高分子物理何曼君版课后思考题答案

合集下载

何曼君《高分子物理》(第3版)课后习题【圣才出品】

何曼君《高分子物理》(第3版)课后习题【圣才出品】
答:(1)因为高分子溶液的热力学性质与理想溶液的偏差很大,只有在无限稀释的情 况下才基本符合理想溶液的规律,而无限稀释的溶液不可能配制,只能用外推法取浓度为零
4 / 62
圣才电子书

时的数据。
十万种考研考证电子书、题库视频学习平台
(2)如果选用合适的温度或合适的溶剂(即θ温度或θ溶剂下),总会使体系的 A2 为零,
5.如果知道聚合物的分子量分布函数或分布曲线,如何求得 Mn 和 Mw?
答:

M n N (M )MdM
Mw
W (M )MdM
6.证明 Mw≥Mη≥Mn。
解:由定义可知:
Mn
i ni M i i ni
i NiMi
3 / 62
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.为什么说黏度法测得的分子量是相对的分子量,渗透压法测得的是数均分子量,光 散射法测得的是重均分子量?
2 / 62
圣才电子书 十万种考研考证电子书、题库视频学习平台

答:(1)黏度法是由公式 M ( iWiM ia )1/a 得到,而α又是从[] KM a 得到。在
圣才电子书 十万种考研考证电子书、题库视频学习平台

何曼君《高分子物理》(第 3 版)课后习题
说明:本部分对何曼君编写的《高分子物理》(第 3 版)教材每一章的课后习题进行了 详细的分析和解答,并对个别知识点进行了扩展。课后习题答案经过多次修改,质量上乘, 非常标准,特别适合应试作答和临考冲刺。
分布宽度指数=重均页数/数均页数=423.61/391.25=1.08 按书页重量统计平均的页数为重均页数,其值等于每书的页数乘以其重量分数的总和。 数均页数相当于总页数除以书本数。 对于重均页数,重的分子的权重大,数均页数的话,权重都是 1。所以重均页数大于数 均页数。

高分子物理第三版课后答案

高分子物理第三版课后答案

高分子物理第三版课后答案【篇一:何曼君高分子物理第三版课后习题答案】>1 写出由取代的二烯(1,3丁二烯衍生物)ch3chchchcooch3经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体?解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物:chchcooch3ch3n即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。

2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用hio4氧化,可得到丙酮和乙酸。

由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论?解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基:ch2ch2ch2ch2ch2och2ch2choh同时若用hio4氧化处理时,可得到乙酸和丙酮:ch2ohch2ohch2ohch3ooh+ch3若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的oh基数应更多(14%),而且经hio4氧化处理时,也得不到丙酮:ch2ohohch2ch2oho2oohchoch2chch2ch22oohch2ohohch2ch2ohch3ooh+oho可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。

3 氯乙烯(ch2chcl)和偏氯乙烯(ch2ccl2)的共聚物,经脱除hcl和裂解后,产物有:clclclcl,clcl等,其比例大致为10:1:1:10(重量),由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论?解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):ch2cl(v)+ch2cl(d)clvvddvvddvdvdclclcl这四种排列方式的裂解产物分别应为:,,cl,clcl而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为:vvv、ddd的序列分布,而其余两种情况的无规链节很少。

高分子物理何曼君版课后思考题答案解析

高分子物理何曼君版课后思考题答案解析

第二章1、假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?说明理由。

不能。

全同立构和间同立构是两种不同的立体构型。

构型是分子中由化学键解:所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现。

2、末端距是高分子链的一端到另一端达到的直线距离,解:因为柔性的高分子链在不断的热运动,它的形态是瞬息万变的,所以只能用它们的平均值来表示,又因为末端距和高分子链的质心到第i个链单元的距离是矢量。

