江西省2017年中等学校招生考试信息数学试题含答案
2017年江西省中考数学试卷(含详细答案)
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前江西省2017年中等学校招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.6-的相反数是( ) A .16B .16-C .6D .6-2.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13 000 km ,将13 000用科学记数法表示应为 ( ) A .50.1310⨯B .41.310⨯C .51.310⨯ D .31310⨯ 3.下列图形中,是轴对称图形的是( )AB C D4.下列运算正确的是( ) A .5210()a a -= B .222 36a a a =C .23a a a -+=-D .623623a a a -÷=-5.已知一元二次方程22510x x -+=的两个根为1x ,2x ,下列结论正确的是( )A .1252x x +=-B .12 1x x =C .1x ,2x 都是有理数D .1x ,2x 都是正数6.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当E ,F ,G ,H 是各边中点,且AC BD =时,四边形EFGH 为菱形B .当E ,F ,G ,H 是各边中点,且AC BD ⊥时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上) 7.函数y ,自变量x 的取值范围是 . 8.如图1是一把园林剪刀,把它抽象为图2,其中OA OB =,若剪刀张开的角为30,则A ∠= 度.9.中国人最先使用负数.魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是 .11.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是 .12.已知点(0,4)A ,(7,0)B ,(7,4)C ,连接AC ,BC 得到矩形AOBC ,点D 在边AC 上,将边OA 沿OD 折叠,点A 的对应点为A ',若点A '到矩形较长两对边的距离之比为1:3,则点A '的坐标为 .三、解答题(本大题共11小题,共84分.解答应写出文字说明、证明过程或演算步骤) 13.(本小题满分6分,每小题3分) (1)计算:21211x x x +÷--;(2)如图,正方形ABCD 中,点E ,F ,G 分别在AB ,BC ,CD 上,且90EFG ∠=.求证:EBF FCG △∽△.14.(本小题满分6分) 解不等式组:263(2)4x x x -⎧⎨--⎩<,≤,并把解集在数轴上表示出来.15.(本小题满分6分)端午节那年,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.(本小题满分6分)如图,已知正七边形ABCDEFG ,请仅用无刻度的直尺,分别按下列要求画图. (1)在图1中,画出一个以AB 为边的平行四边形; (2)在图2中,画出一个以AF 为边的菱形.17.(本小题满分6分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20,而当手指接触键盘时,肘部形成的“手肘角”β约为100.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)(1)若屏幕上下宽20 cm BC =,科学家使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离100 cm DG =,上臂30 cm DE =,下臂EF 水平放置在键盘上,其到地面的距离=72 cm FH .请判断此时β是否符合科学要求的100? (参考数据:14sin6915≈,14cos2115≈,4tan 2011≈,14tan4315≈,所有结果精确到个位)18.(本小题满分8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B 类的人数有 人; (2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将,,A B C 这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.19.(本小题满分8分)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为 cm x ,双层部分的长度为y cm ,经测量,得到如下数据:(1) (2)根据小敏的身高和习惯,跨带的长度为120 cm 时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为 cm l ,求l 的取值范围.20.(本小题满分8分)如图,直线1(0)y k x x =≥与双曲线2(0)k y x x=>相交于点(2,4)P .已知点(4,0)A ,(0,3)B ,连接AB ,将Rt AOB △沿OP 方向平移,使点O 移动到点P ,得到A PB ''△.过点A '作A C y '∥轴交双曲线于点C . (1)求1k 与2k 的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.21.(本小题满分9分)如图1,O 的直径12AB =,P 是弦BC 上一动点(与点B ,C 不重合),30ABC =∠,过点P 作PD OP ⊥交O 于点D .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共32页) 数学试卷 第8页(共32页)(1)如图2,当PD AB ∥时,求PD 的长;(2)如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线; ②求PC 的长.22.(本小题满分9分)已知抛物线1C :245(0)y ax ax a =-->.(1)当1a =时,求抛物线与x 轴的交点坐标及对称轴;(2)①试说明无论a 为何值,抛物线1C 一定经过两个定点,并求出这两个定点的坐标; ②将抛物线1C 沿这两个定点所在直线翻折,得到抛物线2C ,直接写出2C 的表达式; (3)若(2)中抛物线2C 的顶点到x 轴的距离为2,求a 的值.23.(本小题满分12分)我们定义:如图1,在ABC △中,把AB 绕点A 顺时针旋转(0180)αα<<得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180αβ+=时,我们称AB C ''△是ABC △的“旋补三角形”,AB C ''△边B C ''上的中线AD 叫做ABC △的“旋补中线”,点A 叫做“旋补中心”. 特例感知(1)在图2,图3中,AB C ''△是ABC △的“旋补三角形”,AD 是ABC △的“旋补中线”.①如图2,当ABC △为等边三角形时,AD 与BC 的数量关系为AD = BC ; ②如图3,当90BAC =∠,8BC =时,则AD 长为 . 猜想论证(2)在图1中,当ABC △为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.数学试卷 第9页(共32页) 数学试卷 第10页(共32页)拓展应用(3)如图4,在四边形ABCD 中,90C =∠,150D =∠,12BC =,CD =6DA =.在四边形内部是否存在点P ,使PDC △是PAB △的“旋补三角形”?若存在,给予证明,并求PAB △的“旋补中线”长;若不存在,请说明理由.江西省2017年中等学校招生考试数学答案解析第Ⅰ卷数学试卷第11页(共32页)数学试卷第12页(共32页)90,故四边形第Ⅱ卷∠-=,故答案为:30,∴(18030)757 / 16数学试卷 第15页(共32页)数学试卷 第16页(共32页)90BC ,的垂线交OB90,在111)22x-=为正方形,∴90B∠=∠,∴90∠,∵90∠,90,∴∠FCG∽△)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;90,再利用等角的余角相等得EBF△∽△数轴如下:9 / 16数学试卷 第19页(共32页)数学试卷 第20页(共32页)(2)如图所示:,2116.【答案】(1)连接AF BE CG CG ,,,交AF 于M ,交BE 于N .四边形ABNM 是平行四边形.(2)连接AF BE CG CG ,,,交AF 于M ,交BE 于N ,连接DF 交BE 于H ,四边形MNHF 是菱形.42011=∠-=≠,69,∴180********∴此时β不是符合科学要求的100.∴A类对应扇形圆心角的度数为36025%90⨯=,A类的人数为,补全条形图如下:360和总人数可分别求得三类别百分比之和可得答案.k 90,∵O 的直径30,∴3tan30623OP =⨯=, 30, 60,∵OB 90,∴DE 是O 的切线3•cos3062OB ==⨯=290,求出答案即可的长,进而得出答案60180BAC B AC B C ∠+∠''=⊥'',,∴120B AC ∠',∴30∠, 1BC ,故答案为1. ②如图3中,90180BAC B AC ∠+∠''=,,∴90B AC ∠''=∠,∵AB B AC ''≌△,∴BC B C ='',∵B D DC '=',∴1C ''=理由:如图1中,延长AD 到M ,使得AD DM =,连接E M C M '',180,180B ∠,∴∠,∴BC =.连接DF交PC于O.∠,在Rt9030 150,∴30∠=,,MDC,,,=∠=BM MBE60,在Rt901430-EM DM=∠60CPF90,∴60,∠,∠,∴12060ADP=,∵60180,∴△PAB△的“旋补三角形”,在Rt中,PD AD=,90630是直角三角形,可得180即可.【考点】旋转的性质,新定义概念的运用,矩形的判定及性质,三角形中位线定理,勾股定理,锐角三角。
2017年江西省中考数学试卷含答案
1: 3 ,则点 A 的坐标为
.
三、解答题(本大题共 11 小题,共 84 分.解答应写出文字说明、证明过程或演算步骤)
13.(本小题满分 6 分,每小题 3 分)
(1)计算:
x 1 x2 1
2 x 1
;
(2)如图,正方形 ABCD 中,点 E , F , G 分别在 AB , BC , CD 上,且 EFG 90 .
请估计该市“绿色出行”方式的人数.
效
数学试卷 第 5页(共 22页)
19.(本小题满分 8 分)
如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通
过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度
的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为 x cm ,双层 部分的长度为 y cm ,经测量,得到如下数据:
23.(本小题满分 12 分)
我们定义:如图 1,在 △ABC 中,把 AB 绕点 A 顺时针旋转 (0<<180 ) 得到 AB ,
把 AC 绕点 A 逆时针旋转 得到 AC ,连接 BC .当 180 时,我们称 △ABC
是 △ABC 的“旋补三角形”, △ABC 边 BC 上的中线 AD 叫做 △ABC 的“旋补中
所得几何体的俯视图的周长是
.
11.已知一组从小到大排列的数据: 2 , 5 , x , y , 2x ,11 的平均数与中位数都是 7 ,则这
组数据的众数是
.
