2020-2021下海下海外国语大学西外外国语学校初二数学下期末模拟试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021下海下海外国语大学西外外国语学校初二数学下期末模拟试卷及答
案
一、选择题
1.若2
=x﹣5,则x的取值范围是()
(5)x
A.x<5B.x≤5C.x≥5D.x>5
2.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()
A.①②③B.仅有①②C.仅有①③D.仅有②③
3.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()
A.b2﹣c2=a2B.a:b:c=3:4:5
C.∠A:∠B:∠C=9:12:15D.∠C=∠A﹣∠B
4.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()
A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 5.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为()
A.10米B.16米C.15米D.14米
6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()
A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线互相垂直的四边形D.对角线相等的四边形
7.下列结论中,错误的有()
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;
②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;
A.0个B.1个C.2个D.3个
8.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提
高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的
函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()
A.300m2B.150m2C.330m2D.450m2
9.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()
A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD
10.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那
么P到矩形两条对角线AC和BD的距离之和是()
A.6B.12C.24D.不能确定
.若11.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处
V的周长为6,四边形纸片ABCD的周长为()
AFD
V的周长为18,ECF
A.20B.24C.32D.48
12.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()
A .4
B .5
C .6
D .43 二、填空题
13.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 14.已知13y x =-+,234y x =-,当x 时,12y y <.
15.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.
16.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.
17.已知0,0a b <>,化简2()a b -=________
18.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.
19.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.
20.若m =+5,则m n =___.
三、解答题
21.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. (1)求y 关于x 的函数关系式;
(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
22.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC 表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?
(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?
23.某经销商从市场得知如下信息:
A品牌手表B品牌手表
进价(元/块)700100
售价(元/块)900160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
24.已知正方形ABCD 的对角线AC,BD 相交于点O.
(1)如图 1,E,G 分别是OB,OC 上的点,CE 与DG 的延长线相交于点F.若DF⊥CE,求证:OE=OG;
(2)如图 2,H 是BC 上的点,过点H 作EH⊥BC,交线段OB 于点E,连结DH 交CE 于点F,交OC 于点G.若OE=OG,
①求证:∠ODG=∠OCE;
②当AB=1 时,求HC 的长.
25.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.
(1)求梯子底端B外移距离BD的长度;
(2)猜想CE与BE的大小关系,并证明你的结论.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
2
a(a≤0),由此性质求得答案即可.
【详解】
()2
-,
5x
∴5-x≤0
∴x≥5.
故选C.
【点睛】
2
a(a≥02a(a≤0).
2.A
解析:A
【解析】
【分析】
【详解】
解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.
∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.
终上所述,①②③结论皆正确.故选A.
3.C
【解析】
【分析】
根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.
【详解】
A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;
B、∵32+42=52,∴△ABC为直角三角形;
C、∵∠A:∠B:∠C=9:12:15,
15
18075
91215
C︒︒
∠=⨯=
++
,故不能判定△ABC是
直角三角形;
D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;
故选C.
【点睛】
考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
4.C
解析:C
【解析】
【分析】
根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】
解:∵y=(m﹣2)x n﹣1+n是一次函数,
∴m﹣2≠0,n﹣1=1,
∴m≠2,n=2,
故选C.
【点睛】
本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.
5.B
解析:B
【解析】
【分析】
根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.
【详解】
由题意得BC=6,在直角三角形ABC中,根据勾股定理得:
=10米.
所以大树的高度是10+6=16米.
故选:B.
此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
6.D
解析:D
【解析】
【分析】
如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=1
2
BD,则可得四边形EFGH
是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【详解】
如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
∴EH=1
2
AC,EH∥AC,FG=
1
2
AC,FG∥AC,EF=
1
2
BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,假设AC=BD,
∵EH=1
2
AC,EF=
1
2
BD,
则EF=EH,
∴平行四边形EFGH是菱形,
即只有具备AC=BD即可推出四边形是菱形,
故选D.
【点睛】
本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
7.C
解析:C
【解析】
【分析】
根据勾股定理可得①中第三条边长为57
∠C=90°,根据三角形内角和定理计算出∠C=90°,可得③正确,再根据勾股定理逆定理可得④正确.
【详解】
①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或7.
②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.
③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.
④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.
故选C .
【点睛】
本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.
8.B
解析:B
【解析】
【分析】
【详解】
解:如图,
设直线AB 的解析式为y=kx+b ,则4+=1200{5k+b=1650
k b , 解得450{600
k b ==- 故直线AB 的解析式为y=450x ﹣600,
当x=2时,y=450×
2﹣600=300, 300÷2=150(m 2)
故选B .
