材料力学作业7(弯曲变形)
材料力学第2版 课后习题答案 第7章 弯曲变形
250
−qx l⎞ ⎛ 9l 3 − 24lx 2 + 16 x 3 ) ⎜ 0 ≤ x ≤ ⎟ ( 384 EJ 2⎠ ⎝ − ql ⎛l ⎞ y2 = −l 3 + 17l 2 x − 24lx 2 + 8 x 3 ) ⎜ ≤ x ≤ l ⎟ ( 384 EJ ⎝2 ⎠
y1 =
41ql 4 ( x = 0.25l ) 1536 EJ 5ql 4 ⎛l⎞ y⎜ ⎟ = − 768EJ ⎝2⎠
习 题 7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI为常量。
7-1 (a) M( x) = M 0
∴ EJy '' = M 0 1 EJy ' = M 0 x + C EJy = M 0 x 2 + Cx + D 2 边界条件: x = 0 时 y = 0 ; y' = 0
代入上面方程可求得:C=D=0
(c)
l−x q0 l q0 1 3 ⎛l−x⎞ M ( x) = − q( x) ( l − x ) ⎜ ⎟ = − ( l − x) 2 6l ⎝ 8 ⎠ q 3 ∴ EJy '' = 0 ( l − x ) 6l q 4 EJy ' = − 0 ( l − x ) + C 24l q 5 EJy = 0 ( l − x ) + Cx + D 120l y = 0 ; y' = 0 边界条件: x = 0 时 q( x) =
)
(c)解:
q0 x l q x2 EJy ''' = 0 + C 2l q0 x3 '' EJy = + Cx + D 6l q x 4 Cx 2 EJy ' = 0 + + Dx + A 24l 2 q0 x5 Cx 3 Dx 2 ' EJy = + + + Ax + B 120l 6 2 ⎧y=0 ⎧y=0 边界条件: x = 0 ⎨ '' x = l ⎨ '' ⎩y = 0 ⎩y = 0 ql D=0 ∴C = − 0 6 7q l 3 A= 0 B=0 360 EJy '''' =
材料力学(弯曲)
B
F1
FB
A
FA 如果作用在梁的外力和外力偶都在纵向对称平面内, 梁变形后,轴线将在纵向对称平面内弯曲。这种梁的弯曲 平面与外力作用平面相重合的弯曲,称为平面弯曲。 梁变形后的轴线与外 力在同一平面内
二、梁的类型
根据梁的支座反力能否用静力平衡条件完全确定, 可将梁分为静定梁和超静定梁两类。工程中的单跨静 定梁按支座的情况又可分为三种:
二、剪力和弯矩的符 号 1.剪切的符号
剪力的符号规则: 截面外法线顺时针转 90度后与剪力方向一 致时,该剪力为正; 反之为负。
Q+ Q+ Q Q
2.弯矩的符号
弯矩的符号规则: 使分离体弯曲成凹面 向上的弯矩为正;使 分离体弯曲成凹面向 下的弯矩为负。
M+
+
—
M+ M M
静定梁的形式: 外伸梁 悬臂梁
简支梁
三、载荷的形式:
F
集中力
集中力偶
分布力
M
q(x)
§9-2 梁的内力及计算
一、剪力与弯矩
如图a为一简支梁,并且梁上的所有载荷都在梁的纵向对称 平面内。现在利用截面法分析。用m-m截面假想将梁分为左右 两段,取左段进行分析。由b)图所示,因为有只返利FA作用, 为使左段满足∑Fy=0,截面m-m上必然有与FA反向的内力FQ存 在;同时因为FA对截面m-m的形心C点有一个力矩FAx,为了满 足∑MC=0,截面m-m上也必然存在一个与力矩FAx转向相反的 内力偶矩M。可见,梁弯曲时,横截面上存在着两种内力: F 剪力和弯矩 相切于横截面的内力FQ,称 FA 为剪力,单位为N或kN;
FA FB
M
x
(b)
FQ
C
材料力学—弯曲变形
判断方法:(两种方法)
左上右下为正
使研究对象顺时针转动为正
具体计算时:(黑色表示外力,蓝色表示内力)
S
F
S
F
S
F
S
F
F
判断方法:(两种方法)
左顺右逆为正 上凹下凸为正
具体计算时:(黑色表示外力,红色表示内力)
正: 负:
M
直接求解剪力和弯矩的法则:
1、 任意截面上的剪力=[∑一侧横向力代数值] 横向力:包含载荷、约束力、分布力、集中力 代数值:左上右下为正,反之为负
2、 任意截面上的弯矩=[∑一侧外力对截面形心之矩的代数值] 外力:包含载荷、约束力、分布力、集中力、集中力偶 代数值:左顺右逆为正,反之为负 截面形心:所求截面的截面形心
