瑶海区二中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瑶海区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <1
2x ,x ≥1
若f (-6)+f (log 26)=9,则a 的值为( )
A .4
B .3
C .2
D .1
2. 已知函数f (x )满足:x ≥4,则f (x )
=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )
A
.
B
.
C
.
D
.
3. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )
A
. B
.C
.
D
.
4. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )
A
. B
.
C
. D
.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
5. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )
A .﹣
B .﹣
C .﹣
D .﹣或﹣
6. 与椭圆有公共焦点,且离心率
的双曲线方程为( )
A .
B .
C .
D .
7. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .98
8. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( )
A .1
B .2
C .3
D .
9. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )
A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β 10.下列哪组中的两个函数是相等函数( ) A .()()()
4
4
4
4
=f x x x x =
,g B .()()24
=
,22
x f x g x x x -=-+ C .()()1,01,1,0
x f x g x x >⎧==⎨<⎩ D .()()33
=f x x x x =,g
11.已知双曲线和离心率为4
sin π
的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若
2
1
cos 21=∠PF F ,则双曲线的离心率等于( )
A .
B .25
C .26
D .2
7
12.已知,,那么夹角的余弦值( )
A .
B .
C .﹣2
D .﹣
二、填空题
13.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧
面11BCC B 内一点,若1AP 平行于平面
AEF ,则线段1A P 长度的取值范围是_________.
14.设α为锐角,若sin (α﹣
)=,则cos2α= .
15.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程
为.
16.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.
17.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周
期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:
①若m=,则a5=2;
②若a3=3,则m可以取3个不同的值;
③若m=,则数列{a n}是周期为5的周期数列.
其中正确命题的序号是.
18.设函数f(x)=则函数y=f(x)与y=的交点个数是.
三、解答题
19.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.
(Ⅰ)求数列{a n}的通项公式
(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.
20.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一
次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指
数不低于70,说明孩子幸福感强).
(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留
(2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.
参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++
附表:
21.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若2
2
2
11PQ F P F Q =+,求直线m 的方程.
22.已知x 2﹣y 2+2xyi=2i ,求实数x 、y 的值.
23.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
24.已知椭圆的离心率,且点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.
瑶海区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】
【解析】选C.由题意得log2(a+6)+2log26=9.
即log2(a+6)=3,
∴a+6=23=8,∴a=2,故选C.
2.【答案】A
【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)
且3+log23>4
∴f(2+log23)=f(3+log23)
=
故选A.
3.【答案】C
【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,
∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|
=|cosx||sinx|=|sin2x|,
其周期为T=,最大值为,最小值为0,
故选C.
【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.
4.【答案】B
【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.
故选B.
【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.
5.【答案】B
【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;
当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,
解得a=,b=﹣2;
所以a+b==﹣;
故选:B
6.【答案】A
【解析】解:由于椭圆的标准方程为:
则c2=132﹣122=25
则c=5
又∵双曲线的离心率
∴a=4,b=3
又因为且椭圆的焦点在x轴上,
∴双曲线的方程为:
故选A
【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.
7.【答案】A
【解析】解:因为f(x+4)=f(x),故函数的周期是4
所以f(7)=f(3)=f(﹣1),
又f(x)在R上是奇函数,
所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,
故选A.
【点评】本题考查函数的奇偶性与周期性.
8.【答案】D
【解析】解:∵复数z满足zi=1﹣i,(i为虚数单位),
∴z==﹣i﹣1,
∴|z|==.
故选:D.
【点评】本题考查了复数的化简与运算问题,是基础题目.
9.【答案】D
【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D
10.【答案】D111] 【解析】
考
点:相等函数的概念. 11.【答案】C 【解析】
试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设
n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又2
1
c os 21=
∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2
221234a a c +=∴,432
221=+∴c a c a ,设双曲线的离心率为,则
432
2122=+e
)(,解得2
6
=e .故答案选C .