12.已知点 A(0, 4) , B(7,0) , C(7, 4) ,连接 AC , BC 得到矩形 AOBC ,点 D 在边 AC 上,
将边 OA 沿 OD 折叠,点 A 的对应点为 A ,若点 A 到矩形较长两对边的距离之比为
江西省中考数学试卷(有答案)
江西省2017年中等学校招生考试数学试题卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的相反数是( ) A .16 B .16- C . 6 D .-6 2. 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( ) A .50.1310⨯ B . 41.310⨯ C .51.310⨯ D .31310⨯ 3.下列图形中,是轴对称图形的是( )A .B .C .D .4. 下列运算正确的是( ) A .()2510aa -= B .22236a a a = C. 23a a a -+=- D .623623a a a -÷=-5.已知一元二次方程22510x x -+=的两个根为12,x x ,下列结论正确的是( ) A . 1252x x +=-B .121x x = C. 12,x x 都是有理数 D .12,x x 都是正数 6. 如图,任意四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当,,,E F G H 是各边中点,且AC BD =时,四边形EFGH 为菱形B .当,,,E F G H 是各边中点,且AC BD ⊥时,四边形EFGH 为矩形C. 当,,,E F G H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当,,,E F G H 不是各边中点时,四边形EFGH 不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7. 函数y =x 的取值范围是___________.8. 如图1是一把园林剪刀,把它抽象为图2,其中OA OB =,若剪刀张开的角为30°,则A ∠=_________度.9. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为___________.10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_____________.11.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是______________.12.已知点()()()0,4,7,0,7,4A B C ,连接,AC BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A ',若点A '到矩形较长两对边的距离之比为1:3,则点A '的坐标为____________.三、解答题 (本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(1)计算:21211x x x +÷--; (2)如图,正方形ABCD 中,点,,E F G 分别在,,AB BC CD 上,且090EFG ∠=. 求证:EBFFCG ∆∆.14.解不等式组:()26324x x x -<⎧⎨-≤-⎩,并把解集在数轴上表示出来.15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.如图,已知正七边形ABCDEFG ,请仅用无刻度的直尺,分别按下列要求画图. (1)在图1中,画出一个以AB 为边的平行四边形; (2)在图2中,画出一个以AF 为边的菱形.17. 如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽20BC cm =,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离100DG cm =,上臂30DE cm =,下臂EF 水平放置在键盘上,其到地面的距离72FH cm =.请判断此时β是否符合科学要求的100°? (参考数据:00001414414sin 69,cos 21,tan 20,tan 4315151115≈≈≈≈,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18. 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有___________人,其中选择B类的人数有_____________人;(2)在扇形统计图中,求A类对应扇形圆心角 的度数,并补全条形统计图;A B C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出(3)该市约有12万人出行,若将,,行”方式的人数.19.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm ,双层部分的长度为ycm ,经测量,得到如下数据:(1)根据表中数据的规律,完成以下表格,并直接写出y 关于x 的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm 时,背起来正合适,请求出此时单层部分的长度; (3)设挎带的长度为lcm ,求l 的取值范围.20. 如图,直线()10y k x x =≥与双曲线()20k y x x=>相交于点()2,4P .已知点()()4,0,0,3A B ,连接AB ,将Rt AOB ∆沿OP 方向平移,使点O 移动到点P ,得到A PB ''∆.过点A '作//A C y '轴交双曲线于点C .(1)求1k 与2k 的值; (2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.五、(本大题共2小题,每小题9分,共18分).21.如图1,O 的直径12,AB P =是弦BC 上一动点(与点,B C 不重合),030ABC ∠=,过点P 作PD OP ⊥交O 于点D .(1)如图2,当//PD AB 时,求PD 的长;(2)如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.22.已知抛物线()21:450C y ax ax a =-->.(1)当1a =时,求抛物线与x 轴的交点坐标及对称轴;(2)①试说明无论a 为何值,抛物线1C 一定经过两个定点,并求出这两个定点的坐标; ②将抛物线1C 沿这两个定点所在直线翻折,得到抛物线2C ,直接写出2C 的表达式; (3)若(2)中抛物线2C 的顶点到x 轴的距离为2,求a 的值.六、(本大题共12分)23. 我们定义:如图1,在ABC ∆看,把AB 点A 顺时针旋转()000180αα<<得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当0180αβ+=时,我们称A B C '''∆是ABC ∆的“旋补三角形”,AB C ''∆边B C ''上的中线AD 叫做ABC ∆的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,AB C ''∆是ABC ∆的“旋补三角形”, AD 是ABC ∆的“旋补中心”. ①如图2,当ABC ∆为等边三角形时,AD 与BC 的数量关系为AD =_____________BC ; ②如图3,当090,8BAC BC ∠==时,则AD 长为_________________. 猜想论证:(2)在图1中,当ABC ∆为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD ,0090,150,12C D BC ∠=∠==,6CD DA ==.在四边形内部是否存在点P ,使PDC ∆是PAB ∆的“旋补三角形”?若存在,给予证明,并求PAB ∆的“旋补中线”长;若不存在,说明理由.参考答案CBCADD2x ≥ 75° -3 8 52)-1)或13.11=(1)(1)212x x x x +-⨯+-=解:原式90?90?90?90?=ABCD B C EFG EFB GFC EFB FEB FEB GFC EBFFCG∴∠=∠=∠=∴∠+∠=∠+∠=∴∠∠∴证明:正方形,又又14.32x -<≤解:15.16解:16. 解答:17.=tan20?2055tan 20?(2)=cm 30cm 2814sin ==sin 69?301569?=180?69?=111?>100?100?BC ABAB cmFE DG DG P DE DP DEP DE DEP ββ⋅===∴∠=≈∴∠≈∴∠-∴解:(1)延长至交于则DP DG-FH=100-72=28 又此时的不符合科学要求的18.800人,240人,090a =,25%30%25%=++⨯()12000096000(人)19.175212017529090cm 30751 50y x x y y x x y l =-+=⎧⎪⎨=-⎪⎩=⎧⎨=⎩≤≤解:(1)(2)依题意得:解得:此时单层部分的长度为(3) 20.21.tan 30?60?21290?30?33DC ACDOE OE OD ODE ODE DE DB AC DBP OBP BP BP DB OBDBP OBPBC B OP P PC r PD =∴∠===⋅=∴∠=∴∠=∠===∴=≅==+∴=-①证明:连接OD 又是直角三角形,解:(1)依题意得:根据勾股定理可得(且是O 的切线②连接又2)、,可知 22. 222222245(4)50454454545(2)454524527344y ax ax x ax a x y ax ax x y ax ax y ax ax y ax ax a x a a a a a =--=--==--==--=-+-=-+-=--+--=-=-==解:(1)点(-4,0),(5,0)(2)当时,函数恒经过点(0,-5)当时,函数恒经过点(4,-5)(①3)依题意得:或式:或②C 解析23.12,4, 解(2)猜想12AD BC = 解题过程:如图,将三角形DAC ' 绕点D 逆时针旋转,使DC 与DB ' 重合,证明QB A CAB '≅0090,150,126=C D BC CD DA BD AB BD ABP ABCD AB ∠=∠====∴=∴∴解:存在.连接BD,延长CD 作BC 的平行线交CD 延长线于点E ,,点必在四边形内根据(3)所的结论:旋补中线等于的一半可得。
2017年江西省中考数学试卷-答案
江西省2017年中等学校招生考试数学答案解析
第Ⅰ卷
【考点】.一元二次方程的根的判断以及根与系数的关系. 6.【答案】D
【解析】解:A.当E F G H ,,,是各边中点,且AC BD =时,EF FG GH HE ===,故四边形EFGH 为菱形,故A 正确;
B.当E F G H ,,,是各边中点,且AC BD ⊥时,90EFG FGH GHE ∠=∠=∠=o ,故四边形EFGH 为矩形,故B 正确;
C.当E F G H ,,,不是各边中点时,EF HG EF HG =∥,,故四边形EFGH 为平行四边形,故C 正确;
D.当E F G H ,,,不是各边中点时,四边形EFGH 可能为菱形,故D 错误,故选:D.
【提示】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可. 【考点】特殊四边形的判定,中位线定理.
第Ⅱ卷
轴如下:
,
21
,,,交AF于M,交BE于N.四边形ABNM是平行四边形.
16.【答案】(1)连接AF BE CG CG
,,,交AF于M,交BE于N,连接DF交BE于H,四边形MNHF是菱形.(2)连接AF BE CG CG
∴此时β不是符合科学要求的100.
∴A类对应扇形圆心角的度数为36025%90
⨯=,A类的人数为,补全条形图如下:
k 2
②如图3中,
理由:如图1中,延长AD 到M ,使得AD DM =,连接E M C M '',
连接DF交PC于O.
