角用集合和符号语言正确地表示出来。

三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。

教法:类比探究交流法。

四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。

但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。

角的概念的推广,弧度制,任意角的三角函数

角的概念的推广,弧度制,任意角的三角函数

角的概念的推广,弧度制,任意角的三角函数[本周教学重点]理解角的定义,掌握正角、负角、零角以及象限角、终边相同角的概念,会写出各个象限角及终边相同角的集合的表达式。

理解弧度制的定义,正确进行角度制与弧度制之间的换算,清楚用弧度制度量角,使角的集合与实数集之间建立了一一对应的关系。

熟记任意角的六个三角函数值的定义,会确定三角函数的定义域,掌握各象限角的三角函数值的符号结论,能正确作出已知角的正弦线,余弦线,正切线。

1. 角的概念的推广①角的定义:一条射线绕其端点从一个位置旋转到另一个位置形成的图形叫做角。

射线的端点叫角的顶点,旋转开始时的射线叫角的始边,旋转结束时的射线叫角的终边。

②正角,负角,零角正角:射线按逆时针方向旋转所成的角叫正角。

负角:射线按顺时针方向旋转所成的角叫负角。

零角:射线不作任何方向的旋转,称它形成一个零角。

③象限角:让角的顶点与原点重合,角的始边与x轴的正半轴重合,则角的终边在第几象限,就称这个角是第几象限的角。

第一象限角的集合第二象限角的集合第三象限角的集合第四象限角的集合轴上角:角的顶点与原点重合,角的始边与x轴正半轴重合,终边在坐标轴上的角叫轴上角。

轴上角的集合象限角与轴上角是对角的集合的一种划分{角}={象限角}∪{轴上角}④终边相同的角的集合2. 弧度制①定义:弧长等于半径长时弧所对的圆心角叫做1弧度的角。

②弧度与角度的互化360°=2弧度,180°=弧度,③弧度制下弧长公式与扇形面积公式设圆半径长为r,弧所对圆心角(或扇形)弧度数为,弧长为,扇形面积为S,则3. 任意角三角函数①定义:设是一个任意角,P是终边上除顶点外任意一点,其坐标为(x,y),它与原点间距离为比值比值比值比值比值比值②三角函数定义域正弦函数定义域为R余弦函数定义域为R正切函数③三角函数值的符号④单位圆中三角函数线角终边依次在四个象限内时有向线段MP,OM,AT依次叫角的正弦线,余弦线,正切线即[本周教学例题]例1.判断下列各命题的真假(1)第一象限角是锐角,第二象限角是钝角;(2)小于90°的角是锐角,大于90°的角是钝角;(3)第二象限的角大于第一象限的角;(4)大于0°且小于180°的角是第一象限或第二象限的角。

1.1.1角的概念的推广

1.1.1角的概念的推广

第一章基本初等函数(Ⅱ)1.1.1角的概念的推广课前自主学习学习目标1.知道用运动变化的官邸啊了解角的概念和推广,能正确区分正角、负角和零角.2.学会正确区分象限角与终边在坐标轴上的角,知道终边相同的角的表示方法,并能判断角的终边的位置.知识梳理知识点1:任意角的概念正角、负角、零角是怎样定义的?思考1零角的终边和始边重合,如果一个叫得终边和始边重合,那么这个角一定是零角吗?知识点2:终边相同的角对于任意一个角α,与它终边相同的角的集合应如何表示?思考2终边相同的角有什么特点?知识点3:象限角象限角是如何定义的?思考3任意一个角都是象限角吗?课前体验1.下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°2.-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是()A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°4.写出-720°到720°之间与-1068°终边相同的角的集合___________________.课堂互动探究问题探究1. 锐角是第一象限角吗?第一象限角是锐角吗?为什么?2. 对于直角坐标系中任意一条射线OB ,以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?3.若α是第二象限的角,那么2α是第几象限的角?典例剖析例1. 在0360︒︒~范围内,找出与角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)解题反思:终边相同的角如何表示?如何找出与95012'︒-终边相同的角?例2. 写出终边在y 轴上的角的集合.解题反思:1.在0360︒︒~范围内,终边在y 轴上的角有几个?与这几个个角终边相同的角的集合可以合并吗?2.你能写出终边在x 轴上,终边坐标轴上的角的集合吗?第一、二、三、四象限角的集合呢?例3.若α是第二象限角,则α2,2α分别是第几象限的角? 解题反思:α是第二象限角,如何表示?由α的取值范围,来确定2α,2α的取值范围?规律方法总结(1)判断一个角是第几象限角,只要把改写成,,那么在第几象限,就是第几象限角,若角与角适合关系:,,则、终边相同;若角与适合关系:,,则、终边互为反向延长线.判断一个角所有象限或不同角之间的终边关系,可首先把它们化为:,这种模式(),然后只要考查的相关问题即可.另外,数形结合思想、运动变化观点都是学习本课内容的重要思想方法.(2)要注意某一区间内的角和象限角的区别,象限角是由无数各区间角组成的;要学会正确运用不等式进行角的表述同时要会以k取不同的值讨论型如θ=a+k×1200(k∈Z)所表示的角所在的象限。