考点:椭圆的简单性质.
【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,
接着用余弦定理表示2
1
cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2
c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主. 12.【答案】A
【解析】解:∵,
,
∴
=
,||=,
=﹣1×1+3×(﹣1)=﹣4,
∴cos <>=
==﹣
,
故选:A .
【点评】本题考查了向量的夹角公式,属于基础题.
二、填空题
13.【答案】
⎣⎦
【解析】
考点:点、线、面的距离问题.
【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.
14.【答案】﹣.
【解析】解:∵α为锐角,若sin(α﹣)=,
∴cos(α﹣)=,
∴sin=[sin(α﹣)+cos(α﹣)]=,
∴cos2α=1﹣2sin2α=﹣.
故答案为:﹣.
【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.
15.【答案】(±,0)y=±2x.
【解析】解:双曲线的a=2,b=4,
c==2,
可得焦点的坐标为(±,0),
渐近线方程为y=±x,即为y=±2x.
故答案为:(±,0),y=±2x.
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.16.【答案】[0,2].
【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,
故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,
求得0≤m≤2,
故答案为:[0,2].
【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.
17.【答案】①②.
【解析】解:对于①由a n+1=,且a1=m=<1,
所以,>1,,,∴a5=2 故①正确;
对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.
若,则.
若a1>1a1=,若0<a1≤1则a1=3,不合题意.
所以,a3=2时,m即a1的不同取值由3个.
故②正确;
若a
=m=>1,则a2=,所a3=>1,a4=
1
故在a1=时,数列{a n}是周期为3的周期数列,③错;
故答案为:①②
【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目
18.【答案】4.
【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,
由图知两函数y=f(x)与y=的交点个数是4.
故答案为:4.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设数列{a n}的公比为q,
由a n>0可得q>0,且a3﹣a2﹣2a1=0,
化简得q2﹣q﹣2=0,
解得q=2或q=﹣1(舍),
∵a3=a1•q2=4a1=8,∴a1=2,
∴数列{a n}是以首项和公比均为2的等比数列,
∴a n=2n;
(Ⅱ)由(I)知b n=log2a n==n,
∴a n b n=n•2n,
∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,
2S n =1×22+2×23+…+(n ﹣2)×2n ﹣1+(n ﹣1)×2n +n ×2n+1,
两式相减,得﹣S n =21+22+23+…+2n ﹣1+2n ﹣n ×2n+1
,
∴﹣S n =﹣n ×2
n+1
,
∴S n =2+(n ﹣1)2n+1
.
【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.
20.【答案】(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)35
. 【解析】
∴2
40(67918)4 3.84115252416
K ⨯⨯-⨯=
=>⨯⨯⨯. ∴有95%的把握认为孩子的幸福感强与是否留守儿童有关.
(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:1a ,2a ;幸福感强的孩子3人,记作:1b ,2b ,
3b .
“抽取2人”包含的基本事件有12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,12(,)b b ,
13(,)b b ,23(,)b b 共10个.
事件A :“恰有一人幸福感强”包含的基本事件有11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b 共6个. 故63()105
P A =
=. 考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式. 21.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
13
42
2=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q
直接计算知29PQ =,2
25||||2121=+Q F P F ,222
11PQ F P
F Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-
由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k k x x +-=⋅
由222
11PQ F P F Q =+得,11
0F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22222=+⋅-+++-+k k k k k k ,即0972
=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±=x y
22.【答案】
【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
解得
或
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
【点评】本题考查复数相等的条件,以及方程思想,属于基础题.
23.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
24.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)由已知,
点在椭圆上,,解得.
所求椭圆方程为
(Ⅱ)设,,的垂直平分线过点, 的斜率存在.
当直线的斜率时,
当且仅当时,
当直线的斜率时,设.
消去得:
由.①
,
,的中点为
由直线的垂直关系有,化简得②由①②得
又到直线的距离为,
时,.
由,,解得;
即时,;
综上:;。