11/ 11。
2017年江西省2017年中考数学试卷及答案
2017年江西省2017年中考数学试卷及答案机密★2017年6⽉19⽇江西省2017年初中毕业暨中等学校招⽣考试数学试题卷说明:1.本卷共有六个⼤题,25个⼩题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.⼀、选择题(本⼤题共8个⼩题,每⼩题3分,共24分)每⼩题只有⼀个正确选项. 1.下列各数中,最⼩的是().A. 0B. 1C.-1D.2.根据2017年第六次全国⼈⼝普查主要数据公报,江西省常住⼈⼝约为4456万⼈.这个数据可以⽤科学计数法表⽰为(). A.4.456×107⼈ B. 4.456×106⼈ C. 4456×104⼈ D. 4.456×103⼈3.将两个⼤⼩完全相同的杯⼦(如图甲)叠放在⼀起(如图⼄),则图⼄中的实物的俯视图是().4.下列运算正确的是().A.a +b =abC.a 2+2ab -b 2=(a -b )2D.3a -2a =1 5.已知⼀次函数y =x +b 的图象经过第⼀、⼆、三象限,则b 的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知x =1是⽅程x 2+bx -2=0的⼀个根,则⽅程的另⼀个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是(). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运⾏时,分针每分钟转动6°,时针每分钟转动0.5°.在运⾏过程中,时针与分针的夹⾓会随着时间的变化⽽变化.设时针与分针的夹⾓为y (度),运⾏时间为t (分),当时间从12︰00开始到12︰30⽌,y 与 t 之间的函数图象是().y (度) A.(度)B.度) C.度) D.B.C. D.A. 第7题图甲⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 .12.⽅程组25,7x y x y +=??-=?的解是 .13.如图,在△ABC 中,点P 是△ABC 的内⼼,则∠PBC +∠PCA +∠P AB =__________度. 14.将完全相同的平⾏四边形和完全相同的菱形镶嵌成如图所⽰的图案.设菱形中较⼩⾓为x 度,平⾏四边形中较⼤⾓为y 度,则y 与x 的关系式是 .15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________. 16.如图所⽰,两块完全相同的含30°⾓的直⾓三⾓板叠放在⼀起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点④AG ︰DE4,其中.三、(本⼤题共3⼩题,每⼩题6分,共18分) 17.先化简,再求值:2()11a aa a a+÷--,其中 1.a =18.甲、⼄、丙、丁四位同学进⾏⼀次乒乓球单打⽐赛,要从中选出两位同学打第⼀场⽐赛. (1)请⽤树状图法或列表法,求恰好选中甲、⼄两位同学的概率.(2)若已确定甲打第⼀场,再从其余三位同学中随机选取⼀位,求恰好选中⼄同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;(2)求经过点C 的反⽐例函数解析式.ACB P第13题第14题AD CBEOG F 第16题第15题C DC图甲DC图⼄四、(本⼤题共2⼩题,每⼩题8分,共16分)20.有⼀种⽤来画圆的⼯具板(如图所⽰),⼯具板长21cm,上⾯依次排列着⼤⼩不等的五个圆(孔),其中最⼤圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最⼤圆的左侧距⼯具板左侧边缘1.5cm,最⼩圆的右侧距⼯具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意⼀点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC⾯积的最⼤值.(参考数据:sin60=,cos30 ,tan30=)五、(本⼤题共2⼩题,每⼩题9分,共18分)22.图甲是⼀个⽔桶模型⽰意图,⽔桶提⼿结构的平⾯图是轴对称图形,当点O到BC(或DE)的距离⼤于或等于⊙O的半径时(⊙O是桶⼝所在圆,半径为OA),提⼿才能从图甲的位置转到图⼄的位置,这样的提⼿才合格.现⽤⾦属材料做了⼀个⽔桶提⼿(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段),O是AF的中点,桶⼝直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个⽔桶提⼿是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)图丙23.以下是某省2017年教育发展情况有关数据:全省共有各级各类学校25000所,其中⼩学12500所,初中2000所,⾼中450所,其它学校10050所;全省共有在校学⽣995万⼈,其中⼩学440万⼈,初中200万⼈,⾼中75万⼈,其它280万⼈;全省共有在职教师48万⼈,其中⼩学20万⼈,初中12万⼈,⾼中5万⼈,其它11万⼈.请将上述资料中的数据按下列步骤进⾏统计分析.(1)整理数据:请设计⼀个统计表,将以上数据填⼊表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,⼩学、初中、⾼中三个学段的师⽣⽐,最⼩的是哪个学段?请直接写出.(师⽣⽐=在职教师数︰在校学⽣数)②根据统计表中的相关数据,你还能从其它⾓度分析得出什么结论吗?(写出⼀个即可)③从扇形统计图中,你得出什么结论?(写出⼀个即可)2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本⼤题共2⼩题,每⼩题10分,共20分)24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所⽰.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备⽤图25.某数学兴趣⼩组开展了⼀次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把⼩棒依次摆放在两射线之间,并使⼩棒两端分别落在射线AB,AC上.活动⼀:如图甲所⽰,从点A1开始,依次向右摆放⼩棒,使⼩棒与⼩棒在端点处互相垂直. (A1A2为第1根⼩棒)数学思考:(1)⼩棒能⽆限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=_________度;②若记⼩棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出a n(⽤含n的式⼦表⽰).活动⼆:如图⼄所⽰,从点A1开始,⽤等长的⼩棒依次向右摆放,其中A1A2为第⼀根⼩棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根⼩棒,则θ1 =_________,θ2=________,θ3=________;(⽤含θ的式⼦表⽰)(4)若只能..摆放4根⼩棒,求θ的范围.A1A2BC图⼄A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2017年6⽉19⽇江西省2017年中等学校招⽣考试数学试题卷参考答案及评分意见说明:1.如果考⽣的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅,当考⽣的解答在某⼀步出现错误,影响了后续部分时,如果该步以后的解答未改变这⼀题的内容和难度,则可视影响的程度决定后⾯部分的给分,但不得超过后⾯部分应给分数的⼀半,如果这⼀步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表⽰考⽣正确做到这⼀步应得的累加分数.4.只给整数分数.⼀、选择题(本⼤题共8个⼩题,每⼩题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A⼆、填空题(本⼤题共8个⼩题,每⼩题3分,共24分)9. 3-10.()()11x x x+-11.1x≤12.4,3xy==-13. 9014.2180y x-=(或1902y x=+)15.(0,1)16.①②③④说明:(1)第11题中若写成“1x<”的,得2分;(2)第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本⼤题共3个⼩题,每⼩题各6分,共18分)17.解:原式=2111111a a aaa a a a a-÷=?=----. ………………3分当1a=时,原式==………………6分18.解:(1)⽅法⼀画树状图如下:所有出现的等可能性结果共有12种,其中满⾜条件的结果有2种.∴P(恰好选中甲、⼄两位同学)=16. ………………4分甲⼄丙丁丙甲⼄丁⼄甲丙丁丁甲⼄丙第⼀次第⼆次⽅法⼆列表格如下:甲⼄丙丁甲甲、⼄甲、丙甲、丁⼄⼄、甲⼄、丙⼄、丁丙丙、甲丙、⼄丙、丁丁丁、甲丁、⼄丁、丙所有出现的等可能性结果共有12种,其中满⾜条件的结果有2种.∴P (恰好选中甲、⼄两位同学)=1 6. ………………4分(2)P (恰好选中⼄同学)=13. ………………6分19.解:(1)∵(0,4),(3,0)A B -,∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==,∴()3,5C --.设经过点C 的反⽐例函数解析式为ky x=. 把()3,5--代⼊k y x=中,得:53k -=-,∴15k =,∴15y x =. ……6分四、(本⼤题共2个⼩题,每⼩题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法⼀连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==,∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法⼆连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC 中,sin BC BDC BD ∠==,∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2) 解法⼀因为△ABC 的边BC 的长不变,所以当BC 边上的⾼最⼤时,△ABC 的⾯积最⼤,此时点A 落在优弧BC 的中点处.………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132=答:△ABC⾯积的最⼤值是 ………………8分解法⼆因为△ABC 的边BC 的长不变,所以当BC 边上的⾼最⼤时,△ABC 的⾯积最⼤,此时点A 落在优弧BC 的中点处.………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三⾓形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132=.答:△ABC⾯积的最⼤值是 ………………8分五、(本⼤题共2个⼩题,每⼩题9分,共18分). 22.