【点睛】
本题考查一次函数的应用.
9.D
解析:D
【解析】
【分析】
根据矩形性质可判定选项A 、B 、C 正确,选项D 错误.
∵四边形ABCD 为矩形,
∴∠ABC=90°,AC=BD ,OA=OB ,
故选D
【点睛】
本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.
10.B
解析:B
【解析】
【分析】
由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =
12OA •PE+12
OD •PF ,代入数值即可求得结果.
【详解】
连接OP ,如图所示:
∵四边形ABCD 是矩形,
∴AC =BD ,OA =OC =
12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14
S 矩形ABCD , ∴OA =OD =
12
AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14
×15×20=75, ∴OA =OD =252
, ∴S △AOD =S △APO +S △DPO =
12OA •PE +12OD •PF =12OA •(PE +PF )=12
×252(PE +PF )=75,
∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.
【点睛】
本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.
11.B
解析:B
【解析】
【分析】
根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.
【详解】
由折叠的性质知,AF=AB,EF=BE.
所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.
故矩形ABCD的周长为24cm.
故答案为:B.
【点睛】
本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.
12.A
解析:A
【解析】
【分析】
根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.
【详解】
∵∠ABC=120°,四边形ABCD是菱形
∴∠CBD=60°,BC=CD
∴△BCD是等边三角形
∵BD=4
∴BC=4
故答案选A.
【点睛】
本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.
二、填空题
13.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2
解析:【解析】
【分析】
由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab (a+b),代入可求得答案
【详解】
∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
∴a+b=14
2
=7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=70,
故答案为:70.
【点睛】
本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
14.【解析】【分析】根据题意列出不等式求出解集即可确定出x的范围【详解】根据题意得:-x+3<3x-4移项合并得:4x>7解得:x故答案为:
解析:
7
4 >.
【解析】
【分析】
根据题意列出不等式,求出解集即可确定出x的范围.【详解】
根据题意得:-x+3<3x-4,
移项合并得:4x>7,
解得:x
7
4 >.
故答案为:
7 4 >
15.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠
解析:20
【解析】
【分析】
通过矩形的性质可得OD OA OB OC
===,再根据∠AOB=120°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
【详解】
∵四边形ABCD是矩形
∴OD OA OB OC
===
∵∠AOB=120°
∴18060AOD AOB =︒-=︒∠∠
∴△AOD 是等边三角形
∵5AD =
∴5OD OA ==
∴5OD OC ==
∵CE//BD ,DE//AC
∴四边形CODE 是平行四边形
∵5OD OC ==
∴四边形CODE 是菱形
∴5OD OC DE CE ====
∴四边形CODE 的周长20OD OC DE CE =+++=
故答案为:20.
【点睛】
本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
16.x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1观
解析:x >1
【解析】
试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.
试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;
由于两直线的交点横坐标为:x=1,
观察图象可知,当x >1时,x+b >ax+3;
考点:一次函数与一元一次不等式.
17.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a <0<b ∴|a−b|=b−a 故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式
解析:b a -
【解析】
【分析】
根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.
【详解】
∵a <0<b ,
=|a−b|=b−a .
故答案为:b a -.
【点睛】
本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.
18.方差【解析】【分析】设原数据的众数为a中位数为b平均数为方差为S2数据个数为n根据数据中的每一个数都加上1利用众数中位数的定义平均数方差的公式分别求出新数据的众数中位数平均数方差与原数据比较即可得答
解析:方差
【解析】
【分析】
设原数据的众数为a、中位数为b、平均数为x、方差为S2,数据个数为n,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.
【详解】
设原数据的众数为a、中位数为b、平均数为x、方差为S2,数据个数为n,
∵将一组数据中的每一个数都加上1,
∴新的数据的众数为a+1,
中位数为b+1,
平均数为1
n
(x1+x2+…+x n+n)=x+1,
方差=1
n
[(x1+1-x-1)2+(x2+1-x-1)2+…+(x n+1-x-1)2]=S2,
∴值保持不变的是方差,
故答案为:方差
【点睛】
本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.
19.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21
解析:2
【解析】
【分析】
先用平均数是3可得x的值,再结合方差公式计算即可.
【详解】
平均数是3
1
5
=(1+2+3+x+5),解得:x=4,
∴方差是S2
1
5
=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]
1
5
=⨯10=2.
故答案为2.