它们是矢量,其平均值趋近于零。

因此,要取均方末端距和均方回转半径;轮廓长度是高分子链的伸直长度,高分子链有柔顺性,不是刚性链,因此,用轮廓长度描述高分子尺度不能体现其蜷曲的特点。

5、解:无论是均方末端距还是均方回转半径,都只是平均量,获得的只是高分子链的平均尺寸信息。

要确切知道高分子的具体形态尺寸,从原则上来说,只知道一个均值往往是不够的。

最好的办法是知道末端距的分布函数,也就是处在不同末端距时所对应的高分子构象实现概率大小或构象数比例,这样任何与链尺寸有关的平均物理量和链的具体形状都可由这个分布函数求出。

所以需要推导高斯链的构象统计理论。

第三章1、高分子与溶剂分子的尺寸相差悬殊,两者的分子运动速度差别很大,溶剂分子能较快渗入聚合物,而高分子向溶剂的扩散缓慢。

(1)聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。

(2)溶解度与聚合物分子量有关,分子量越大,溶解度越大。

对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。

(3)非晶态聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解。

高分子物理答案 何曼君第三版

高分子物理答案 何曼君第三版

高分子物理答案何曼君第三版第一章13、同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。

塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多,而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。

玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。

塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。

纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。

(2)结晶的高聚物常不透明,非结晶高聚物通常透明。

不同的塑料其结晶性是不同的。

加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。

大多数聚合物是晶区和非晶区并存的,因而是半透明的。

补充题第四章1、什么事两种聚合物共混的先决条件?在什么情况下共混聚合物会分相?分相时为什么会出现亚稳分相区?答:(1)两聚合物共混的先决条件是其混合自由能F△M必须小于零。

(2)在下列情况下,共混聚合物会分相:①两聚合物之间没有特殊相互作用(离子键、氢键等);②温度低于高临界共溶温度或高于低临界共溶温度;③共聚物组分初始浓度偏离共溶是组分浓度。

(3)因为共混组分是热力学不相容的时候,它们只能形成非均相体系,但相分离体系的相区尺寸很小,是亚微观水平上的分相,只有通过电镜才能观察到两相结构的存在。

从外观上看则是均匀的。

但由于高分子/高分子混合物的本体黏度很大,分子链段的运动非常困难,相当于处于冻结状态,因此,它们处于相对稳定的状态,即“亚稳分相区”。

3、如何理解p92中尽管△FM<0,但两种聚合物不是在任何比例下都互溶。

答:因为聚合物只有在玻璃化温度Tg和分解温Td之间才具有液体可流动的性质,而这个温度范围并不宽,往往很难再这个温度范围内使χ调节到小于χc ,所以两种聚合物之间,没有特殊相互作用而能完全互溶的体系很少,即尽管△FM<0,但两种聚合物不是在任何比例下都互溶。

高分子物理何曼君第3版课后答案

高分子物理何曼君第3版课后答案

第1章1请你列举出20种⽇常⽇活中经常接触到的⽇分⽇材料,并写出其中10种聚合物的名称和化学式。

解答:常⽇的⽇分⽇材料:聚⽇烯塑料桶、聚丙烯编织袋、涤纶(聚对苯⽇甲酸⽇⽇醇酯)、EVA热熔胶(聚⽇烯和聚醋酸⽇烯酯的共聚物)、顺丁橡胶鞋底、尼⽇袜、ABS塑料、环氧树脂黏合剂、环氧树脂泡沫、聚氨酯泡沫、聚氨酯涂料、油改性聚酯清漆、育秧薄膜(聚氯⽇烯)、电线包⽇(聚氯⽇烯)、有机玻璃(聚甲基丙烯酸甲酯)、维尼⽇(聚⽇烯醇缩甲醛)、尼⽇66、奶瓶(聚碳酸酯)、聚四氟⽇烯、丁苯橡胶、塑料拖鞋(聚氯⽇烯)、⽇机表⽇的光敏涂料、天然橡胶、复合地板(脲醛树脂)、凉⽇塔(不饱和树脂玻璃钢)等。