解法⼀连接OB ,过点O 作OG ⊥BC 于点G . ………………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°,………………4分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分⼜∵17.72OB =, ………………6分∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =?∠=?≈>. ……………8分∴⽔桶提⼿合格. ……………9分解法⼆连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,图丙CDE ∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°. ………………4分要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分∴⽔桶提⼿合格. ………………9分23.解:(1)2017年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………6分(3)①⼩学师⽣⽐=1︰22,初中师⽣⽐≈1︰16.7,⾼中师⽣⽐=1︰15,∴⼩学学段的师⽣⽐最⼩. ………7分②如:⼩学在校学⽣数最多等. ………8分③如:⾼中学校所数偏少等. ………9分说明:(1)第①题若不求出各学段师⽣⽐不扣分;(2)第②、③题叙述合理即给分. 六、(本⼤题共2个⼩题,每⼩题10分,共20分)24.解:(1)2y = ………………2分学校所数(所)在校学⽣数(万⼈)教师数(万⼈)⼩学12500 440 20 初中2000 200 12 ⾼中450 75 5 其它10050 280 11 合计25000 995 48 全省各级各类学校所数扇形统计图(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0). 同理可得:D (-1+m ,0),E (1+m ,0).当13AD AE =时,如图①,()()()()111113m m m m -+---=+---,∴12m =. ………………4分当13AB AE =时,如图②,()()()()111113m m m m ----=+---,∴2m =. ………………6分∴当12m =或2时,B ,D 是线段AE 的三等分点.②存在.………………7分⽅法⼀理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称,∴OM ON =.∵()()1,0,1,0A m E m --+,∴A ,E 关于原点O 对称,∴OA OE =,∴四边形ANEM 为平⾏四边形. ………………8分要使平⾏四边形ANEM 为矩形,必需满⾜OM OA =, 即()2221m m +=--,∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分⽅法⼆理由:连接AN 、NE 、EM 、MA . 依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称,∴OM ON =.∵()()1,0,1,0A m E m --+,∴A ,E 关于原点O 对称,∴OA OE =,∴四边形ANEM 为平⾏四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++,222(11)484AE m m m m =+++=++,若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直⾓三⾓形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分(2)① 22.5°. ………………2分②⽅法⼀∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 ⼜∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1a 3=AA 3+ A 3A 5=a 2+ A 3A 5. ………………3分∵A 3A 52,∴a 3=A 5A 6=AA 5=)2221a =. ………………4分⽅法⼆∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 ⼜∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -=………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ?≥∴1822.5θ≤< . ………………10分。
2017年江西省中考数学试卷(含答案解析)
2017年江西省中考数学试卷(含答案解析) 2017年江西省中考数学试卷一、选择题(共6小题,每小题3分,共18分)1.(3分)-6的相反数是()。
A。
B。
-。
C。
6.D。
-62.(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列。
行程最长,途经城市和国家最多的一趟专列全程长km,将用科学记数法表示应为()。
A。
0.13×105.B。
1.3×104.C。
1.3×105.D。
13×1033.(3分)下列图形中,是轴对称图形的是()。
A。
B。
C。
D。
4.(3分)下列运算正确的是()。
A。
(-a5)2 = a10.B。
2a×3a2 = 6a2C。
-2a+a = -3a。
D。
-6a6 ÷ 2a2 = -3a35.(3分)已知一元二次方程2x2-5x+1=0的两个根为x1,x2,下列结论正确的是()。
A。
x1+x2 = -。
B。
x1×x2 = 1C。
x1,x2都是有理数。
D。
x1,x2都是正数6.(3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()。
A。
当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B。
当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C。
当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D。
当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形二、填空题(共6小题,每小题3分,共18分,将答案填在答题纸上)7.(3分)函数y=(x-3)2+2,自变量x的取值范围是()。
8.(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB。
若剪刀张开的角为30°,则∠A=()度。
9.(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数。
2017年江西省中考数学试卷(含答案)
江西省2017年中等学校招生考试数学学科真题试卷(WORD 含答案)考生须知:1. 全卷共六页,有六大题,24小题. 满分为120分.考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本大题共有6小题,每小题3分,共18分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. -1的绝对值是( )A .1B .0C .-1D .±1故应选A .-1 0 12.等腰三角形的顶角为80°,则其底角为( )A .20°B .50°C .60°D .80° 故应选B .3.下列运算正确的是( )A .3a + 3a =62aB .6a ÷3-a= 3aC .3a ×3a =32a D . 32)2(a -=68a - 故应选D .⒋如图,有c b a ,,三户家用电路接入电表,相邻的电路等距排列,则三户所用电线( ) A .a 户最长 B .b 户最长 C .c 户最长 D .三户一样长(第四题)a b c电 源故应选D.⒌如图,如果在阳光下你的身影方向为北偏东60°的方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60°D.北偏东30°N(第五题)S故应选A.⒍某人驾车从A地上高速公路前往B地,中途服务区休息了一段时间。
出发时油箱存油40升,到达B后剩余4升,则从出发到达B地油箱所剩的油y(升)与时间t(h)之间的函数大致图像是()y y40 404 4.A tB ty y40 404 4C tD t(第六题)故应选C.二、填空题(本大题共8个小题,每小题3分,共24分.) ⒎一个正方体有 六 个面。
⒏当4-=x 时,x 36-的值是 23 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切与点B ,若∠A=50°,则∠C= 20 度.C A B ⒑已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 -1 .⒒已知8)(2=-n m ,2)(2=+n m ,则=+22n m 5 .⒓已知一次函数)0(≠+=k b kx y 经过(2,- 1),(- 3,4)两点,则其图像不经过...第 三 象限。
江西省2017年中等学校招生考试数学样卷试题卷(四)
江西省2017年中等学校招生考试数学样卷试题卷(四)一、选择题(共6小题;共30分)1. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是A. ,B. ,C. ,D. ,2. 质检员抽查某种零件的尺寸,超过规定长度的尺寸记为正数,不足规定长度的尺寸记为负数.检查结果如下:第个,第个,第个,第个,则最符合规定长度的零件是A. 第个B. 第个C. 第个D. 第个3. 图中的两个圆柱底面半径相同而高度不同,关于这两个圆柱的视图说法正确的是A. 主视图相同B. 俯视图相同C. 左视图相同D. 主视图、俯视图、左视图都相同4. 三角形的下列线段中一定能将三角形的面积分成相等的两部分的是A. 中线B. 角平分线C. 高D. 中位线5. 下列命题是假命题的是A. 对角线互相垂直且相等的平行四边形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线互相垂直的四边形是正方形D. 对角线相等的菱形是正方形6. 下列函数中,其图象与轴有两个交点的是A. B.C. D.二、填空题(共6小题;共30分)7. 分解因式: ______.8. 点,在反比例函数的图象上,当时,,则的取值可以是______(只填一个符合条件的值即可).9. 五名学生投篮球,规定每人投次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是,唯一众数是,则他们投中次数的总和最大为______.10. 如图是小颖佩戴的一件装饰品,已知是菱形的对角线,图中的小四边形①②均为菱形,且分别有两个顶点在上.若菱形的边长为,则小四边形①②的周长之和为______ .11. 某市电价执行“阶梯式”计费,每月应交电费(元)与用电量(千瓦时)之间的函数关系如图所示.若某用户5月份交电费元,则该用户5月份的用电量是______ 千瓦时.12. 能使成立的的值为______.