绘制剪力弯矩图的方法(从左往右绘制):
q F F S s +=12所围成的面积 S F M M +=12所围成的面积。
材料力学B作业
第一章 绪 论一、选择题1、构件的强度是指_________,刚度是指_________,稳定性是指_________。
A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力2、根据均匀性假设,可认为构件的________在各点处相同。
A. 应力B. 应变C. 材料的弹性常数D. 位移3、下列结论中正确的是________ 。
A. 内力是应力的代数和B. 应力是内力的平均值C. 应力是内力的集度D. 内力必大于应力4、下列说法中,正确的是________ 。
A. 内力随外力的改变而改变。
B. 内力与外力无关。
C. 内力在任意截面上都均匀分布。
D. 内力在各截面上是不变的。
5、图示两单元体虚线表示其受力后的变形情况,两单元体的切应变γ分别为________ 。
A. α,αB. 0,αC. 0,-2αD. α,2α二、计算题1、如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
2、已知杆内截面上的内力主矢为F R与主矩M如图所示,且均位于x-y平面内。
试问杆件截面上存在哪种内力分量,并确定其大小。
图中之C点为截面形心。
3、板件ABCD的变形如图中虚线A’B’C’D’所示。
试求棱边AB与AD的平均正应变以及A点处直角BAD的切应变。
第二章 拉伸与压缩一、选择题和填空题1、轴向拉伸杆件如图所示,关于应力分布正确答案是_________。
A 1-1、2-2面上应力皆均匀分布;B 1-1面上应力非均匀分布,2-2面上应力均匀分布;C 1-1面上应力均匀分布,2-2面上应力非均匀分布;D 1-1、2-2面上应力皆非均匀分布。
2、图示阶梯杆AD 受三个集中力作用,设AB 、BC 、CD 段的横截面积分别为3A 、2A 、A ,则三段的横截面上 。
A 轴力和应力都相等B 轴力不等,应力相等C 轴力相等,应力不等D 轴力和应力都不等3、在低碳钢拉伸曲线中,其变形破坏全过程可分为4个变形阶段,它们依次是 、 、 、 。
工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解
得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI
材料力学 第7章 弯曲变形
M
Fx 挠曲轴近似微分方程: w ' ' EI 3 2 Fx Fx w Cx D w' ( x) C 6 EI 2EI
梁的弯矩方程: M ( x ) Fx
2、确定积分常数
FAy
A x
F L
B
X=0, w=0 X=L, w=0
M
Me L C=- ,D=0 6 EI
3、挠度方程、转角方程及B截面的转角
FAy
x
F L
B
M
3、挠度方程、转角方程及B截面的转角
Fx w' (x) 2EI 3 Fx w 6 EI
2
将 x=L 代入转角方程:
FL2 B 2 EI
例2:简支梁AB,弯曲刚 度 EI为常数,受力偶 M=FL作用,求w(x),
FAy
A x
F L
B
θ(x);
解:1、 建立挠曲轴微分方程并积分 A端约束反力 FAy=F
FA A a l
x
F D b
FB
B x
Fb 解:坐标系如图,求出反力。 FA l 分AD、DB两段分析:
y
Fa FB l
b AD段: 0 x a M x F x l b M x F x 则: EIw1 l
积分可得:
b M x F x EIw1 l
= 0
自由端:无位移边界条件。 位移连续与光滑条件 挠曲轴在B点连续且光滑 连续:wB左= wB右 光滑:左 = 右
F A B D
写出梁的挠曲轴方程的边界条件和连续条件。 例:
F A B C E D
思考: 1、 该梁可分几段积分? 2、 各边界和内部分界点有多少位移边界与连续条件? 分4段。 位移边界条件:A端:2个; C端:1个;D端:无。 位移连续条件:E:2个;B:1个;C:2个
材料力学-第7章 弯曲变形
梁弯曲问题的近似和简化
q( x)
M0
ML
Q0
QL
弯曲问题中,不考虑轴向拉伸。因此,梁内力只有弯矩和剪力 下面,我们分别考虑弯矩和剪力引起的弯曲变形效果
材料力学-第7章 弯曲变形
