精选高考数学高考数学压轴题 等差数列选择题专项训练分类精编及解析(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a += B .560a a +=
C .670a a +=
D .890a a +=
解析:B 【分析】
由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】
由等差数列的求和公式可得()
110101002
a a S +=
=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B.
2.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21 D .6、10、14、18、22
解析:C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C
3.在数列{}n a 中,11a =,且11n
n n
a a na +=+,则其通项公式为n a =( ) A .
21
1n n -+
B .2
1
2
n n -+
C .2
2
1
n n -+
D .2
2
2
n n -+
解析:D 【分析】
先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出212
2
n n n a -+=,进而求出n a . 【详解】 解:11n
n n
a a na +=
+,
()11n n n a na a ++=∴,
化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:
111
n n
n a a +-=, 即
21111a a -=,32112a a -=,43
11
3a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:
213243111111+a a a a a a --+-+ (1)
11123n n a a -+-=+++…1n +-, 即
111(1)
2
n n n a a --=, 2111(1)(1)2=1(2,)222
n n n n n n n n n z a a ---+∴=++=≥∈, 又
1
1
1a =也满足上式, 212()2
n n n n z a -+∴=∈, 22
()2
n a n z n n ∴=
∈-+.
故选:D. 【点睛】
易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 4.已知数列{}n a 满足25111,,25
a a a ==且
*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19 B .20
C .21
D .22
解析:B 【分析】
由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭
为等差数列,再由等差数列的通项公式可得
1
n
n a ,进
而可得1
n a n
=,再结合基本不等式即可得解. 【详解】
因为*
121210,n n n n a a a ++-+=∈N ,所以12
211n n n a a a ++=+,
所以数列1n a ⎧⎫

⎬⎩⎭
为等差数列,设其公差为d , 由25111,25
a a a ==可得25112,115a a a ==⋅, 所以1
1
11
2
11
45d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,
所以
()1111n n d n a a =+-=,所以1n a n
=,
所以不等式100n n a a +≥即100
n a n
+≥对任意的*n N ∈恒成立,
又10020n n +
≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】
关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 5.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9 B .5
C .1
D .
59
解析:B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+=
=,99a d =,且0d ≠, ∴9
9
5S a =. 故选:B
6.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( )
A .103
B .107
C .109
D .105
解析:B 【分析】
根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】
根据题意可知正整数能被21整除余2,
21+2n a n ∴=, 5215+2107a ∴=⨯=.
故选:B.
7.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12 B .20
C .40
D .100
解析:B 【分析】
由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:
1011045100S a d =+=,
12920a d ∴+=, 4712920a a a d ∴+=+=.
故选:B.
8.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60 B .11
C .50
D .55
解析:D 【分析】
根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】
因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()
1111161111552
a a S a +===.
故选:D.
9.已知数列{}n a 的前n 项和为n S ,11
2
a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫

⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( ) A .214
a =-
B .
648
211S S S =+
C .数列{}12n n n S S S +++-的最大项为712
D .1121
n n n n n
T T T n n +-=
++ 解析:D 【分析】
当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫

⎬⎩⎭
为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫

⎬⎩⎭
的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】
当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111
2020n n n n n n
S S S S S S ----+=⇒
-+=, 整理得
1
112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨
⎬⎩⎭
为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n
S n ∴=. A 中,当2n =时,221111
424
a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫

⎬⎩⎭
为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()
1212211221n n n n b S S n n n S ++=+-=
+-++, ()()()
1123111
212223n n n n b S S S n n n ++++=+-=
+-+++,
()()()
1111602223223n n n b b n n n n n n ++∴-=
--=-<++++,故{}n b 为递减数列, ()1123max 1117
24612
n b b S S S ∴==+-=
+-=,C 选项正确; D 中,
12n n S =,()()2212
n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()111121121
11n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.
故选:D . 【点睛】
关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1
,2n n
n S n a S S n -=⎧=⎨
-≥⎩来求解,在变形
过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解.
10.设等差数列{}n a 的前n 项和为n S ,10a <且
111019
21
a a =,则当n S 取最小值时,n 的值为( ) A .21 B .20
C .19
D .19或20
解析:B 【分析】 由题得出1392
a d =-,则2202n d
S n dn =-,利用二次函数的性质即可求解.
【详解】
设等差数列{}n a 的公差为d , 由
111019
21
a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392
a d =-
,10a <,0d ∴>,
()211+
2022
n n n d
S na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.
故选:B. 【点睛】
方法点睛:求等差数列前n 项和最值,由于等差数列
()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 11.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160 B .180
C .200
D .220
解析:B 【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=.
所以2012020
()10181802
S a a =+=⨯=. 故选:B
12.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231
n n a n b n =+,则2121S T 的值为( )
A .
13
15
B .
2335
C .
1117
D .
49
解析:C 【分析】
利用等差数列的求和公式,化简求解即可 【详解】
2121S T =12112121()21()22
a a
b b ++÷=121121a a b b ++=1111a b =211
3111⨯⨯+=1117.
故选C
13.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2
解析:C 【分析】
利用等差数列的性质直接计算求解 【详解】
因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C
14.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
解析:C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
2
1121n n n a S S n n n -=-=--=-,
所以2,1
21,2n n a n n =⎧=⎨-≥⎩
,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 15.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,
*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
解析:A 【分析】 转化条件为
122527
n n
a a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.
【详解】 因为122527
n n a a n n +-=--,所以122527n n
a a n n +-
=--, 又
1127a =--,所以数列27n a n ⎧⎫
⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以
()1212327
n
a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得
3722
n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()
()()3123min
13316p q S S a a S S =-=+=⨯-+--⨯=-.
故选:A. 【点睛】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解.
二、等差数列多选题
16.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫

⎬⎩⎭
为递增数列 解析:ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:
1114n n S S --=,利用等差数列的通项公式可得1
n
S ,
n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】
数列{}n a 的前n 项和为0
n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,公差为4,
∴()14414n n n S =+-=,可得14n S n
=, ∴2n ≥时,()()
1111
44141n n n a S S n n n n -=-=
-=---, ∴()1
(1)41(2)41n n a n n n ⎧=⎪⎪
=⎨⎪-≥-⎪⎩

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为1
11
4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题
17.(多选)在数列{}n a 中,若2
2
1(2,,n n a a p n n N p *
--=≥∈为常数),则称{}n a 为“等方
差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .
(){
}
1n
- 是等方差数列
C .{}2
n
是等方差数列.
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,则12222
(1)21n n a a n n n --=--=-不是常数,故
{}n
a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方
差数列,故B 正确; 对于C ,数列{}2
n
中,()()
22
221
112
234n n n n n a
a ----=-=⨯不是常数,{}2n
∴不是等方差
数列,故C 错误; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数
列,()()2
2
2
112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,
故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BD. 【点睛】
关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.
18.已知数列{}n a 满足:12a =,当2n ≥时,)
2
12n a =
-,则关于数列
{}n a 的说法正确的是 ( )
A .27a =
B .数列{}n a 为递增数列
C .2
21n a n n =+- D .数列{}n a 为周期数列
解析:ABC 【分析】
由)
2
12n a =
-1=,再利用等差数列的定义求
得n a ,然后逐项判断. 【详解】
当2n ≥时,由)
2
12n a =-,
得)
2
21n a +=

1=,又12a =,
所以
是以2为首项,以1为公差的等差数列,
2(1)11n n =+-⨯=+, 即2
21n a n n =+-,故C 正确; 所以27a =,故A 正确;
()2
12n a n =+-,所以{}n a 为递增数列,故正确;
数列{}n a 不具有周期性,故D 错误; 故选:ABC
19.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列 C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列 解析:BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 20.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019
11
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T < 解析:AC 【分析】 将
3201911111a a e e +≤++变形为320191111
01212
a a e e -+-≤++,构造函数()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】

3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x
f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 21.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
解析:ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 22.在数列{}n a 中,若2
2
*
1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数
列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列
C .若{}n a 是等方差数列,则{}()
*
,kn a k N k ∈为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,
则12222
(1)21n n a a n n n --=--=-不是常数,故{}
n a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,
{(1)}n ∴-是等方差数列,故B 正确;
对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,
数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,

()(
)()()
22222222
12132221k k k k k k k k a
a a a a a a a p +++++--=-=-==-=,将这k 个式子累加
得()()()()22
222
22
21
2
1
3
2
221
k k
k k k k k
k a
a a a a a a a kp +++++--+-+-++-=,222k k a
a kp ∴-=,
()
221kn k n a a kp +∴-=,{}*
(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+
{}n a 是等方差数列,
()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BCD. 【点睛】
本题考查了数列的新定义问题和等差数列的定义,属于中档题. 23.数列{}n a 满足11,121
n
n n a a a a +=
=+,则下列说法正确的是( ) A .数列1n a ⎧⎫

⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和2
n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列
解析:ABD 【分析】 首项根据11,121n n n a a a a +=
=+得到
111
2n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为121
n
n n a a a +=
+,11a =, 所以121112n n n n a a a a ++==+,即1112n n
a a +-= 所以1n a ⎧⎫
⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,故A 正确.
对选项B ,由A 知:
1
121
21n
n n a
数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和()21212n n n S n +-==,故B 正确.
对选项C ,因为121n n a =-,所以1
21
n a n =-,故C 错误. 对选项D ,因为1
21
n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】
本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.
24.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )
A .若59S S =,则必有14S =0
B .若59S S =,则必有7S 是n S 中最大的项
C .若67S S >,则必有78S S >
D .若67S S >,则必有56S S > 解析:ABC 【分析】
根据等差数列性质依次分析即可得答案. 【详解】
解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以
()114141402
a a S +==,故A 选项正确;
对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故
780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;
C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误.
故选:ABC . 【点睛】
本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.
25.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S > B .170S <
C .1819S S >
D .190S >
解析:ABD 【分析】
先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则
190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质
和求和公式可知()0117917917
217
172
2
a a a S a <+⨯⨯=
=
=,()11910191019
219
1902
2
a a a S a +⨯⨯=
=
=>,故BD 正确. 【详解】
根据题意可知数列为递增数列,90a <,100a >,
∴前9项的和最小,故A 正确;
()117917917217
1702
2a a a S a +⨯⨯=
==<,故B 正确; ()1191019
1019219
1902
2
a a a S a +⨯⨯=
=
=>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.
故选:ABD . 【点睛】
本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

相关文档
最新文档