2有8本⽇说,它们的厚度不同,分别为250⽇、280⽇、300⽇、350⽇、400⽇、450⽇、500⽇和600⽇,请算出它们的数均⽇数和重均⽇数以及分布宽度指数。

请思考为什么重均⽇数⽇于数均⽇数。

解答:分布宽度指数=重均⽇数/数均⽇数=423.61/391.25=1.08;按书⽇重量统计平均的⽇数为重均⽇数,其值等于每书的⽇数乘以其重量分数的总和。

数均⽇数相当于总⽇数除以书本数。

对于重均⽇数,重的分⽇的权重⽇,数均⽇数的话,权重都是1。

所以重均⽇数⽇于数均⽇数。

3试⽇较聚苯⽇烯与苯⽇烯在性能上有哪些差别。

解答:差别:(1)聚苯⽇烯是有⽇定强度的⽇聚物,在外观上是固体,在分⽇结构上没有双键;苯⽇烯是⽇分⽇的液体,分⽇结构上有双键。

(2)苯⽇烯做出来的产品⽇聚苯⽇烯做出来的产品要脆。

另外苯⽇烯暴露在空⽇中会逐渐被氧化,⽇聚苯⽇烯不会。

4为什么说黏度法测得的分⽇量是相对的分⽇量,渗透压法测得的是数均分⽇量,光散射法测得的是重均分⽇量?解答:(1)黏度法是由公式得到,⽇α⽇是从得到。

在测α时所⽇到的[η]是通过相对黏度和增⽇黏度计算得到。

因此[η]不是溶剂的绝对黏度,那么得到的分⽇量也是相对的分⽇量。

(2)渗透法测定分⽇量依据为时所以即渗透压法测得分⽇量为数均分⽇量。

(完整版)高分子物理课后答案何曼君第三版和第二版汇总共48页,推荐文档

(完整版)高分子物理课后答案何曼君第三版和第二版汇总共48页,推荐文档

第三章高分子的溶解过程与小分子相比有什么不同?高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高分子只停留在溶胀阶段,不会溶解。

第二维里系数A2的物理意义?第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。

它与溶剂化作用和高分子在溶液里的形态有密切关系。

良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

高分子的理想链和真实链有哪些区别?①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。

高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别?三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。

②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。

②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别?由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。

两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。

高分子物理课后答案何曼君第三版完整版

高分子物理课后答案何曼君第三版完整版

高分子物理课后答案何曼君第三版标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]高分子物理课后答案,何曼君,第三版第三章高分子的溶解过程与小分子相比有什么不同高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高分子只停留在溶胀阶段,不会溶解。

第二维里系数A2的物理意义第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。

它与溶剂化作用和高分子在溶液里的形态有密切关系。

良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

高分子的理想链和真实链有哪些区别①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。

高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。

②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。

② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。

(完整word版)高分子物理课后答案何曼君第三版和第二版汇总共48页,推荐文档.doc

(完整word版)高分子物理课后答案何曼君第三版和第二版汇总共48页,推荐文档.doc

第三章高分子的溶解过程与小分子相比有什么不同?高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀” ,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高分子只停留在溶胀阶段,不会溶解。

第二维里系数A2 的物理意义?第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。

它与溶剂化作用和高分子在溶液里的形态有密切关系。

良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2 是正值;温度下降或在非良溶剂,高分子线团收缩,A2 是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2 为零,相当于高分子链处于无扰状态。

高分子的理想链和真实链有哪些区别?而真①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,实链有键角限制和位垒的限制。

②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。

高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别?三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。

②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。

②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别?由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。

两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。

高分子物理课后答案_何曼君_第三版和第二版汇总

高分子物理课后答案_何曼君_第三版和第二版汇总

第三版第三章高分子的溶解过程与小分子相比有什么不同?高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高分子只停留在溶胀阶段,不会溶解。

第二维里系数A2的物理意义?第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。

它与溶剂化作用和高分子在溶液里的形态有密切关系。

良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

高分子的理想链和真实链有哪些区别?①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。

高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别?三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。

②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。

②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别?由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。