挠度曲线 垂直于轴线的横截面弯曲后仍为平面,仍 垂直于轴线,只是相互间转动一个角度
M
弯矩引起的弯曲变形
M
剪力引起的弯曲变形
例题
2
已知:简支梁受力如 图所示。FP、EI、l均为已 知。 求:加力点B的挠度和 支承A、C处的转角。
材料力学-第7章 弯曲变形
§7- 3 计算梁位移的积分法
解:1. 确定梁约束力 首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。 解:2. 分段建立梁的弯矩方程 因为B处作用有集中力FP,所以需要分为AB和BC两段 建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的 弯矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~ l范围内各截面上的弯矩,则需要考虑左端A处的约束力 3FP/4和荷载FP。
Q
垂直于轴线的横截面弯曲后不垂直于轴线
Q
材料力学中一般考虑细长梁,顾而可以忽略剪力引起的变形,只 考虑弯矩引起的变形。因为所有横截面始终与轴线垂直,所以,梁的 弯曲变形可以仅用轴线来表征。空间的梁简化成一轴线。
材料力学-第7章 弯曲变形
挠度曲线
问题1: 如何表征梁的弯曲变形
-用什么物理量来描述梁的变形
( x)
w
x
x
( x)
w( x)
材料力学-第7章 弯曲变形
挠度曲线
* 弯曲变形的表征
梁在弯曲变形后,横截面的位置将发生改变,这种位置 的改变称为位移 (displacement) 。梁的位移包括三部分:
材料力学弯曲变形
压杆稳定计算 1)根据压杆的约束条件确定长度系数 )根据压杆的约束条件确定长度系数µ 2)计算杆件自身的柔度 )计算杆件自身的柔度λ(10.7),判断发生弯曲的平面 , 也可由惯性矩来判断最大、最小刚度平面) (也可由惯性矩来判断最大、最小刚度平面) 3)通过比较 的大小,判断计算临界压力的公式 的大小, )通过比较λ的大小
1. λ1与材料的性能有关,材料不同,λ1的数 与材料的性能有关,材料不同, 值也就不同; 越大,杆件越容易弯曲。 值也就不同;λ越大,杆件越容易弯曲。 2. 满足 1条件的杆件称为细长杆或大柔度杆; 满足λ≥λ 条件的杆件称为细长杆 大柔度杆; 细长杆或 也叫大柔度杆的分界条件。 也叫大柔度杆的分界条件。其临界应力可用欧 拉公式计算。 拉公式计算。 3. λ越大杆件越容易弯曲。 越大杆件越容易弯曲。 越大杆件越容易弯曲 解题步骤: 解题步骤: 1)由截面形状确定最大、最小刚度平面 )由截面形状确定最大、 2)计算柔度,判断欧拉公式是否适用 )计算柔度, 3)计算临界压力和临界应力 )
σ =
P ≤ [σ ] st A
14
图示结构中, 为圆截面杆 直径d=80 mm,A端固 为圆截面杆, 例10.4 图示结构中,AB为圆截面杆,直径 , 端固 端铰支; 是正方形截面杆 边长a=70 mm,C端也为 是正方形截面杆, 定,B端铰支;BC是正方形截面杆,边长 端铰支 , 端也为 铰支; 和 杆可以独自发生弯曲变形而互不影响 杆可以独自发生弯曲变形而互不影响; 铰支;AB和BC杆可以独自发生弯曲变形而互不影响;两杆 的材料是A3钢 的材料是 钢,其λp=104 ,l=3 m,稳定安全系数 st=2.5 ; ,稳定安全系数n 求结构的许可载荷P。 求结构的许可载荷 。
π 2E Pcr = σ cr A = 2 ⋅ A = 269kN λ
第七章 弯曲变形
材料力学
弯曲变形/挠曲线的近似微分方程
二、挠曲线的近似微分方程
1 M ( x) 力学公式 ( x) EI z d2y 1 dx2 数学公式 3 ( x) dy 2 2 [1 ( ) ] dx 1
,得:
以上两式消去
材料力学
d2y M ( x) dx2 3 EI z dy 2 2 [1 ( ) ] dx
材料力学
x 0, y A 0
x a时,C左 C右 x a时,yC左 yC右
x L, yB lBD
FBy h EA
FBy k
弯曲变形/用积分法求梁的变形
讨论:
(1)凡载荷有突变处(包括中间支座),应作为分段点;
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两 部分之间的相互作用力,故应作为分段点;
B L x
A
x L时,yB 0.