三、解答题(共11小题;共143分)13. (1)解不等式组并把解集在数轴上表示出来.(2)如图,扇形的圆心角为,于点,,求阴影部分的面积.14. 在图1,图2中,四边形为矩形,某圆经过,两点,请你仅用无刻度的直尺画出符合要求的图形.(保留痕迹,不写画法)(1)在图1中画出该圆的圆心;(2)在图2中画出线段的垂直平分线.15. 王医生随机抽取了岁年龄段的男性吸烟公民人,对他们各年龄段的吸烟人数进行统计,并将统计结果绘制成如下频数分布直方图、扇形统计图和频数分布表:(不完整)请结合图表完成下列问题:年龄段周岁频数吸烟人数(1)把频数分布直方图、扇形统计图和频数分布表补充完整;(2)写出一条你从上表或图中发现的信息,并简述该扇形统计图对本题中所调查的问题有何作用.16. 一个不透明的布袋里装有个除颜色外其他均相同的球,其中红球有个,白球有个,其他均为黄球,现甲同学从布袋中随机摸出一个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并揽匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当时,谁获胜的可能性大?(2)当为何值时,游戏对双方是公平的?17. 某中学准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买个足球和个篮球共需元,购买个足球和个篮球共需元.(1)求购买一个足球、一个篮球各需多少元.(2)该中学根据实际情况,决定从该体育用品商店一次性购买足球和篮球共个,要求购买足球和篮球的总费用不超过元,这所中学最多可以购买多少个篮球?18. 如图,在中,,以为直径的交于点,点是的中点,的延长线交于点,连接,.(1)试问是何种特殊三角形?请说明理由.(2)求证:.19. 如图,有一时钟,时针的长为,分针的长为,随着时间的变化不停地改变形状.(1)1点时,的面积是多少?(2)2点时,的面积比1点时增大了还是减少了?为什么?(3)在(2)的条件下,当天再过多少小时,的面积最大?最大面积是多少?请说明理由.(4)设,试归纳变化时的面积有何变化规律(不需证明).20. 如图,已知直线和轴上一动点.(1)当点到直线的距离为时,求点的坐标;(2)若设直线向上平移一个单位长度后的直线为,点到直线的距离为,试求出与之间的关系.21. 如图1,在一张平行四边形的纸片中,平行四边形的面积为,,,点是上的一动点(点与点,不重合).现将这张纸片分别沿,剪成三块,并按图2(注:图2中的①,②是将图1中的①,②翻转背面朝上,再拼接而成的)所示放置.(1)当点是的中点时,求的长.(2)试探究:当点在的什么位置上时,的长最小?请求出这个最小值.22. 如图1,已知动点,分别从点,开始沿轴向上运动,,两点的速度分别为每秒个、个单位长度.在轴上也有点,从点开始沿轴向右运动,其速度为每秒个单位长度.若以上三点同时出发,运动时间为,图中正方形以为一边,且在轴的右侧.(1)请用含的代数式表示正方形的边长.(2)如图2,抛物线与轴交于,两点,且,的最大值始终为.①当时,点在抛物线上吗?请通过计算说明理由;②若点在抛物线上,求的值.23. 将两块大小不同的直角三角形(和)纸片按图1所示拼在一起,,,连接,过点作,取,连接.(1)试求的度数.(2)若将绕点逆时针旋转,当与重合时(如图2),与的夹角的度数是多少?(3)若将绕点继续逆时针旋转,(2)中的结论是否会发生变化?若不变,结合图3写出证明过程;若变化,请说明理由.答案第一部分1. C2. D3. B4. A5. C6. D第二部分7.8.9.10.11.12. ,或第三部分13. (1)解不等式得解不等式得不等式组的解集为.将解集在数轴上表示如下:(2)在扇形中,,..阴影部分的面积为.14. (1)图1中点即为所求.(2)图2中直线即为所求.15. (1)表中填;;图补充如下:(2)如:在吸烟人群中岁岁的人数最多,或青少年也有少部分人会吸烟.扇形统计图的作用:能清楚地表示出各年龄段人数在总体中所占的百分比.16. (1)甲同学获胜的可能性为,乙同学获胜的可能性为.,当时,乙同学获胜的可能性大.(2)依题意有.解得.当时,游戏对双方是公平的.17. (1)设购买一个足球需要元,购买一个篮球需要元.根据题意得解得购买一个足球需要元,购买一个篮球需要元.(2)设购买个篮球,则购买个足球.依题意有解得这所中学最多可以购买个篮球.18. (1)是等腰三角形.理由:连接.是的直径,..又,.是等腰三角形.(2),.而,,.19. (1)如图,分别过点作于点(也可在的延长线上).在1点时,,如图1.,.(2)在2点时,,如图2.,,.因为,所以2点时的面积比1点时增大了.(3)当天再过小时(即3时)或小时(即9时),的面积最大,如图3.最大,,而不变,.(4)当时不构成三角形,当时,的值随增大而增大,当时,的值随增大而减小.20. (1)如图,过点作直线的垂线,垂足为,又过点作轴于点,,,.在中,..(2)直线的解析式为,设直线与轴交于点,当时,,.由(1)可知,.,,,,或,,.21. (1)如图,分别过点,作直线的垂线,垂足分别为,,连接交于点.中,,,,.又,,..在中,,.(2)当点为的垂足时,的长最小.,是等腰直角三角形..当最短时,最短,此时.由(1)易知..平行四边形..最小22. (1),,.(2),,,即.①当时,,,顶点为,.把点的坐标代入得,..又,,,.将代入,得,点不在抛物线上.②由于抛物线的顶点横坐标为,.把点代入得..又,,,.把,代入抛物线的解析式得,,.,(不合,舍去).23. (1),,四边形是平行四边形.设,.,,,.四边形是平行四边形,,,.,..(2)如图,连接,设交于点.四边形是平行四边形,.,.,.,...,,.,,..(3)结论不变.证明:如图,连接,延长交于点.,...,,,,.,,.在中,,.。
江西省2017年中等学校招生考试数学样卷试题卷(一)
江西省2017年中等学校招生考试数学样卷试题卷(一)一、选择题(共6小题;共30分)1. 下列各数中,比−1小的数是 A. −2B. −12C. 0D. 12. 下面调查中,适合采用全面调查的是 A. 调查南昌市中学生心理健康现状B. 调查江西省春节期间的食品合格情况C. 调查你所在的班级同学的身高情况D. 调查江西卫视《金牌调解》栏目的收视率3. 下列运算中正确的是 A. a+b=abB. a2+a3=a5C. a3⋅a=a3D. −a32=a64. 下面四个几何体中,其左视图不是中心对称图形的是______A. B.C. D.5. 一组数据2,x,3,4,7的平均数是4,则这组数据的中位数、众数、方差分别是 A. 4,4,2.8B. 3,4,2.8C. 3,3,3D. 4,3,46. 如图,在Rt△ABC中,∠ABC=90∘,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,过点B作BM⊥GF,垂足为M,BM交AC于点N,连接BG,CE.下列结论中,不正确的是 A. BG=CEB. BG⊥CEC. S正方形ABDE >S四边形ANMGD. BC2=CF⋅FM二、填空题(共6小题;共30分)7. 分解因式x3−x= ______.8. 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E.若∠A=36∘,则∠C的度数为______.9. 从分别写着数0,π,0.101001,2,227,83的六张无明显差别的卡片中,随机抽取1张,则所抽卡片上的数是无理数的概率是______.10. 已知a,b是一元二次方程x2+4x+2=0的两个实数根,且点P a,b在反比例函数y=kx的图象上,则k= ______.11. 将一张边长为2的正方形纸片按照图①∼④的过程折叠后再展开,则四边形AMCN的面积为______.12. 菱形ABCD中,∠B=60∘,AB=4,点E在BC上,CE=23.若点P是菱形上异于点E的另一点,CE=CP,则EP的长为______.三、解答题(共11小题;共143分)13. (1)计算:3.14−π∘+−12017−∣−1∣+8.(2)如图,在△ABC中,点D,E,F分别在边AB,BC,AC上,∠1=∠2,∠3=63∘,求∠A的度数.14. 先化简,再求值:1a −2a+1÷a2−2a+1a−1,其中a=−2.15. 如图,等边三角形OBC的顶点C的坐标为(2,0),顶点B在反比例函数y=kxx>0的图象上,求反比例函数的解析式.16. 已知不等式组1−x<2x+5, ⋯⋯①x≤x−13+1. ⋯⋯②(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为负数的概率.17. 如图,在平面直角坐标系中,矩形OABC的边OA,OC分别位于x轴、y轴上,经过A,C两点的抛物线交x轴于另一点D,连接AC.请你只用无刻度的直尺按要求画图.(1)在图1中的抛物线上,画出点E,使DE=AC;(2)在图2中的抛物线上,画出抛物线的顶点F.18. 为传承中华优秀传统文化,提升学生文学素养,江西省一直在中小学开展“假期读一本好书”的活动.某校八年级为了了解本年级学生活动开展的情况,从全年级学生中随机抽取了部分学生调查读书种类情况,并进行统计分析,绘制了如下不完整的统计图表.请根据以上信息解答下列问题:读书种类情况统计表\( \begin{array}{|l|c|c|} \hline \hfill 种类 \hfill & 频数 & 百分比 \\ \hline \mathrm {A}. 科普类 & a & 32\% \\ \hline \mathrm {B}. 文学类& 20 & 40\% \\ \hline \mathrm {C}. 艺术类& 8 & b \\ \hline \mathrm {D}. 其他类 \ \ \ & 6 & 12\% \\ \hline \end{array} \)(1)a= ______,b= ______;(2)补全条形统计图;(3)若绘制“读书种类情况扇形统计图”,则“艺术类”所对应扇形的圆心角度数为______ ∘;(4)若该校八年级共有600人,请估计全年级在本次活动中读书种类为“艺术类”的学生人数.19. 如图是某科技馆展览的一个升降平台模型,在其示意图中,AB=AF=CE=EI=FH=50 cm,其中点D是AF和CE的中点,点G是EI和FH的中点.当点C在线段AB上滑动时,∠DAC 的大小随之发生变化,平台的高度也随之发生变化,从而控制平台面HI的升降.(可使用科学计算器,参考数据:2≈1.414,3≈1.732)(1)HI与AC平行吗?请说明理由.(2)移动点C的位置,当∠DAC的大小由30∘变化到60∘时,平台上升了多少?(结果精确到0.1 cm)20. A,B 两地相距120 km,甲、乙两车同时从A 地出发驶向B地,甲车到达 B地后立即按原速返回.如图是它们离 A 地的距离y km与行驶时间x h之间的函数图象.(1)求甲车返回时(即CD段)y与x之间的函数解析式;(2)若当它们行驶了2.5 h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)当两车相距30 km时,甲车行驶的时间为______ h.AC.21. 如图,在⊙O中,AB是直径,点C在圆上,∠A=30∘,BD∥AC,且BD=13(1)求∠D的度数;(2)求证:DC是⊙O的切线;(3)连接AD,求tan∠BAD的值.22. 如图1 中的矩形ABCD,AD=3,DC=4,沿对角线AC剪开,再把△ADC沿着AB方向平移,得到图 2,其中AʹD交AC于点E,AʹCʹ交BC于点F.