两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。

(完整版)高分子物理课后答案何曼君第三版和第二版汇总共48页,推荐文档

(完整版)高分子物理课后答案何曼君第三版和第二版汇总共48页,推荐文档

第三章高分子的溶解过程与小分子相比有什么不同?高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高分子只停留在溶胀阶段,不会溶解。

第二维里系数A2的物理意义?第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。

它与溶剂化作用和高分子在溶液里的形态有密切关系。

良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

高分子的理想链和真实链有哪些区别?①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。

高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别?三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。

②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。

②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别?由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。

两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。

高分子物理答案何曼君

高分子物理答案何曼君

第一章 高分子链的结构1 写出由取代的二烯(1,3丁二烯衍生物)CH 3CH CH CH CH COOCH 3经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体?解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物:CH CH CH CH CH 3COOCH 3n即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。

2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。

由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基:CH 2CH CH 2CH CH 2CH CH 2OCH 2CH 2O CH CH 2CH 2CH OH同时若用HIO 4氧化处理时,可得到乙酸和丙酮:CH 2CH CH 2OHCH CH 2OHCH OHHIO 4CH 3COHO+CH 3COCH 3若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮:CH 2CH CH CH 2CH 2CH CH 2OCHO2OCHCH 2CH 2CHOHCH2CH CHOH CH2CH2CHOHOH 4CH3C OHO+OH COCH2CH2C OHO可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。

3 氯乙烯(CH2C H Cl)和偏氯乙烯(CH2CCl2)的共聚物,经脱除HCl和裂解后,产物有:,Cl,ClCl,ClCl Cl等,其比例大致为10:1:1:10(重量),由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论?解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):CH2CHClCH2CClCl +(V)(D) V V VV V DD D VD D D这四种排列方式的裂解产物分别应为:,Cl,ClCl,ClCl Cl而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为:V V V、D D D的序列分布,而其余两种情况的无规链节很少。

高分子物理何曼君版课后思考题答案

高分子物理何曼君版课后思考题答案

第二章1、假假设聚丙烯的等规度不高,能不能用改变构象的方法提高等规度?说明理由。

不能。

全同立构和间同立构是两种不同的立体构型。

构型是分子中由化学键解:所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

构象是围绕单键内旋转所引起的排列变化,改变构象只需克制单键内旋转位垒即可实现。

2、末端距是高分子链的一端到另一端到达的直线距离,解:因为柔性的高分子链在不断的热运动,它的形态是瞬息万变的,所以只能用它们的平均值来表示,又因为末端距和高分子链的质心到第i个链单元的距离是矢量。

它们是矢量,其平均值趋近于零。

因此,要取均方末端距和均方回转半径;轮廓长度是高分子链的伸直长度,高分子链有柔顺性,不是刚性链,因此,用轮廓长度描述高分子尺度不能表达其蜷曲的特点。

5、解:无论是均方末端距还是均方回转半径,都只是平均量,获得的只是高分子链的平均尺寸信息。

要确切知道高分子的具体形态尺寸,从原那么上来说,只知道一个均值往往是不够的。

最好的方法是知道末端距的分布函数,也就是处在不同末端距时所对应的高分子构象实现概率大小或构象数比例,这样任何与链尺寸有关的平均物理量和链的具体形状都可由这个分布函数求出。

所以需要推导高斯链的构象统计理论。

第三章1、高分子与溶剂分子的尺寸相差悬殊,两者的分子运动速度差异很大,溶剂分子能较快渗入聚合物,而高分子向溶剂的扩散缓慢。

〔1〕聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。

〔2〕溶解度与聚合物分子量有关,分子量越大,溶解度越大。

对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。

〔3〕非晶态聚合物的分子堆砌比拟松散,分子间的相互作用较弱,因此溶剂分子比拟容易渗入聚合物内部使之溶胀和溶解。

高分子物理_何曼君 课后答案

高分子物理_何曼君 课后答案
已知
的全反式构象如下图所示:

M 0 42, l 1.54 , 109.5.
解法一
2 h0 835 104 nm M


2
L反 nl sin

2
2
(1)
h2 835 104 nm M l0 0 1.17nm L反 5.99 103 (nm) M
N0 L反
CH2O CH2 CH OH CH OH CH2 CH2 CH OH O CH2 O OH CH2 CH CH CH2 CH
CH2
CH OH
CH OH
CH2
CH2
CH OH
HIO4
CH3 C O
OH
+
OH C O
CH2 CH2 C O
OH
可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。 3 氯乙烯( 有:
i
(2)以知键角 θ=112°,cosθ=-0.3746
1 cos 1 cos Nl 2 ( )( ) 1 cos 1 cos h K 2 Nl Nl 2 1 0.3746 1 0.4521 ( )( ) 5.83 1 0.3746 1 0.4521
20 20
2 由 X 射线衍射法测得规整聚丙烯的晶胞参数为 a=6.666 ,b=20.87 ,c=6.488 ,交角 =98.12 ,为单斜晶系,每个晶胞含有四条 H31 螺旋链(如图所示)。 试根据以上数据,预测完全结晶的规整聚丙烯的比容和密度。



v
解:比容
V abc sin M (3 4) M 0 / N A
3 由文献查得涤纶树脂的密度
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子物理何曼君版课后思考题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章1、假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?说明理由。

不能。

全同立构和间同立构是两种不同的立体构型。

构型是分子中由化学键解:所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现。

2、末端距是高分子链的一端到另一端达到的直线距离,解:因为柔性的高分子链在不断的热运动,它的形态是瞬息万变的,所以只能用它们的平均值来表示,又因为末端距和高分子链的质心到第i个链单元的距离是矢量。

它们是矢量,其平均值趋近于零。

因此,要取均方末端距和均方回转半径;轮廓长度是高分子链的伸直长度,高分子链有柔顺性,不是刚性链,因此,用轮廓长度描述高分子尺度不能体现其蜷曲的特点。

5、解:无论是均方末端距还是均方回转半径,都只是平均量,获得的只是高分子链的平均尺寸信息。

要确切知道高分子的具体形态尺寸,从原则上来说,只知道一个均值往往是不够的。

最好的办法是知道末端距的分布函数,也就是处在不同末端距时所对应的高分子构象实现概率大小或构象数比例,这样任何与链尺寸有关的平均物理量和链的具体形状都可由这个分布函数求出。

所以需要推导高斯链的构象统计理论。

第三章1、高分子与溶剂分子的尺寸相差悬殊,两者的分子运动速度差别很大,溶剂分子能较快渗入聚合物,而高分子向溶剂的扩散缓慢。

(1)聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。

(2)溶解度与聚合物分子量有关,分子量越大,溶解度越大。

对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。

(3)非晶态聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解。

晶态聚合物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入聚合物内部非常困难,因此晶态化合物的溶解比非晶态聚合物要困难得多。

(4)对于非极性聚合物与溶剂的相互混合,溶解过程一般是吸热的,故只有在升高温度或减小混合热才能使体系自发溶解。

恒温恒压时,混合热可表示为HM VM12(12)2,可见二者的溶度参数1,2越接近,HM越小,越能相互溶解。

对于极性聚合物与溶剂的相互混合,由于高分子与溶剂分子的强烈相互作用,溶解时放热,使体系的自由能降低,溶解过程能自发进行。

而溶解时,不但要求聚合物与溶剂的溶度参数中非极性部分相近,还要求极性部分也相近,才能溶解。

(5)结晶性非极性聚合物的溶解分为两个过程:其一是结晶部分的熔融,其二是高分子与溶剂的混合。

结晶性极性聚合物,若能与溶剂形成氢键,即使温度很低也能溶解。

2、理想溶液是指溶液中溶质分子间、溶剂分子间和溶质溶剂分子间的相互作用都能相等,溶解过程没有体积的变化,也没有焓的变化。

高分子的理想溶液是指满足θ状态的高分子溶液,即选择合适的溶剂和温度使Δµ1E=03、第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。