角与角的概念

角与角的概念

1.1.1 角的概念的推广1.角(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)图示,称它形成了一个零角2.象限角:是第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.1.与405°角终边相同的角是( )A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z2.若α=45°+k ·180° (k ∈Z ),则α的终边在( )A .第一或第三象限 B .第二或第三象限C .第二或第四象限D .第三或第四象限3.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( )A .A =B B .B =C C .A =C D .A =D4.若α是第四象限角,则180°-α是( )A .第一象限角 B .第二象限角C .第三象限角 D .第四象限角5.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P 之间的关系为( ) A .M =P B .M P C .M P D .M ∩P =∅6.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限7.若角α与β的终边相同,则α-β的终边落在______.8.经过10分钟,分针转了________度.9.如图所示,终边落在阴影部分(含边界)的角的集合是_____________________.10.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.11.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.12.如图所示,写出终边落在阴影部分的角的集合.13.如图所示,写出终边落在直线y =3x 上的角的集合(用0°到360°间的角表示).14.设α是第二象限角,问α3是第几象限角?弧度制和弧度制与角度制的换算1.角的单位制(1)角度制:规定周角的1360为1度的角,用度作为单位来度量角的单位制叫做角度制. (2)弧度制:把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1 rad .(3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:____________;这里α的正负由角α的终边的旋转方向决定.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.2.角度制与弧度制的换算31集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B =⎩⎨⎧⎭⎬⎫α|α=2k π±π2,k ∈Z 的关系是()A .A =B B .A ⊆B C .B ⊆A D 以上都不2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2 B .sin 2 C .2sin 1D .2sin 1 3.扇形周长为6 cm ,面积为2 cm 2,则其中心角的弧度数是( )A .1或4B .1或2C .2或4D .1或54.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( )A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A .π4 B .-π4 C .34π D .-34π 6.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1∶3 B .2∶3 C .4∶3 D .4∶97.将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.8.若扇形圆心角为216°,弧长为30π,则扇形半径为____.9.若2π<α<4π,且α的终边与-7π6角的终边垂直,则α=______. 10.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=__________. 11.把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500° (2)236π (3)-4 12.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?13.已知一圆弧长等于其所在圆的内接正方形的周长,那么其圆心角的弧度数的绝对值为________.14.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积?1.2.1 三角函数的定义1.任意角三角函数的定义2.六种三角函数值在各象限的符号3.三角函数的定义域1.若α的终边与y 轴重合,则α的六种三角函数中,函数值不存在的是( )A .sin α与cos αB .tan α与cot αC .tan α与sec αD .cot α与csc α2.点A (x ,y )是300°角终边上异于原点的一点,则y x 的值为( )A . 3 B .- 3 C .33 D .-333.若sin α<0且tan α>0,则α是( )A .第一象限角 B .第二象限角C .第三象限角 D .第四象限角4.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3 B .-3 C .±3 D .5 5.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是( ) A .{-3,-1,1,3} B .{-3,-1}C .{1,3} D .{-1,3}6.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A .π4 B .3π4 C .5π4 D .7π47.若角α的终边过点P (5,-12),则sin α+cos α=______.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________.9.