(1)在图 2 中,除△ABC与△AʹDCʹ外,指出还有哪几对全等的三角形(不能添加辅助线和字母),并选择其中一对加以证明.(2)设AAʹ=x.①当x为何值时,四边形AʹECF是菱形?②设四边形AʹECF的面积为y,求y的最大值.23. 在平面直角坐标系中,抛物线y=x2−k+1x+k与x轴交于点A1,0和点B(点B在点A左侧),与y轴相交于点C.(1)若k=−1,直接写出线段AB的长:AB= ______;(2)若AB=4,则k的值为______;(3)在(2)的条件下,①求直线BC的解析式;②点P是直线BC下方抛物线上的一个动点,试求△PBC面积的最大值及此时点P的坐标.(4)若k<0,且△ABC是等腰三角形,求k的值.答案第一部分 1. A 2. C 3. D4. C5. A6. C第二部分7. x x +1 x −1 8. 18∘ 9. 13 10. 2 11.4 2−412. 6,2 6 或 3 − 6 第三部分13. (1) 原式=1−1−1+2 =2 −1. (2) ∵∠1=∠2, ∴AB ∥EF . ∴∠A =∠3. ∵∠3=63∘, ∴∠A =63∘. 14. 原式=−a +1a a +1 ⋅ a +1 a−1 a−1 2=−1a .当 a =− 时,原式=22. 15. 解:如图,过点 B 作 BD ⊥x 轴于点 D . ∵△OCB 是等边三角形,点 C 的坐标为 2,0 , ∴∠BOC =60∘,OB =OC =2.∴OD =12OC =1,BD = OB 2−OD 2= 22−12= 3. ∴B 1, 3 . ∴k =1× 3= 3. ∴ 反比例函数的解析式为 y = 3xx >0 .16. (1) 由 ① 得x >−3.由 ② 得x ≤1.∴ 不等式组的解集为−3<x ≤1.∴ 它的所有整数解为 −2,−1,0,1.(2) 画树状图得:∵ 共有 12 种等可能的结果,积为负数的有 4 种情况, ∴ 积为负数的概率为 412=13.17. (1) 如图1所示,点 E 即为所求;(2)如图2所示,点F即为所求.18. (1)16;16%(2)如图所示:(3)57.6(4)估计全年级在本次活动中读书种类为“艺术类”的学生人数是600×16%=96(人).19. (1)HI∥AC.理由如下:连接EF,EA,FC,EH,FI.∵点D是AF,CE的中点,∴DE=DC,DF=DA.∴四边形ACFE是平行四边形.∵AF=CE,∴四边形ACFE是矩形.∴EF∥AC.同理可得四边形EFIH是矩形.∴EF∥HI.∴HI∥AC.(2)由(1)知四边形ACFE,EFIH均是矩形,∴∠HEF=∠FEA=90∘,∠EHI=∠EAC=90∘.∴∠HEF+∠FEA=180∘.∴点H,E,A在同一直线上.∴HA⊥HI,HA⊥AB.当∠DAC=30∘时,∠EAD=90∘−∠DAC=60∘.∴△DAE为等边三角形.∴HA=2EA=2AD=AF=50cm.当∠DAC=60∘时,在Rt△ACF中,CF=AF⋅sin∠DAC=50×32=253cm.∴AE=CF=253cm.∴HA=2AE=503≈86.6cm.∴86.6−50=36.6cm.即当∠DAC的大小由30∘变化到60∘时,平台上升了约36.6 cm.20. (1)设甲车返回时y与x之间的函数解析式为y甲=kx+b.由题意知C2,120,D4,0,代入函数解析式得2k+b=120,4k+b=0,解得k=−60,b=240.∴y甲=−60x+2402≤x≤4.(2)当x=2.5时,y甲=−60×2.5+240=90.乙车的速度为90÷2.5=36km/h.∵乙车到达 B地的时间为120÷36=103h,∴乙车行驶过程中y乙与x之间的函数解析式为y乙=36x0≤x≤103.(3)54,3516,451621. (1)连接BC.∵AB是⊙O的直径,∴∠ACB=90∘.∵∠A=30∘,∴AB=2BC,AC=3BC.∵BD=13AC,∴BD=33BC.∵BD∥AC,∠ACB=90∘,∴∠CBD=∠ACB=90∘.在Rt△CBD中,tan D=BCBD=3.∴∠D=60∘.(2)连接OC.∵OA=OC,∴∠OCA=∠A=30∘.∵BD∥AC,∠D=60∘,∴∠ACD=180∘−∠D=120∘.∴∠OCD=∠ACD−∠ACO=120∘−30∘=90∘.∴OC⊥CD.∴CD是⊙O的切线.(3)过点D作DE⊥AB,垂直为E.∵BD∥AC,∴∠EBD=∠BAC=30∘.∴BD=2DE,BE=3DE.∵AB=2BC,BC=3BD,∴AB=23BD=43DE.∴AE=AB+BE=43DE+3DE=53DE.∴tan∠BAD=DEAE =53=315.22. (1)有两对全等三角形,分别为△AAʹE≌△CʹCF,△AʹBF≌△CDE.选择一:△AAʹE≌△CʹCF.证明:由平移的性质可知:AAʹ=CCʹ.在△AAʹE和△CʹCF中,∠A=∠Cʹ,AAʹ=CCʹ,∠AAʹE=∠CʹCF,∴△AAʹE≌△CʹCF ASA.(2)在Rt△ABC中,2+BC2=42+32=5.∵AʹE∥BC,∴△AAʹE∽△ABC.∴AAʹAB =AEAC=AʹEBC.∴x4=AE5=AʹE3.∴AE=5x4,AʹE=3x4.①当四边形AʹECF是菱形时,AʹE=CE.∴3x4=5−5x4,解得x=52.即当AAʹ=52时,四边形AʹECF是菱形.②由题意得y=3x44−x=−34x−22+3.∴当x=2时,y有最大值,最大值为3.23. (1)2(2)−3(3)当k=−3时,y=x2+2x−3,令y=0,即x2+2x−3=0,解得x1=1,x2=−3.∴A1,0,B−3,0,C0,−3.①设直线BC的解析式为y=mx+b m≠0.将B−3,0,C0,−3代入y=mx+b m≠0,得−3m+b=0,b=−3,解得m=−1,b=−3.∴直线BC的解析式为y=−x−3.②过点P作PD⊥x轴,垂直为D,交BC于点E.P x,x2+2x−3,则点E x,−x−3.∴PE=−x−3−x2+2x−3=−x2−3x−3<x<0.∴S△PBC=S△PEB+S△PEC=12⋅PE⋅BD+12⋅PE⋅OD=1⋅PE⋅OB=1×3−x2−3x=−32x+322+278.∴当x=−32时,△PBC的面积最大,为278,此时点P的坐标为 −32,−154.(4)∵y=x2−k+1x+k=x−k x−1,∴令y=0,得x1=k,x2=1.∵k<0,点B位于点A的左侧,∴A1,0,B k,0,C0,k.∴OA=1,OB=OC=−k.∴AB=1−k,BC= OB2+OC2=−2k,AC= OA2+OC2= k2+1.①当AB=BC时,有1−k=−2k,解得k=−2−1;②当AB=AC时,有1−k=2+1,解得k=0,∵k<0,∴k=0不合题意;③当BC=AC时,有−= k2+1,整理得k2=1,解得k=±1.∵k<0,∴k=−1.综上所述,当△ABC是等腰三角形时,k的值为−−1或−1.第11页(共11页)。
江西省2017年中等学校招生考试数学试卷
2017年江西省中考数学试卷满分:120分 版本:人教版一、选择题(本大题共6个小题,每小题3分,共18分.) 1.(2017江西)-6的相反数是( ) A .16B .-16C .6D .-6答案:C ,解析:根据相反数的定义可知,a 的相反数是-a ,即-6的相反数是6,故应选C2.(2017江西)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( ) A .0.13×102 B .1.3×104 C .1.3×105 D .13×103答案:B ,解析:用科学计数法表示13000,先确定a =1.3,最后确定10的指数比原数的整数数位少1,13000×104,故应选B.3.(2017江西)下列图形中,是轴对称图形的是( )答案:C ,解析:A 、B 、D 三个选项中的图形均无法沿着某一条直线折叠以后,直线两旁的部分能互相重合,只有C 选项沿着图中的任意一条直线折叠,直线两旁的部分能均能够互相重合,故选择C .4.(2017江西)下列运算正确的是( ) A .(-a 5)2=a 10 B .2a ·3a 2=6a 2 C. -2a +a =-3a D .-6a 6÷2a 2 =-3a 3答案:A ,解析:选项A ,根据幂的乘法法则得(-a 5)2=a 10,正确;选项B ,根据单项式的乘法法则得2a ·3a 2=6a 3,错误;选项C ,根据整式的加减法则得-2a +a =-a ,错误;选项D ,根据单项式的除法法则得-6a 6÷2a 2 =-3a 4,错误;故应选D. 5.(2017江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是( ) A .x 1+x 2=-52B .x 1·x 2 =1C. x 1,x 2都是有理数 D .x 1,x 2都是正数 答案:D ,解析:根据根与系数的关系可知x 1+x 2=52,x 1·x 2 =12,选项A 、B 不正确;一元二次方程2x 2-5x +1=0的两个根为x 14,x 24C 不正确;因为x 14>0,x 240,选项D 正确,故应选D.6.(2017江西)如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A B C DA.当E ,F ,G ,H 是各边中点,且AC =BD 时,四边形EFGH 为菱形B.当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形C.当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形D.当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形答案:D ,解析:当E ,F ,G ,H 是各边中点,连接AC ,根据三角形的中位线定理可知EF=GH=12AC ,EF ∥GH ∥AC ,所以四边形EFGH 是平行四边形,当AC =BD 时,根据“对角线相等的平行四边形是矩形”可知四边形EFGH 是矩形,选项A 是正确的;当AC ⊥BD时,根据“对角线互相垂直的平行四边形是菱形”可知四边形EFGH 是菱形,选项B 是正确的;当当E ,F ,G ,H 不是各边中点时,存在△AEH ∽△ABD ,△CFG ∽△CBD ,可得EH ∥BD ,FG ∥BD ,所以EH ∥FG ,同理EF ∥GH ,所以四边形EFGH 是平行四边形,选项C 是正确的;当E ,F ,G ,H 不是各边中点且一组邻边相等时,四边形EFGH 是菱形,故应选D.二、填空题(本大题共6小题,每小题3分,满分18分) 7.(2017江西)函数x 的取值范围是___________.答案:x≥2,解析:根据二次根式有意义的条件可得x -2≥0,解得x ≥2,故选C .8.(2017江西)如图1是一把园林剪刀,把它抽象为图2,其中OA =OB ,若剪刀张开的角为30°,则∠A =_________度.答案:75°,解析:由对顶角的性质可知∠AOB=30°, ∵OA =OB ,∴∠A=∠B , 在△ABC 中,∠A =∠B=12(180°-30°)=75°.9.(2017江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为___________.答案:-3,解析:根据题意可知正放表示正,斜放表示负,组合在一起表示相加,第10题①表示(+1)+(-1)=0②图2图1由正放2根,斜放5根组合在一起表示(+2)+(―5)=-3.10.