材料力学
弯曲变形/用积分法求梁的变形 若B支座改为弹簧支撑,则: y A a
L
若B支座改为拉杆支撑,则: D B kx A a
L
F
C
b
F C b
EA
h
x 0, y A 0
B
x a时,C左 C右 x a时,yC左 yC右
x L, y B
弯曲变形/用积分法求梁的变形 AC段 (0 x a) BC段 (a x L) Fb 2 Fb 2 F EI y1 EI 1 x C1 , EI y2 EI 2 x ( x a ) 2 C2 , 2L 2L 2 Fb 3 Fb 3 F EIy 1 x C1 x D1 , EIy 2 x ( x a ) 3 C2 x D2 , 6L 6L 6 3、确定常数 由边界条件:
材料力学-弯曲变形
二、叠加法求梁的变形 梁的刚度校核
1. 叠加法求梁的变形
当梁上同时受几种荷载作用时,我们可用叠加法来计算 梁的变形。其方法是:先分别计算每一种荷载单独作用时所 引起的 梁的变形(挠度或转角),然后求出各种荷载作用下 变形的代数和,即得到这些荷载共同作用下的变形。一般工 程中要找的是特定截面的变形(最大挠度和最大转角)。我 们将一些简单荷载作用下梁变形的计算公式列成教材中表81,以供选用。
2
式(8-2)再积分一次得:
y
1 EI
M( x)dxdx
Cx
D 8
3
式(8-2)、(8-3)为转角方程和挠曲线方程。式中常数C、D
可由边界条件确定。
图8-1a 图8-1b
(图8-1a)的边界条件为:
x 0, yA 0; x l, yB 0
(图8-1b)的边界条件为:
x 0, yA 0;
ql 3 24EI
, B
ql 3 24EI
转角 A 为负值,表明A截面绕中性轴作顺时针方向转动; 转角 B 为负值,表明B截面绕中性轴作逆时针方向转动。
例2:试计算图示梁的转角方程和挠曲线方程,并求 ymax
例2图
设:a>b
解:(一)分段建立弯矩方程和挠曲线近似微分方程并积分二次
AC 段 (0 x1 a)
C1a D1 C2a D2 将 C1 C2, D1 0 代入上式得:D1 D2 0
将 D2
0 代入式e得:C2
Pbl 6
P(l a)3 6l
化简后得:
C1
C2
Pb 6l
(l 2
b
2)
(三) 列出转角方程和挠曲线方程:将C1,C2, D1, D2代入式 a,b,c,d得:
材料力学 课后题答案 弯曲变形
第七章 弯曲变形7-2 图示外伸梁AC ,承受均布载荷q 作用。
已知弯曲刚度EI 为常数,试计算横截面C 的挠度与转角,。
题7-2图 解:1. 建立挠曲轴近似微分方程并积分 支座A 与B 的支反力分别为23 ,2qaF qa F By Ay ==AB 段(0≤x 1≤a ):121122d d x EI qa x w -=121114d d C x EIqa x w +-= (a)11131112D x C x EIqa w ++-= (b)BC 段(0≤x 2≤a ):2222222d d x EI q x w -=232226d d C x EIq x w +-= (c)22242224D x C x EIq w ++-= (d)2. 确定积分常数梁的位移边界条件为 0 0 11==w x 处,在 (1)0 11==w a x 处,在(2)连续条件为2121 w w a x x ===处,在(3)221121d d d d x wx w a x x -===处,在(4)由式(b )、条件(1)与(2),得01=D , EIqa C 1231=由条件(4)、式(a )与(c ),得EI qa C 332=由条件(3)、式(b )与(d ),得EIqa D 24742-=3. 计算截面C 的挠度与转角将所得积分常数值代入式(c )与(d ),得CB 段的转角与挠度方程分别为EI qa x EI q 36332+-=2θEIqa x EI qa x EI q w 247324423422-+-=将x 2=0代入上述二式,即得截面C 的转角与挠度分别为() 33EI qa C =θ()↓-= 2474EIqa w C7-3 图示各梁,弯曲刚度EI 均为常数。
试根据梁的弯矩图与约束条件画出挠曲轴的大致形状。
题7-3图解:各梁的弯矩图及挠曲轴的大致形状示如图7-3。
图7-37-6 图示简支梁,左、右端各作用一个力偶矩分别为M 1与M 2的力偶。
材料力学教程-7.弯曲变形
根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为
材料力学 第七章 弯曲变形
,
FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C