代数式:sin 2cos 3tan 4的符号是________.10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.11.判断下列各式的符号:(1)sin α·cos α(其中α是第二象限角);(2)sin 285°cos(-105°);(3)sin 3·cos 4·tan(-23π4). 12.已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.13.若θ为第一象限角,则能确定为正值的是( )A .sin θ2 B .cos θ2 C .tan θ2D .cos 2θ 14.已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值.1.2.22.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( )A .π4B .3π4C .7π4D .3π4或7π43.若α是第一象限角,则sin α+cos α的值与1的大小关系是( )A .sin α+cos α>1B .sin α+cos α=1C .sin α+cos α<1D .不能确定4.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.55若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( )A .⎝⎛⎭⎫-π3,π3B .⎝⎛⎭⎫0,π3C .⎝⎛⎭⎫5π3,2π D .⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 6.如果π4<α<π2,那么下列不等式成立的是( )A .cos α<sin α<tan α B .tan α<sin α<cos α C .sin α<cos α<tan α D .cos α<tan α<sin α7.在[0,2π]上满足sin x ≥12的x 的取值范围为____________8.集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =__ 9.不等式tan α+33>0的解集是______________.10.求函数f (x )=lg(3-4sin 2x )的定义域为________. 11.在单位圆中画出适合下列条件的角α终边的范围,并由此写出角α的集合.(1)sin α≥32; (2)cos α≤-12. 12.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小. 13.求下列函数的定义域.f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22. 14.如何利用三角函数线证明下面的不等式?当α∈⎝⎛⎭⎫0,π2时,求证:sin α<α<tan α.1.2.1 三角函数的定义1.C 2.B3.C 4.A5.D 6.D 7.-7138.-2<a ≤3 9.负号10.2 11.解 (1sin α·cos α<0.(2)sin 285°·cos(-105°)>0.(3)sin 3·cos 4·tan ⎝⎛⎭⎫-23π4<0. 12.解 sin α=y 3+y 2=34y .当y =0时,sin α=0,cos α=-1,tan α=0. 当y ≠0时,由y 3+y 2=3y 4,解得y =±213.当y =213时,P ⎝⎛⎭⎫-3,213,r =433. ∴cos α=-34,tan α=-73.当y =-213时,P (-3,-213),r =433∴cos α=-34,tan α=73. 13.C 14.解 ∵x =-15a ,y =8a ,∴r =(-15a )2+(8a )2=17|a | (a ≠0).(1)若a >0,则r =17a ,于是sin α=817,cos α=-1517,tan α=-815. (2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517,tan α=-815. 弧度制和弧度制与角度制的换算1.A2.C 3.A 4.C 5.D 6.B 7.-10π+74π 8.25 9.73π或103π 10.-11π3,-5π3,π3,7π311.解 (1)是第四象限角.2)是第四象限角.(3)第二象限角.12.解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100. ∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2 rad . 13.42 设圆半径为r ,圆心角为θ,则内接正方形的边长为2r ,圆弧长为42r .∴|θ|=42r r=42. 14(1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10,∴l =αR =10π3(cm). S 弓=S 扇-S △=12×10π3×10-12×102×sin 60°=50⎝⎛⎭⎫π3-32 (cm 2). (2)扇形周长c =2R +l =2R +αR ,∴α=c -2R R ,∴S 扇=12αR 2=12·c -2R R ·R 2=12(c -2R )R =-R 2+12cR =-(R -c 4)2+c 216.当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216. 角的概念的推广1.C 2.A 3.D 4.C 5.B 6.D 7.x 轴的正半轴8.-609.{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }10.-110°或250°11.(1)是第三象限角.(2)是第四象限角.(3)是第二象限角.12.①{α|k ·360°+30°≤α<k ·360°+105°,k ∈Z }.②{α|k ·360°+210°≤α<k ·360°+285°,k ∈Z }.∴角α的集合应当是集合①与②的并集:{α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }.13.{α|α=60°+n ·180°,n ∈Z }.14.第一、二、四象限角。