它与溶剂化作用和高在溶液里的形态有密切关系。

在良溶剂中,高分子链由于溶剂化作用而扩张,高分子线团伸展,A2是正值;温度下降或在不良溶剂,高分子线团收缩,A2 是负值;当链段与链段、溶剂与高分子链段相互作用相等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

4、(1)理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

(2)理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链的相互作用等。

5、高分子的回转半径RG:RG与[η]成正比,与分子量M成正比。

RG可通过测量特性粘度得到。

高分子的流体力学半径RH:RH与温度T成正比,与溶剂粘度η0成反比。

RH可通过测量扩散系数D0得到。

6、(1)稀溶液:高分子线团互相分离,高分子链段分布不均一;线团之间的相互作用可以忽略。

(2)亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

(3)浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的的空间密度分布均一第四章1、两种聚合物共混的先决条件是混合自由能小于等于零,对于给定的共混体系存在相互作用参数临界值Xc。

当体系的X大于临界值Xc时,即可出现相分离,而X与温度有关。

因此,当体系温度低于分相温度时,体系的混合自由能为负值,不会分相。

当体系温度略高于两相共存线温度时,体系处在亚稳区。

如果体系有一微小的变化时还是稳定的,只有在体系浓度变化较大时会分相,即体系存在亚稳分相区。

共混聚合物分相的情况:两种聚合物之间没有特殊相互作用;共混聚合物各组分浓度与共溶时的各组分浓度偏离太多;温度不合适,如低于高临界共溶温度或高于低临界共溶温度。

分相时出现亚稳区的原因:这类共混高聚物所呈现的相分离是微观的或亚微观的相分离,在外观上是均匀的,而不再有肉眼看得见的分层现象。

当分散程度较高时,甚至连光学显微镜也观察不到两相的存在,但用电镜在高放大倍数时还是观察的到两相结构的存在的。

由于高分子混合物的粘度很大,分子或链段的运动实际上处于一种冻结状态,因此,处于一种相对稳定的状态,即亚稳分相区。

2. 一般共混物的相分离与嵌段共聚物的微相分离在本质上有何区别?一般共混物的相分离是微观或亚微观上发生相分离,形成所谓“两相结构”,是动力学上的稳定状态,但只是热力学上的准稳定状态,嵌段共聚物的微相分离是由于嵌段间具有化学键的连接,形成的平均相结构微区的大小只有几十到几百纳米尺度,与单个嵌段的尺寸差不多。

一般共混物的相分离是由体系的相互作用参数 X决定的,即与体系的浓度和温度有关,而嵌段共聚物的微相分离除与嵌段之间的相互作用参数X有关外,还与嵌段共聚物的总聚合度N,官能度n及嵌段组成f有关。

3、当Tsp>T2>Tbn时,尽管在整个组成范围内△Fm都小于零,但只有当共混物的相互作用参数X低于临界相互作用参数Xc时,任意组成的共混物才是互溶的。

当相互作用参数较大时(X>Xc),在两相共存线两翼之间存在一个混溶间隙,在这个组成范围内共混物发生相分离。

聚合物只有在玻璃化温度Tg和分解温度Td之间才具有液体可流动的性质,而这个温度范围并不宽,往往很难在这个温度范围内使X调节到Xc,所以两种聚合物之间,没有特殊相互作用而能完全互溶的体系很少。

第五章、1. 聚合物的玻璃化转变与小分子的固液转变在本质上有哪些区别?答:P22小分子固液转变属于热力学一级转变,伴随物态变化,由热力学趋动,温度变化范围较窄,溶解过程温度几乎不变,有熔点。

聚合物的玻璃化转变属于热力学二级转变,不伴随有物态变化,玻璃化转变温度Tg以下,聚合物处于玻璃态,由于温度低导致分子运动的能量低,不足以克服主链内旋转的位垒,链段处于被冻结状态,松弛时间几乎为无穷大,聚合物具有普弹性。