(2017江西)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_____________.答案:8,解析:根据题意可知,正三棱柱的俯视图为正三角形,∵底面周长为9,∴边长为3,由于截去一个底面周长为3的正三棱柱,即俯视图也为正三角形∴截去的正三角形的边长为1,几何图的俯视图如图所示,虚线为切割线,∴俯视图的周长为8.11.(2017江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是______________.答案:5,解析:根据题意可知324,14,x yx y+=⎧⎨+=⎩解得5,9,xy=⎧⎨=⎩将原数据从小到大排列为:2,5,5,9,10,11,∴这组数据的众数是5.12.(2017江西)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A′,若点A′到矩形较长两对边的距离之比为1:3,则点A′的坐标为____________.答案:31)或(,-2),解析:根据题意,点A′的坐标存在以下三种情况:①如图1,当A′M:A′N=1:3时,又MN=4,所以A′M=1,A′N=3,因为OA′=OA=4,在Rt△OA′N中,=A′的坐标3);②如图②,当A′M:A′N=3:1时,又MN=4,所以A′M=3,A′N=1,因为OA′=OA=4,在Rt△OA′N中,=A′的坐标为1);③如图③,当A′M:A′N=3:1时,即(A′N+4):A′N=3:1,解得A′N=2,在Rt△OA′N中,=,所以点A′的坐标为(,-2). 图1 图2 图3三、解答题 (本大题共5小题,每小题6分,共30分) 13.(2017江西)(1)计算:211x x +-÷21x -;思路分析:先将分式的坟墓进行饮食分解,然后利用分式的除法法则进行化简即可 解:原式=1(1)(1)x x x ++-·12x -=12.(2)如图,正方形ABCD 中,点F ,F ,G 分别在AB ,BC ,CD ,且∠EFG =90°, 求证:△EBF ∽△FCG .思路分析:由正方形的性质可知∠B =∠C =90°,由∠EFG =90°可知∠BFE +∠CFG =90°,又∠CGF +∠CFG =90°,即∠BFE =∠CGF ,利用“两角对应相等的两个三角形相似”即可得证.证明:∵四边形ABCD 是正方形, ∴∠B =∠C =90°, ∵∠EFG =90°,∴∠BFE +∠CFG =90°, ∵∠CGF +∠CFG =90°, ∴∠BFE =∠CGF , ∴△EBF ∽△FCG . 14.(2017江西)解不等式组:()26,324,x x x -<⎧⎨-≤-⎩,并把解集在数轴上表示出来.思路分析:分别求出不等式组中每个不等式的解集,再在数轴上表示出每一个解集,并找出两个解集的公共部分,即得不等式组的解集. 解:解不等式①得x >-3, 解不等式②得x ≤1,∴不等式组的解集为-3<x ≤1.15.(2017江西)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少? (2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率. 思路分析:(1)直接利用概率公式计算;(2)用树形图或列表法列举出所有可能情况,然后由概率公式计算求得.G解:(1)P (取出的是肉粽)=14;(2)画黄树状图表示如下:共有12种等可能的结果数,其中两个都是蜜枣粽占2种,故P (取出两个都是蜜枣粽)=212=16.16.(2017江西)如图,已知正七边形ABCDEFG ,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB 为边的平行四边形; (2)在图2中,画出一个以AF 为边的菱形.思路分析:(1)根据正七边形的性质和“两组对边分别平行的四边形是平行四边形”来构造图形;(2)(1)根据正七边形的性质和一组邻边相等的平行四边形是菱形来构造图形; 解:(1)如图所示四边形ABHF 是平行四边形,四边形ABHI 是平行四边形. (2)如图所示开始豆 肉 枣枣肉 枣 枣豆 枣 枣豆 肉 枣豆 肉 枣图1 图2四边形AHDF 是平行四边形,四边形ACHF 是平行四边形.17.(2017江西)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC=20cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长; (2)若肩膀到水平地面的距离DG =100cm ,上臂DE =30cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72cm.请判断此时β是否符合科学要求的100°? (参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)思路分析:(1)在Rt △ABC 中,已知∠α的角度和BC 的长,求AB 的长,利用三角函数tan ∠α=B C A B即可直接求解;(2)由于∠β是一个钝角,利用解直角三角形无法直接求出它的角度,可以考虑求∠β的邻补角度数(即延长FE 交DG 于点I ,依据DI =DG -FH 可求DI 的长,又DE =30,利用锐角三角函数sin ∠DEI =D I D E求解∠DEI 的角度),然后看∠β度数是否接近100°即可. 解:(1)∵Rt △ABC 中,tan A =B C A B,∴AB =ta n B C A=ta n 20B C=20411=55(cm );(2)延长FE 交DG 于点I .则DI =DG ﹣FH =100﹣72=28(cm ). 在Rt △DEI 中,sin ∠DEI =D I D E=2830=1415,∵sin69°≈1415,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.四、(本大题共3小题,每小题8分,共24分).18.(2017江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有___________人,其中选择B类的人数有_____________人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.思路分析:(1)根据扇形图中选择C方式出行的占比为25%,在条形统计图中对应人数为200人,所以总人数=200÷25%=800(人);选择B出行方式的人数为:800×30%=240(人);(2)先求出选择A出行方式所占的百分比,再依据这个百分比求出扇形圆心角α的度数和选择A出行方式的人数;(3)依据“A出行方式所占的百分比之和乘以12万”即可求出“绿色出行”方式的人数.解:(1)800,240;(2)∵1-(14%+6%+25%+30%)=25%,Α=360°×25%=90°,选择A出行方式的人数为:800×255=200(人),补充统计图如下图所示.(3)∵120000×(25%+25%+30%)=96000(人),∴该市“绿色出行”方式的人数为96000人.19.(2017江西)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为x cm ,双层部分的长度为y cm ,经测量,得到如下数据:(1)根据表中数据的规律,完成以下表格,并直接写出y 关于x 的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm 时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为l cm ,求l 的取值范围.思路分析:(1)根据表格中的数据变化确定函数与自变量之间的对应关系,设函数解析式为y=kx+b ,选择任意两个点代入解析式即可求解;(2)根据挎带的长度=单层部分的长度+双层部分的长度、挎包单层与双层之间的函数关系式求解;(3)分别依据根据挎带的长度=单层部分的长度+双层部分的长度和挎包单层与双层之间的函数关系式即可求出l 的取值范围. 解:(1)70,y 关于x 的函数解析式y =-0.5x +75; (2)设函数解析式为y =kx +b ,根据题意得120,2150,x y x y +=⎧⎨+=⎩解得90,30,x y =⎧⎨=⎩所以挎带单层部分的长度为90cm, (3)根据题意得l =x +y =0.5x +75, ∵0≤x ≤150,∴75c m≤l≤150cm,即l 的取值范围为75cm≤l≤150cm.20.(2017江西)如图,直线y =k 1x (x ≥0)与双曲线y=2k x(x >0)相交于点P (2,4).已知点A (4,0),B (0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A ′PB ′.过点A ′作A ′C ∥y 轴交双曲线于点C . (1)求k 1与k 2的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.思路分析:(1)直线y =k 1x (x ≥0)与双曲线y =2k x(x >0)都经过点P (2,4),直接利用待定系数法求解;(2)依据点O 平移到点P 的规律和点A 的坐标,可以得到点A ′的坐标为(6,4),又A ′C ∥y 轴,所以点C 的横坐标为6,又点C 在双曲线y=2k x上,即可求出点C 的坐标,结合点P 、C 的坐标利用待定系数法可以求出PC 的解析式;(3)由于线段AB 扫过的图形是平行四边形,可以转化为两个平行四边形的面积之和. 解:(1)∵直线y =k 1x (x ≥0)与双曲线y =2k x(x >0)都经过点P (2,4).∴2k 1=4,22k =4,解得k 1=2,k 2=8,(2)∵Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A ′PB ′,且点O 的坐标为(0,0),点P 的坐标为(2,4),∴点A 平移后得到A ′的坐标为(6,4), ∵A ′C ∥y 轴交双曲线于点C . ∴点C 的坐标为(6,y ), 把点C 代入反比例函数y =8x中,解得43y=,∴点C 的坐标为(6,43),设直线PC 的解析式为y=kx+b ,根据题意得24,46,3k b k b +=⎧⎪⎨+=⎪⎩解得2,316,3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线PC 的表达式为21633yx =-+.(3)22.连接BB ′、AA ′,由平移得△A ′PB ′≌△AOB ,则有S 1□ABB ′A ′= S □OBB ′P +S □OAA ′P =3×2+4×4=22.。
江西省2017年中等学校招生考试信息数学试题含答案
图①
第 10 题图
图②
四、 (本大题 3 小题,每小题 8 分,共 24 分) 18.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价 s 规则如图①所示,若车辆以平均速度 vkm/h 行驶了 skm,则打车费用为(ps+60q·) v 元(不足 9 元按 9 元计价) .小明某天用该打车方式出行,按上述计价规则,其打车费用 y(元) 与行驶里程 x(km)的函数关系也可由如图②表示. (1)当 x≥6 时,求 y 与 x 的函数关系式. (2)若 p=1,q=0.5,求该车行驶的平均速度.
