变频器的基本认识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的基本认识
1.变频器发展历程?
早期通用变频器如东芝TOSVERT-130系列、FUJI FVRG5/P5系列,SANKEN SVF系列等大多数为开环恒压比(V/F=常数)的控制方式.其优点是控制结构简单、成本较低,缺点是系统性能不高,比较适合应用在风机、水泵调这场合。
具体来说,其控制曲线会随着负载的变化而变化;转矩响应慢,电视转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降稳定性变差等。
对变频器U /F控制系统的改造主要经历了三个阶段;
第一阶段:基本磁通轨迹的电压空间矢量(或称磁通轨迹法)。
(1)该方法以三相波形的整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成二相调制波形。
这种方法被称为电压空间矢量控制。
(2)引人频率补偿控制,以消除速度控制的稳态误差
(3)基于电机的稳态模型,用直流电流信号重建相电流,由此估算出磁链幅值,并通过反馈控制来消除低速时定子电阻对性能的影响。
(4)将输出电压、电流进行闭环控制,以提高动态负载下的电压控制精度和稳定度,同时也一定程度上求得电流波形的改善。
这种控制方法的另一个好处是对再生引起的过电压、过电流抑制较为明显,从而可以实现快速的加减速。
第二阶段:矢量控制。
也称磁场定向控制。
以直流电动机和交流电动机比较的方法分析阐述了这一原理,由此开创了交流电动机等效直流电动机控制的先河。
它使人们看到交流电动机尽管控制复杂,但同样可以实现转矩、磁场独立控制的内在本质。
矢量控制的基本点是控制转子磁链,以转子磁通定向,然后分解定子电流,使之成为转矩和磁场两个分量,经过坐标变换实现正交或解耦控制。
但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足。
此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配留转子位置或速度传感器,这显然给许多应用场合带来不便。
仅管如此,矢量控制技术仍然在努力融入通用型变频器中,1992年开始,德国西门子开发了6SE70通用型系列,通过FC、VC、SC板可以分别实现频率控制、矢量控制、伺服控制。
1994年将该系列扩展至315KW以上。
目前,6SE70系列除了200KW 以下价格较高,在200KW以上有很高的性价比。
第三阶段:1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control 简称DTC)。
直接转矩控制与矢量控制不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制。
转矩控制的优越性在于:转矩控制是控制定子磁链,在本质上并不需要转速信息;控制上对除定子电阻外的所有电机参数变化鲁棒性良好;所引入的定子磁键观测器能很容易估算出同步速度信息。
因而能方便地实现无速度传感器化。
这种控制方法被应用于通用变频器的设计之中,是很自然的事,这种控制被称为无速度传感器直接转矩控制。
然而,这种控制依赖于精确的电机数学模型和对电机参数的自动识别
(Identification向你ID),通过ID运行自动确立电机实际的定子阻抗互感、饱和因素、电动机惯量等重要参数,然后根据精确的电动机模型估算出电动机的实际转矩、定子碰链和转子速度,并由磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行控制。
这种系统可以实现很快的转矩响应速度和很高的速度、转矩控制精度。
1995 年ABB公司首先推出的ACS600直接转矩控制系列,已达到<2ms的转矩响应速度在带PG时的静态速度精度达土O.01%,在不带PG的情况下即使受到输入电压的变化或负载突变的影响,向样可以达到正负0.1%的速度控制精度。
其他公司也以直接转矩控制为努力目标,如安川VS-676H5高性能无速度传感器矢量控制系列,虽与直接转矩控制还有差别,但它也已做到了100ms的转矩响应和正负0.2%(无PG),正负0.01%(带PG)的速度控制精度,转矩控制精度在正负3%左右。
其他公司如日本富士电机推出的FRN 5000G9/P9以及最新的FRN5000Gll/P11系列出采取了类似无速度传感器控制的设计,性能有了进一步提高,然而变频器的价格并不比以前的机型昂贵多少。
控制技术的发展完全得益于微处理机技术的发展,自从1991年INTEL公司推出8X196MC系列以来,专门用于电动机控制的芯片在品种、速度、功能、性价比等方面都有很大的发展。
如日本三菱电机开发用于电动机控制的M37705、M7906单片机和美国德州仪器的TMS320C240DSP等都是颇具代表性的产品。
2.什么是变频器?
通常把电压和频率固定不变的交流电变换为可调电压或频率的交流电的装置称为“变频器”。
3.变频器工作原理?
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
整流器
最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。
也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
平波回路
在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。
为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。
装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
逆变器
同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。
以电压型逆变器为例示出开关时间和电压波形。
4.变频器基本构成?
它由以下电路组成:频率、电压的运算电路,主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路、逆变器和电动机的保护电路。
变频器控制电路的基本功能
是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
(5)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
(6)电压、电流检测电路:与主回路电位隔离检测电压、电流等。
(7)驱动电路:驱动主电路器件的电路。
它与控制电路隔离使主电路器件导通、关断。
(8)速度检测电路:以装在异步电动机轴机上的速度检测器的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
(9)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
5.变频器的基本分类
1.根据交流环节分
(1)交——直——交变频器
(2)交——交变频器
2.根据直流电路的储能环节分
(1)电流型变频器
(2)电压型变频器
3.根据输出电压调制方式分
(1)PAM方式
(2)PWM方式
(3)SPWM方式
4.根据功能用途分
(1)通用变频器
(2)高性能专用变频器
5.根据输入电源的相数分
(1)单进三出变频器
(2)三进三出变频器
6.根据控制方式分
(1)V/f控制
(2)转差频率控制
(3)矢量控制
6.变频器的作用
1.调速:普通的三相异步电动机,加装变频后可以实现调速功能。
即任意地改变电动机的转速,
2.节能:变频器调速比传统的电磁调速可以节电25%-80%,具体节电的多少就要在看客户的设备的不同而不同;
3.软启动:变频器启动对机械设备没有危害,而硬启动则反之。