1.1.1 角的概念的推广

1.1.1 角的概念的推广

张喜林制1.1.1 角的概念的推广考点知识清单1.角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形,射线的端点叫做____;旋转开始时的射线叫做 ;旋转终止时的射线叫做____. 2.正角、负角和零角一条射线绕着它的端点,按 旋转形成的角叫做正角;按 一旋转形成的角叫做负角;如果一条射线 旋转,称它形成了一个零角.3.象限角在直角坐标系中,使角的顶点与坐标原点重合,角的始边与一,角的终边落在第几象限,就把这个角叫做第几象限的角.注意:终边落在坐标轴上的角不属于任一象限.4.终边相同的角所有与角a 终边相同的角,连同角a 在内,可构成一个集合一,即任一与角任终边相同的角,都可以表示成角a 与整数个周角的和.5.(1)当射线绕其端点按照逆时针方向或按照顺时针方向旋转时,旋转的绝时量可以是____.在画图时,常用带箭头的弧来表示旋转的方向和旋转的绝对量.旋转生盛的角,常叫做 (2)各角和的旋转量等于各角 一, 要点核心解读1.角的概念的理解 .角可以看做是平面内j 条射线绕着端点从一个位置旋转到另一个位置所形成的图形,其中逆时针旋转形成正角,顺时针旋转 转形成负角,没有旋转形成零角, 2.终边相同的角 . 设a 是任意角,所有与a 终边相同韵角以及a 本身相成一 个集合,这个集合记为},360|{Z k k S ∈⋅+== αββ3.在直角坐标系内讨论角(象限角,象限界角) (1)象限角 当角的顶点与坐标原点重合,角的始边与x 轴正半轴童合, 角的终边在第几象限,就把这个角叫做第几象限的角,如300,420,30-o角都是第一象限的角;,480,124240-角都是第二象限的角o 150,570,210-角都是第三象 限的角,o o o 45660,300-角都是第四象限的角.(2)象限界角(轴线角) ‘当角的顶点与坐标原点重合,角的始边与x 轴正半轴重合, 角的终边在坐标轴上,就认为这个角不属于任何象限,称之为象 限界角.如,270,180,90,360,270,180,90,0o o o o ---o 360-等都是象限界角.4.几个重要角的集合(1)象限角的集合 第一象限角的集合 第二象限角的集合=∈⋅+<<⋅},36090360|{Z k k k o αα ⋅∈<<⋅+=},900,360|{z k k ββαα第三象限角的集合,36018036090|{o k k ⋅+<<⋅+ αα=∈}z k⋅∈<<⋅+=},18090;360|{Z k k ββαα第四象限角的集合+<<⋅+ 270360180|{ααO o k=∈⋅},360z k k⋅∈<<⋅+=},270180,360|{z k k o ββαα(2)象限界角的集合+<<⋅+ 03360270||6ααk =∈⋅},360z k k⋅∈<<⋅+=},360270,3601{Z k k o o ββαα终边落在x 轴正半轴上的角的集合为 终边落在x 轴负半轴上的角的集合为⋅∈⋅=},3|{z k k o ωαα终边落在x 轴上的角的集合为+⋅=o k 360|{αα }.,180z k o ∈终边落在y 轴正半轴上的角的集合为⋅∈⋅=},180|{z k k αα终边落在y 轴负半轴上的角的集合为+⋅= 03|{6k αα }.,90z k o ∈终边落在y 轴上的角的集合为+⋅= 360|{k αα},270z k ∈终边落在坐标轴上的角的集合为⋅∈+⋅=},90180|{z k k αα典例分类剖析⋅∈⋅=},90|{Z k k αα考点1概念辨析问题命题规律’ 给出对基本概念的不同理解或不同表述,判断或选择正确结论. [例1]下列说法正确的是( ).A .终边相同的角一定相等C .第一象限的角都是锐角D .小于90。