左
wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC
材料力学习题解答(弯曲变形)
+
ql 12
x13
+ C1x1
+
D1
⎨
⎪ ⎪⎩
EIv2
=
−
q(l
− x2 )4
24
+ C2 x2
+
D2
光滑连续条件: 求解得积分常数
x1 = 0 : v1 = 0, v1' = 0
x1
=
x2
=
l 2
:
v1 = v2 , v1' = v2'
C1 = D1 = 0
C2
=
−
7ql 3 48
D2
=
15ql 4 384
P
2EI
EI
A
l/2
C l/2
B
解:(1) 求约束反力
MA
2EI
P
EI
A
RA
x1
C
B
x2
RA = P M A = Pl
(2) 弯矩方程
M1(x1) = Px1 − Pl x ∈ (0, l / 2] M2 (x2 ) = Px2 − Pl x ∈[l / 2, l]
(3) 挠曲线近似微分方程
(4) 直接积分两次
x2 ∈[a, 2a)
(2) 挠曲线近似微分方程
(3) 直接积分两次
⎧⎪ ⎨ ⎪⎩
EIv1" EIv2"
= =
M1( x1) = −Px1 M2 ( x2 ) = −Px2
−
P ( x2
−
a)
⎧ ⎪⎪
EIv1'
⎨
⎪ ⎪⎩
EIv2'
= =
− −
材料力学习题弯曲变形
弯曲变形基本概念题一、选择题1.梁的受力情况如图所示,该梁变形后的挠曲线如图()所示(图中挠曲线的虚线部分表示直线,实线部分表示曲线)。
2. 如图所示悬臂梁,若分别采用两种坐标系,则由积分法求得的挠度和转角的正负号为()。
题2图题1图A.两组结果的正负号完全一致B.两组结果的正负号完全相反C.挠度的正负号相反,转角正负号一致D.挠度正负号一致,转角的正负号相反3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。
题3图4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中()是错误的。
A.该梁应分为AB、BC两段进行积分B.挠度积分表达式中,会出现4个积分常数-26-题4图 题5图 C .积分常数由边界条件和连续条件来确定D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( )A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y =D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。
关于它们的最大挠度有如下结论,正确的是( )。
A . I 梁最大挠度是Ⅱ梁的41倍 B .I 梁最大挠度是Ⅱ梁的21倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。
材料力学教程7弯曲变形
积分一次:
EIZ x EIZ f x M x dx C1
再次积分:
EIZ yx M x dx dx C1x C2
积分常数:需要利用边界条件和连续光滑条件来确定。
边界条件和连续光滑条件:梁上某些横截面处 位移为已知的条件。
第三节 用积分法求弯曲变形
例题1:求该悬臂梁的最大挠度和转角
y
d 2wy 0,M 0
dx 2
d 2 wy M dx 2 EI
d 2wy 0,M 0
dx 2
y
d 2 wy M dx 2 EI
d2y d2x
f (x)
M (x) EIZ
挠曲线近似微分方程
M x:梁的弯曲方程
d 2 y f (x) M (x) 挠曲线近似微分方程
d2x
EIZ
* 荷载叠加:将作用在梁上的荷载分解成单个
A 0 0
D1
D2
0 Pl
2
C1 C2 16
1
1 EIZ
( Pl2 16
Px2 4
)
2
1 EIZ
[
P 2
(x
l )2 2
1 4
Px2
Pl 2 16
]
1 Pl2x Px3
y1 EIZ ( 16
) 12
y2
1 EIZ
[
P 6
(x
l )3 2
1 12
Px3
Pl 2 x ] 16
x 0,x l,max
、ymax
Pl3 3EIZ
例题2:求该简支梁的最大挠度和转角
A
x
Amax
q
解:
建立坐标、 写弯矩方程
B
L
ym a x
材料力学第7章
积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
CB段(a x l): 弯矩方程:
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
ቤተ መጻሕፍቲ ባይዱ 1 x 0
Fab l b , B 2 6lEI
Fab l a B = 6lEI
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
1 3 C ql , D 0 24
9
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
M ( x) F l x
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6
材料力学 第七章弯曲正应力(1,2)解析
M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。
材料力学第7章第二部分
弯曲
梁的计算简图:梁轴线代替梁,将荷载和支座加到 轴线上。
载荷的简化: 集中荷载,集中力偶,分布荷载
第7章 7-1 梁的内力 剪力与弯矩 梁的支承的简化
弯曲ห้องสมุดไป่ตู้
一端是固定铰支约束,另一 端可动铰支约束,为简支梁
简支梁的计算简图
第7章 7-1 梁的内力 剪力与弯矩 梁的支承的简化
弯曲
一端为固定约束,另一端自 由,即没有约束,为悬臂梁
7-2 剪力图与弯矩图 F s y F s y ( x ) 剪力方程 M z M z ( x ) 弯矩方程
第7章 弯曲
7-2 剪力图与弯矩图 F s y F s y ( x ) 剪力方程
剪力图
M z M z(x)
弯矩方程
弯矩图
步骤:沿坐标为x的横截面将梁截开,取出其中一段,分 别应用力的平衡方程和力矩的平衡方程,即可得到剪力 FQ(x)和弯矩M(x)的表达式,即剪力方程FQ(x)和弯矩方程 M(x)。 练习: 确定图中所示梁的剪力 方程和弯矩方程矩图。
Mc 0 M z 2 2.5 2 1.5 2 1 2kN m
第7章 弯曲
7-2 剪力图与弯矩图 1)内力方程:梁横截面上的剪力和弯矩是随截面的位置而变 化的,描述这种变化的数学表达式
Fs y Fs y ( x ) M z M z ( x)
M=0
FSy x =qx FRA=qx-
qlx qx 2 M x = - 2 2
ql 2
0 x l
0 x l
第7章 3) 确定剪力方程和弯矩方程
弯曲
解:
ql Fs y ( x ) qx 2 (0 x l )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 弯曲变形
一、 选择题
1、等截面直梁在弯曲变形时,挠曲线曲率最大发生在( )处。
A. 挠度最大
B. 转角最大
C. 剪力最大
D. 弯矩最大
2、将桥式起重机的主钢梁设计成两端外伸的外伸梁较简支梁有利,其理由是( )。
A. 减小了梁的最大弯矩值
B. 减小了梁的最大剪力值
C. 减小了梁的最大挠度值
D. 增加了梁的抗弯刚度值
3、图示两梁的抗弯刚度EI相同,载荷q相同,
则下列结论中正确的是( )。
A. 两梁对应点的内力和位移相同
B. 两梁对应点的内力和位移不相同
C. 两梁对应点的内力相同,位移不同
D. 两梁对应点的内力不同,位移相同
4、为提高梁的抗弯刚度,可通过( )来实现。
A. 选择优质材料
B. 合理安排梁的支座,减小梁的跨长
C. 减少梁上作用的载荷
D. 选择合理截面形状
5、图示梁的边界条件为 。
A. w A =0,θA =0
B. w B =0,θB =0
C. w A =0,w B =0
D. w A =0,θA =0
6、图示悬臂梁在BC 二处承受大小相等、方向相反的一对力偶,其数值为M 0。
试分析判断下列挠度曲线中哪一种是正确的。
( )
(A ) (B )
(C ) (D )
二、计算题
1、图示梁,弯曲刚度EI为常数。
试绘制挠曲轴的大致形状,并用积分法计算截面C的转角。
2、图示简支梁,左右端各作用一个力偶矩分别为M1和M2的力偶,欲使挠曲轴拐点位于离左端l/3处,则M1和M2应保持何种关系。
3、图示梁,弯曲刚度EI为常数。
试用叠加法计算截面B的转角和截面C的挠度。
4、图示电磁开关,由铜片AB与电磁铁S组成。
为使端点A与触点C接触,试求磁铁S所需吸力的最小值F以及间距a的尺寸。
铜片横截面的惯性矩I z=0.18×10-12m4,弹性模量E=101GPa。
5、重量为W、长度为l的等截面均质直梁放置在水平刚性平面上,其抗弯刚度为EI。
在梁端施加垂直载荷W/3,部分梁段离开台面,试求提起部分的长度a。
(受力后未提起部分保持与平面密合)
6、求图示梁的约束反力,并做剪力、弯矩图。