【点睛】
本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.20.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的
解析:【解析】
【分析】
直接利用二次根式有意义的条件得出m,n的值进而得出答案.
【详解】
∵m=+5,
∴n=2,则m=5,
故m n=25.
故答案为:25.
【点睛】
此题主要考查了二次根式有意义的条件,正确得出m,n的值是解题关键.
三、解答题
21.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
【解析】
【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥100
3
,
∵y=﹣100x+50000中k=﹣100<0,
∴y随x的增大而减小,
∵x为正数,
∴x=34时,y取得最大值,最大值为46600,
答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
331
3
≤x≤60,
①当0<a<100时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,
即商店购进A型电脑数量满足331
3
≤x≤60的整数时,均获得最大利润;
③当100<a<200时,a﹣100>0,y随x的增大而增大,
∴当x=60时,y取得最大值.
即商店购进60台A型电脑和40台B型电脑的销售利润最大.
【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
22.(1)
20320(110)
1420(1030)
x x
y
x x
-+≤≤
⎧
=⎨
-<≤
⎩
;(2)日销售利润不超过1040元的天数共有18
天;(3)第5天的日销售利润最大,最大日销售利润是880元.
【解析】
【分析】
(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;
(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;
(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.
【详解】
(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);
BC段表示的函数关系式为y=mx+n(10<x≤30),
把(1,300)、(10,120)带入y=ax+b中得,解得,
∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);
把(10,120),(30,400)代入y=mx+n中得,解得,
∴线段BC表示的函数关系式为y=14x-20(10<x≤30),
综上所述.
(2)由题意可知单件商品的利润为10-6=4(元/件),
∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;
当10<x≤30时,w=4×(14x-20)=56x-80,
∴,日销售利润不超过1040元,即w≤1040,
∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;
当10<x≤30时,w=56x-80≤1040,解得x≤20,
∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.
(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.
【点睛】
本题考查应用题解方程,解题的关键是读懂题意.
23.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
【分析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
方案A品牌(块)B品牌(块)
①4852
②4951
③5050
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
【点睛】
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
5-1
24.(1)证明见解析;(2
【解析】
【分析】
(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;
②设CH=x,由△CHE∽△DCH,可得EH HC
HC CD
=,即HC2=EH•CD,由此构建方程即可解
决问题.
【详解】
解:(1)如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,
∴∠OEC+∠OCE=90°,
∵DF⊥CE,∴∠OEC+∠ODG=90°,
∴∠ODG=∠OCE,
∴△DOG≌△COE(ASA),∴OE=OG.
(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,
∴△ODG≌△OCE,∴∠ODG=∠OCE.
②解:设CH=x,∵四边形ABCD是正方形,AB=1,
∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,
∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,
∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,
∴∠HDC=∠ECH,
∵EH⊥BC,∴∠EHC=∠HCD=90°,
∴△CHE∽△DCH,
∴EH HC
HC CD
=,∴HC2=EH•CD,
∴x2=(1﹣x)•1,
解得x=51
-
或
51
--
(舍弃),
∴HC=51 -
.
25.(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.【解析】
【分析】
(1)利用勾股定理求出OB ,求出OC ,再根据勾股定理求出OD ,即可求出答案;
(2)求出△AOB 和△DOC 全等,根据全等三角形的性质得出OC=OB ,∠ABO=∠DCO ,求出∠OCB=∠OBC ,求出∠EBC=∠ECB ,根据等腰三角形的判定得出即可.
【详解】
(1)∵AO ⊥OD ,AO=4m ,AB=5m ,
∴OB=22AB AO -=3m ,
∵梯子的顶端A 沿墙下滑1m 至C 点,
∴OC=AO ﹣AC=3m ,
∵CD=AB=5m ,
∴由勾股定理得:OD=4m ,
∴BD=OD ﹣OB=4m ﹣3m=1m ;
(2)CE 与BE 的大小关系是CE=BE ,证明如下:
连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m ,
∵∠AOB=∠DOC=90°,
在Rt △AOB 和Rt △DOC 中
AB DC AO DO =⎧⎨=⎩
, ∴Rt △AOB ≌Rt △DOC (HL ),
∴∠ABO=∠DCO ,OC=OB ,
∴∠OCB=∠OBC ,
∴∠ABO ﹣∠OBC=∠DCO ﹣∠OCB ,
∴∠EBC=∠ECB ,
∴CE=BE .
【点睛】
本题考查了勾股定理,等腰三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾股定理进行计算是解(1)的关键,能求出∠DCO=∠ABO 和OC=OB 是解(2)的关键.。