高考数学总复习 31 角的概念推广、弧度制及任意角的三

高考数学总复习 31 角的概念推广、弧度制及任意角的三

()
π A.3 C. 3
2π B. 3 D.2
解析:设圆半径为 R,则其内接正三角形的边长为 3R,于是圆
心角的弧度数为 R3R= 3. 答案:C
4.弧长为 3π,圆心角为 135°的扇形半径为______,面积为 ______.
解析:弧长 l=3π,圆心角 α=34π, 由弧长公式 l=α·r 得 r=αl =33π=4,
B.k·360°+250°,k∈Z
C.k·360°+70°,k∈Z
D.k·360°+270°,k∈Z
解析:由于 610°=360°+250°,所以 610°与 250°角的终边相同.
答案:B
2.如果角 α 是第三象限角,则-α,π­α,π+α 角的终边分别落 在第______,______,______象限.
\\\\\\方法规律\\\\\ (1)利用终边相同的角的集合 S={β|β=2kπ+α,k∈Z}判断一个
角 β 所在的象限时,只需把这个角写成[0,2π)范围内的一个角 α 与 2π 的整数倍的和,然后判断角 α 的象限.
(2)利用终边相同的角的集合可以求适合某些条件的角,方法是 先写出与这个角的终边相同的所有角的集合,然后通过对 k 赋值来 求得所需角.
第一节 角的概念推广、弧度制及任意角的三角函数
目标定位
学习指向
1.主要考查对三角函数定义的理解和 1.了解任意角的概念.
运用,如三角函数值符号的选取及基 2.了解弧度制的概念,能
本运算能力. 进行弧度与角度的互化.
2.在高考中会结合三角函数的其他知 3.理解任意角三角函数(正
识进行考查,一般不会单独命题. 弦、余弦、正切)的定义.
l r
.
3.角度与弧度的换算

1.1.1 角的概念的推广

1.1.1 角的概念的推广

鸡西市第十九中学学案
如图,一条射线由原来的位置OA,绕着它的端点
就形成角α. 旋转开始时的射线OA叫做角的
叫做叫α的顶点.初中所研究的角的范围为
【复习二】举例实际生活中是否有些角度超出初中所学的范围?
①体操比赛中术语:“转体720o”(即转体
②时钟快了5分钟,现要校正,需将分针怎样旋转?(
小结:角的终边在坐标轴上,属于哪一个象限?
思考:与60°终边相同的角有、、…都可以用代数式表示为那么,与α终边相同的角如何表示?
新知:与α角终边相同的角,都可用式子k×360°+α表示,k∈Z
3.写出终边在直线y=-。

2020高中数学 第1章 基本初等函数(Ⅱ)1.1.1 角的概念的推广教案(含解析)4

2020高中数学 第1章 基本初等函数(Ⅱ)1.1.1 角的概念的推广教案(含解析)4

1。

1。

1 角的概念的推广学习目标核心素养1.了解角的概念的推广,能正确区分正角、负角和零角.(一般) 2.理解象限角的概念.(重点)3.掌握终边相同的角的表示方法,并能判断角所在的位置.(难点)1.通过角的概念的学习,体现了数学抽象核心素养.2.借助终边相同角的求解、象限角的判断等,培养学生的直观想象核心素养。

1.角的概念(1)角的形成:角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:①正角:按照逆时针方向旋转而成的角;②负角:按照顺时针方向旋转而成的角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.2.角的加减法运算(1)射线OA绕端点O旋转到OB位置所成的角,记作∠AOB,其中OA叫做∠AOB的始边,OB叫做∠AOB的终边.(2)引入正角、负角的概念以后,角的减法运算可以转化为角的加法运算,即α-β可以化为α+(-β).这就是说,各角和的旋转量等于各角旋转量的和.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S =错误!,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.4.象限角角的顶点与坐标原点重合,角的始边与x轴的正半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.思考:终边和始边重合的角一定是零角吗?[提示] 不一定.零角是终边和始边重合的角,但终边和始边重合的角不一定是零角,如-360°,360°,720°等角的终边和始边也重合.1.钟表的分针在一个半小时内转了( )A.180°B.-180°C.540° D.-540°D[钟表的分针是顺时针转动,每转一周,转过-360°,当分针转过一个半小时时,它转了-540°.]2.下列各角中,与330°角的终边相同的角是( )A.510° B.150°C.-150°D.-390°D[与330°终边相同的角的集合为S={β|β=330°+k·360°,k∈Z},当k=-2时,β=330°-720°=-390°,故选D。