自由体积理论认为,聚合物体积由被分子占据的体积和未被占据的自由体积组成,玻璃态下,链段运动被冻结,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。

玻璃态温度就是自由体积达到某一临界值的温度。

温度达到Tg时,分子热运动具有足够的能量,而且自由体积也开始解冻而参加到整个膨胀过程中去,因而链段获得了足够的运动能量和必要的自由空间,从冻结进入运动。

聚合物进入高弹态,Tg转变过程中,分子的运动方式改变。

2、影响玻璃化温度的因素P114(1)主链结构①主链由饱和单键构成的聚合物,因为分子链可以围绕单键进行内旋转,Tg一般都不太高。

比如:聚乙烯Tg=-68℃,聚甲醛Tg=-83℃,聚二甲基硅氧烷Tg=-123℃ ②主链中引入苯基、联苯基、萘基和均苯四酸二酰亚胺基等芳杂环后,链上内旋转的单键比例相对减小,分子链的刚性增大,Tg提高。

比如:聚乙烯Tg=-68℃,聚ɑ-乙烯基萘Tg=162℃③主链中含有孤立双键的高分子链比较柔顺,Tg较低。

比如:天然橡胶Tg=-73℃④共轭二烯烃聚合物存在几何异构,分子链较为刚性的反式异构体Tg较高。

比如:顺式聚1,4-丁二烯Tg=-108℃,反式聚1,4-丁二烯Tg=-83℃(2)取代基的空间位阻和侧链的柔性①单取代烯类聚合物,取代基的体积越大,分子链内旋转位阻变大,Tg升高。

比如:聚乙烯Tg=-68℃,聚ɑ-乙烯基萘Tg=162℃②1,1-双取代烯类聚合物a.若主链的季碳原子上,不对称取代时,空间位阻增大时,Tg升高比如:聚丙烯酸甲酯Tg=3℃,聚甲基丙烯酸甲酯Tg=115℃b.若主链的季碳原子上,对称取代时,主链内旋转位垒比单取代时小,链柔顺性回升,Tg下降。

比如:聚丙烯Tg=-10℃,聚甲基丙烯Tg=-70℃③侧链的柔顺性越大,Tg越小比如:聚甲基丙烯酸甲酯Tg=105℃,聚甲基丙烯酸乙酯Tg=65℃(3)分子间力的影响①侧基极性越强,Tg越高比如:聚乙烯Tg=-68℃,聚氯乙烯Tg=87(81)℃②比如:聚辛二酸丁二酯Tg=-57℃,尼龙66 Tg=50(57)℃③含离子聚合物中的离子键对Tg影响很大,一般正离子半径越小或电荷量越大,Tg越高。

比如:聚丙烯酸Tg=106℃,聚丙烯酸钠Tg=280℃,聚丙烯酸铜Tg=500℃3、松弛是指材料受力后,在保持固定的变形下,其内应力随时间增加而减少的现象。

答:松弛:高弹形态的恢复过程,指一个从非平衡态到平衡态进行的过程,首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。

现象:高弹态下的聚合物受到外力时,分子链可以通过单键的内旋转和链段的改变构象以适应外力的作用,外力除去时,分子链又通过单键的内旋转和链段的运动回复到原来的蜷曲状态,宏观上表现为弹性回缩。

用松弛时间τ来描述松弛过程的快慢,0时,在很短时间内A(t)已达到A0/e,意味松弛过程进行得很快。

分子间氢键可使Tg升高第六章1、高分子形成晶态与非晶态聚合物,主要是高分子链的结构起了主导作用,因为结晶要求高分子链能伸直而平行排列得很紧密,形成结晶学中的“密堆砌”。

影响因素:(1)链的对称性。

高分子链的结构对称性越高,越易结晶。

(2)链的规整性:无规构型的聚合物使高分子链的对称性和规整性都被破坏,这样的高分子一般不能结晶。

相关文档
最新文档