角的概念的推广

角的概念的推广


安全在于心细,事故出在麻痹。21.1.1421.1.1406:12:1106:12:11Januar y 14, 2021

加强自身建设,增强个人的休养。2021年1月 14日上 午6时12分21.1.1421.1.14

扩展市场,开发未来,实现现在。2021年1月 14日星 期四上 午6时12分11秒06:12:1121.1.14
思考8:如果α是第二象限的角,那么2α、α/2 分别是第几象限的角?
90°+k·360°<α<180°+k·360° 180°+k·720°<2α<360°+k·720°
45°+k·180°<α/2<90°+k·180°
课堂练习
1.锐角是第几象限的角?第一象限的角是 否都是锐角?小于90º的角是锐角吗?区间 (0º,90º)内的角是锐角吗?
2.角的概念的推广
⑴“旋转”形成角
一条射线由原来的位置OA,
绕着它的端点O按逆时针方向
旋转到另一位置OB,就形成角B
α.
旋转开始时的射线OA叫做
角α的始边,旋转终止的射线
O
A
OB叫做角α的终边,射线的端
点O叫做角α的顶点.
⑵.“正角”与“负角”、“0º角” 我们把按逆时针方向旋转所形成的角叫做
正角,把按顺时针方向旋转所形成的角叫做 负角,如图,以OA为始边的角α=210°,β= -150°,γ=660°,
⑷注意以下四点: ① k∈Z; ② 是任意角; ③ k·360º与之间是“+”号,如k·360º-30º,应看 成k·360º+(-30º); ④ 终边相同的角不一定相等,但相等的角,终 边一定相同,终边相同的角有无数多个,它们 相差360º的整数倍.

《角的概念的推广》 说课稿

《角的概念的推广》 说课稿

《角的概念的推广》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《角的概念的推广》。

接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“角的概念的推广”是高中数学必修 4 第一章“三角函数”中的重要内容。

在此之前,学生已经学习了角的基本概念,如锐角、直角和钝角等。

而本节课将角的概念进行推广,引入正角、负角和零角的概念,为后续学习三角函数的周期性、诱导公式等知识奠定了基础。

从教材的编排来看,本节课通过实际生活中的例子,如钟表指针的转动、车轮的旋转等,引导学生观察和思考角的变化,从而自然地引出角的概念的推广。

这样的编排既符合学生的认知规律,又能激发学生的学习兴趣。

二、学情分析授课对象是高一年级的学生,他们在初中阶段已经对角有了初步的认识,但对于角的概念的推广可能会感到抽象和难以理解。

然而,这个阶段的学生思维活跃,具有较强的好奇心和求知欲,已经具备了一定的观察、分析和抽象概括能力。

在教学过程中,要充分利用学生已有的知识和经验,通过实例引导、问题驱动等方式,帮助学生逐步理解和掌握角的概念的推广。

三、教学目标1、知识与技能目标(1)理解正角、负角和零角的概念,掌握角的终边相同的角的表示方法。

(2)能够正确地画出给定角的终边,会进行角的度量与换算。

2、过程与方法目标(1)通过观察实例、分析问题,培养学生的抽象思维能力和逻辑推理能力。

(2)经历角的概念推广的过程,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)培养学生勇于探索、敢于创新的精神,提高学生的数学素养。

四、教学重难点1、教学重点(1)正角、负角和零角的概念。

(2)终边相同的角的表示方法。

2、教学难点理解角的概念的推广,掌握终边相同的角的集合的表示。

五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探索,激发学生的学习积极性和主动性。

第一章 1.1.1角的概念的推广

第一章 1.1.1角的概念的推广

上的角的集合: S={β|β=45° 360° +k· ,k∈Z}∪{β|β=225° 360° +k· ,k∈Z} ={β|β=45° +2k· , 180° k∈Z}∪{β|β=45° +(2k+1)· , 180° k∈Z} ={β|β=45° 180° +k· ,k∈Z}. ∴S 中适合-360° ≤β<720° 的元素是:
填一填·知识要点、记下疑难点
2.象限角
1.1.1
角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重 合,那么,角的终边(除端点外)在第几象限,就说这个角是
本 课 时 栏 目 开 关
第几象限角 .如果角的终边在坐标轴上,就认为这个角
不属于任何一个象限. 3.终边相同的角 所有与角 α 终边相同的角, 连同角 α 在内, 可构成一个集合
研一研·问题探究、课堂更高效
[典型例题]
1.1.1
例 1 在 0° ~360° 范围内,找出与下列各角终边相同的角,并判 定它们是第几象限角.
本 课 时 栏 目 开 关
(1)-150° ;(2)650° ;(3)-950° 15′.
解 (1)因为-150° =-360° +210° ,所以在 0° ~360° 范围内,与 -150° 角终边相同的角是 210° 角,它是第三象限角.
(2)因为 650° =360° +290° ,所以在 0° ~360° 范围内,与 650° 角 终边相同的角是 290° 角,它是第四象限角.
(3)因为-950° 15′=-3×360° +129° 45′,所以在 0° ~360° 范 围内, 与-950° 15′角终边相同的角是 129° 45′角, 它是第二象 限角.
形成的角叫做负角,如果一条射线没有作任何旋转,我们称它 形成了一个零角.

课时作业11:1.1.1 角的概念的推广

课时作业11:1.1.1 角的概念的推广

1.1.1 角的概念的推广一、选择题1.下列说法中正确的是( )A .第一象限角一定不是负角B .-831°是第四象限角C .钝角一定是第二象限角D .终边与始边均相同的角一定相等2.下列各角中,与角330°的终边相同的角是( )A .510°B .150°C .-150°D .-390°3.若α是第一象限角,则下面各角中是第四象限角的是( )A .90°-αB .90°+αC .360°-αD .180°+α4.已知角α是第三象限的角,则角-α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若α=45°+k ·180°(k ∈Z ),则α的终边所在的象限为( )A .第一或第三象限B .第二或第三象限C .第二或第四象限D .第三或第四象限6.时钟的分针在1点到3点20分这段时间里转过的弧度数为( )A.143π B .-143 π C.718π D .-718π 二、填空题7.已知:①1240°,②-300°,③420°,④-1420°,其中是第一象限角的为________(填序号).8.若将时钟拨慢5分钟,则分针转了________度,时针转了________度.9.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=________.三、解答题10.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)660°;(3)-950°08′.11. 如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).参考答案一、选择题1.C【解析】-330°=-360°+30°,所以-330°是第一象限角,所以A 错误;-831°=(-3)×360°+249°,所以-831°是第三象限角,所以B 错误;0°角,360°角终边与始边均相同,但它们不相等,所以D 错误.2.D【解析】330°=360°+(-30°),-390°=-360°+(-30°).∴330°角与-390°角终边相同.3.C【解析】α为第一象限角,那么-α为第四象限角,而360°-α与-α的终边相同.4.B【解析】因为α是第三象限的角,所以k ·360°+180°<α<k ·360°+270°,k ∈Z ,则-k ·360°-270°<-α<-k ·360°-180°,k ∈Z ,所以-α所在范围与(-270°,-180°)范围相同.所以-α的终边在第二象限.故选B.5.A【解析】当k 为奇数时,α为第三象限角,当k 为偶数时,α为第一象限角.6.B【解析】显然分针在1点到3点20分这段时间里,顺时针转过了两周又一周的13,用弧度制表示就是-4π-13×2π=-143π.故选B.此题一定要记住分针顺时针旋转形成负角. 二、填空题7.②③④【解析】1240°=160°+3×360°,所以1240°为第二象限角,-300°=60°+(-1)×360°,所以-300°为第一象限角,420°=60°+360°,-1420°=20°+(-4)×360°,所以420°、-1420°也为第一象限角.8.30 2.5【解析】注意时钟指针转动方向应为顺时针,所以拨慢为逆时针形成正角,分针每分钟转过的度数为360°60=6°,而时针每分钟转过的度数为30°60=0.5°. 9.270°【解析】因为5α与α始边、终边分别相同,所以5α=α+k·360°,k∈Z,所以α=k·90°.又因为180°<α<360°,∴α=270°.三、解答题10.解:(1)∵-120°=240°-360°,∴在0°~360°范围内,与-120°角终边相同的角是240°角,它是第三象限的角;(2)∵660°=300°+360°,∴在0°~360°范围内,与660°角终边相同的角是300°角,它是第四象限的角;(3)∵-950°08′=129°52′-3×360°,∴在0°~360°范围内,与-950°08′终边相同的角是129°52′,它是第二象限的角.11. 解:(1)终边落在射线OM上的角的集合A={α|α=45°+k·360°,k∈Z}.(2)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z},终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},所以终边落在直线OM上的角的集合为:A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.(3)同理可得终边落在直线ON上的角的集合为{β|β=60°+n·180°,n∈Z},所以终边落在阴影区域内(含边界)的角的集合为:{α|45°+n·180°≤α≤60°+n·180°,n∈Z}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o o o
第一象限角
第二象限角 {x | k 360o 90o x k 360o 180o , k Z} 第三象限角
{x | k 360 180 x k 360 270 , k Z}
o o o o
第四象限角 {x | k 360o 270o x k 360o 360o , k Z}
270º(-90º ) ( 0º~ 360º )
2015-3-17
第三象限角的集合为 C={|180º +k· 360º <<270º +k· 360º ,k∈Z} 第四象限角的集合为 D={|270º +k· 360º <<360º +k· 360º ,k∈Z}
例2、如图(1),求终边落在OA位置上的角的集合.
={β| β=900+K∙1800 ,K∈Z} 360°,k∈Z}∪ 终边在X轴上角的集合为{β ︱β = k· {β ︱β = k· 360°+1800,k∈Z} ={β ︱β = k· 180°,k∈Z}
2、区间角集合的书写. 3、象限角的集合表示;
2015-3-17
小结
象限角的表示法
{x | k 360 x k 360 90 , k Z}
2015-3-17
A 30º
y
变式1:如图(2),求终边在直线 AB上的角的集合。 x 变式2 :如图(3),求终边在阴影 部分的角的集合。 (4)呢?
(1)
O
A 30º
y
A 30º
x
y
30º
y
O (2)
2015-3-17
O
x
O
x
B
(3)
(4)
练习
1、若角的终边在第一象限的角平分线上,则角的 集合是 。
*2、若角与角的终边在一条直线上,则与 的关 系是 。 3、写出如图终边落在阴影部分的角的集合。 y y A 30º
角的概念的推广(2)
2015-3-17
复习
1. 角的分类:
(1)按旋转方向分为 正角 、 负角 和 零角
(2)按终边所在位置分 象限角 和 轴线角


2. 与角的终边相同的角的集合S表示:
S={ | = + k · 360º, k∈Z }

3. 把下列各角写成k· 360º + ( 0º ≤<360º )的形式, 并指出它们所在的象限或终边位置。 (1)-135º
30º 45º
O
2015-3-17
x
O
45º
x
B
研究性学习
如果角是第一象限角,那么 2 是哪个象限角?
图示记忆法 y 3 2 4

2
1 x
呢?

3
45º
呢?
1
2
O
45º
4
3
2015-3-17
小结
1、轴线角的集合表示;
{β ︱β = k· 360°+900,k∈Z} 终边在y轴上角的集合为
∪ {β ︱β = k· 360°+270° ,k∈Z}
20Hale Waihona Puke 5-3-17(2)1110º
提问
根据上例,你能写出第一、二、三、四象限角的集合吗?
< <90º 在0º ~ 360º 中,第一象限角的范围为 0º .
90º y 180º
第一象限角的集合为 A={|0º +k· 360º <<90º +k· 360º ,k∈Z}
0
第二象限角的集合为 x 0º B={|90º +k· 360º <<180º +k· 360º ,k∈Z}
相关文档
最新文档