第 23 题图
数学模拟试卷答案及评分意见
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分) 1. D 2. C 3.C 4.A 5.A 二、填空题 (本大题共 6 小题,每小题 3 分,共 18 分) 7.1.207×1011 8.12 9. 6.D 11.-1≤t<8 12.2 或
7 8
并求最小值. A D A P B B C 图1 E B 第 22 题图 C 图2 E D
六、 (本大题共 12 分) 23.如图,抛物线 y ax 2 bx c (a>0)的顶点为 M,若△MCB 为等边三角形,且点 C,B 在抛物 线上,我们把这种抛物线称为“完美抛物线” ,已知点 M 与点 O 重合,BC=2. (1)求过点 O、B、C 三点完美抛物线 y1 的解析式; (2)若依次在 y 轴上取点 M1、M2、…Mn 分别作等边三角形及完美抛物线 y1 、 y2 、…
1 1 1 x x x 65 10.4 2 3 4
三、 (本大题共 5 个小题,每小题 6 分,共 30 分) 3x +1 2 ① 13.(1) 2 x 1
2017年江西省中考数学试卷-答案
江西省2017年中等学校招生考试数学答案解析第Ⅰ卷【考点】.一元二次方程的根的判断以及根与系数的关系. 6.【答案】D【解析】解:A.当E F G H ,,,是各边中点,且AC BD =时,EF FG GH HE ===,故四边形EFGH 为菱形,故A 正确;B.当E F G H ,,,是各边中点,且AC BD ⊥时,90EFG FGH GHE ∠=∠=∠=,故四边形EFGH 为矩形,故B 正确;C.当E F G H ,,,不是各边中点时,EF HG EF HG =∥,,故四边形EFGH 为平行四边形,故C 正确;D.当E F G H ,,,不是各边中点时,四边形EFGH 可能为菱形,故D 错误,故选:D.【提示】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可. 【考点】特殊四边形的判定,中位线定理.第Ⅱ卷30,∴(18030)75∠-=,故答案为:【提示】根据等腰三角形的性质和三角形的内角和即可得到结论.,90BCOB于F90,在Rt111)22x -=为正方形,∴90B ∠=∠,∴90∠,∵90∠, 90,∴∠FCG ∽△)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;90,再利用等角的余角相等得EBF FCG ∽△轴如下:,21,,,交AF于M,交BE于N.四边形ABNM是平行四边形.16.【答案】(1)连接AF BE CG CG,,,交AF于M,交BE于N,连接DF交BE于H,四边形MNHF是菱形. (2)连接AF BE CG CG4=2011∠-=≠,69,∴180********∴此时β不是符合科学要求的100.∴A类对应扇形圆心角α的度数为36025%90⨯=,A类的人数为,补全条形图如下:360和总人数可分别求得三类别百分比之和可得答案.k 90,∵O 的直径30,∴3tan306233OP =⨯=, 2(23)30, 60,∵OB BE , ,∴90ODE ∠,∴DE 是O 的切线•cos3062OB ==⨯=2(直角三角形斜边上的中线,等于斜边的一半)90,求出答案即可的长,进而得出答案60180BAC B AC B C ∠+∠''=⊥'',,∴120B AC ∠',∴30∠, 12BC ,故答案为12. ②如图3中,90180BAC B AC ∠+∠''=,,∴90B AC ∠''=∠,∵AB B AC ''≌△,∴BC B C ='',∵B D DC '=',∴12B C ''=理由:如图1中,延长AD 到M ,使得AD DM =,连接E M C M '',180,180B ∠,∴∠,∴BC =.连接DF交PC于O.∠,在Rt9030 150,∴30,,MDC∠=,,,=∠=DM=,,在Rt901430460BM MBE-EM DM=∠60CPF∠,90,∴60ADP∠,BPC∠,∴12060,∵60180,∴△PAB△的“旋补三角形”,在Rt中,,906PD AD=)①首先证明30是直角三角形,可得,根据直角三角形斜边中线定理即可解决问题180即可.【考点】旋转的性质,新定义概念的运用,矩形的判定及性质,三角形中位线定理,勾股定理,锐角三角形11 / 11。
江西省2017年中考数学真题试题含解析
江西省2017年中考数学真题试题一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.16B.﹣16C.6 D.﹣6【答案】C【解析】试题分析:根据只有符号不同的两数互为相反数,可知﹣6的相反数是6,故选:C考点:相反数2.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.×105B.×104C.×105D.13×103【答案】B【解析】考点:科学记数法—表示较大的数3.下列图形中,是轴对称图形的是()A.B.C. D.【答案】C【解析】试题分析:根据轴对称图形的概念可知:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C.考点:轴对称图形4.下列运算正确的是()A.(﹣a5)2=a10B.2a•3a2=6a2 C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【答案】A【解析】考点:整式的混合运算5.已知一元二次方程2x2﹣5x+1=0的两个根为x1,x2,下列结论正确的是()A.x1+x2=﹣52B.x1•x2=1 C.x1,x2都是有理数D.x1,x2都是正数【答案】D 【解析】试题分析:先利用根与系数的关系得到x1+x2=52>0,x1x2=12>0,然后利用有理数的性质可判定两根的符合:x1>0,x2>0.故选:D.考点:根与系数的关系6.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】试题分析:根据题意,可知,连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选:D.考点:中点四边形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)x 中,自变量x的取值范围是.7.函数y=2【答案】x≥2【解析】考点:函数自变量的取值范围8.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A= 度.【答案】75【解析】考点:等腰三角形的性质9.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.【答案】-3【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.考点:正数和负数10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.【答案】8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为:8.考点:1、简单组合体的三视图;2、截一个几何体11.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.【答案】5【解析】试题分析:根据平均数与中位数的定义,可以先排列:一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,所以得到16(2+5+x+y+2x+11)=12(x+y)=7,解得y=9,x=5,这组数据的众数是5.故答案为5.考点:1、众数;2、算术平均数;3、中位数12.已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD 折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为.【答案】【解析】∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=2243-=7 , ∴A'(7,3);②当A'E :A'F=3:1时,同理得:A'(15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图考点:1、翻折变换(折叠问题);2、坐标与图形性质;3、矩形的性质三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.) 13.(1)计算:21211x x x +÷--; (2)如图,正方形ABCD 中,点E ,F ,G 分别在AB ,BC ,CD 上,且∠EFG=90°.求证:△EBF ∽△FCG .【答案】(1)12(2)证明见解析【解析】(2)∵四边形ABCD为正方形,∴∠B=∠C=90°,∴∠BEF+∠BFE=90°,∵∠EFG=90°,∴∠BFE+∠CFG=90°,∴∠BEF=∠CFG,∴△EBF∽△FCG.考点:1、相似三角形的判定;2、分式的乘除法;3、正方形的性质14.解不等式组:263(2)4xx x-⎧⎨-≤-⎩<,并把解集在数轴上表示出来.【答案】﹣3<x≤1【解析】试题分析:分别求出每一个不等式的解集,根据解集在数轴上的表示即可确定不等式组的解集.试题解析:解不等式﹣2x<6,得:x>﹣3,解不等式3(x﹣2)≤x﹣4,得:x≤1,将不等式解集表示在数轴如下:则不等式组的解集为﹣3<x≤1考点:1、解一元一次不等式组;2、在数轴上表示不等式的解集15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.【答案】(1)14(2)16【解析】考点:1、列表法与树状图法;2、概率公式16.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【答案】作图见解析【解析】考点:1、作图—复杂作图;2、平行四边形的性质;3、菱形的性质17.如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,co s21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【答案】(1)55(2)100°【解析】则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=28143015 DIDE==,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.考点:解直角三角形的应用四、(本大题共3小题,每小题8分,共24分).18.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【答案】(1)800人,240人(2)200人(3)万人【解析】(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=(万人),答:估计该市“绿色出行”方式的人数约为万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图19.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)... 4 6 8 10 (150)双层部分的长度y(cm)…73 72 71 …(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.【答案】(1)y=﹣12x+75(2)90cm(3)75≤l≤150【解析】则有473672k b k b +=⎧⎨+=⎩,解得1275k b ⎧=-⎪⎨⎪=⎩ ,∴y=﹣12x+75. (2)由题意1201752x y y x +=⎧⎪⎨=-+⎪⎩,解得9030x y =⎧⎨=⎩ , ∴单层部分的长度为90cm .(3)由题意当y=0,x=150,当x=0时,y=75, ∴75≤l ≤150. 考点:一次函数的应用20.如图,直线y=k 1x (x ≥0)与双曲线y=2k x(x >0)相交于点P (2,4).已知点A (4,0),B (0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A'PB'.过点A'作A'C ∥y 轴交双曲线于点C .(1)求k 1与k 2的值; (2)求直线PC 的表达式; (3)直接写出线段AB 扫过的面积.【答案】(1)2,8(2)y=﹣23x+163(3)22【解析】试题分析:(1)把点P (2,4)代入直线y=k 1x ,把点P (2,4)代入双曲线y=2k x,可得k 1与k 2的值;(2)根据平移的性质,求得C (6,43),再运用待定系数法,即可得到直线PC 的表达式; (3)延长A'C 交x 轴于D ,过B'作B'E ⊥y 轴于E ,根据△AOB ≌△A'PB',可得线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积,据此可得线段AB 扫过的面积. 试题解析:(1)把点P (2,4)代入直线y=k 1x ,可得4=2k 1, ∴k 1=2,把点P (2,4)代入双曲线y=2k x,可得k 2=2×4=8; (2)∵A (4,0),B (0,3), ∴AO=4,BO=3,∴直线PC 的表达式为y=﹣23x+163; (3)如图,延长A'C 交x 轴于D , 由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4), ∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4), ∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO×B'E+AO×A'D=3×2+4×4=22.考点:1、反比例函数与一次函数的交点问题;2、待定系数法求一次函数解析式;3、坐标与图形变化﹣平移五、(本大题共2小题,每小题9分,共18分).21.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP 交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当DC AC时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26(2)①证明见解析②33﹣3【解析】试题解析:(1)如图2,连接OD,在Rt △POD 中,22OD OP -226(23)-26; (2)①如图3,连接OD ,交CB 于点F ,连接BD , ∵DC AC =, ∴∠DBC=∠ABC=30°, ∴∠ABD=60°, ∵OB=OD ,∴△OBD 是等边三角形, ∴OD ⊥FB , ∵BE=12AB , ∴OB=BE , ∴BF ∥ED ,∴∠ODE=∠OFB=90°, ∴DE 是⊙O 的切线; ②由①知,OD ⊥BC , 33 在Rt △POD 中,OF=DF , ∴PF=12DO=3(直角三角形斜边上的中线,等于斜边的一半), ∴CP=CF ﹣3﹣3.考点:圆的综合题22.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax2+4ax﹣5(3)a=74或34【解析】∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=74;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=34;∴a=74或34;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换六、(本大题共12分)23.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,3DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12②4(2)AD=12BC(3)存在【解析】试题分析:(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为.②如图3中,故答案为4.(2)结论:AD=12BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC 于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CD P=90°,考点:四边形综合题。
2017年江西省中考数学试题(含答案)
江西省2017年中等学校招生考试数学试卷(江西 毛庆云)说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25 B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。
【解答】 这组数据中28出现4次,最多,所以众数为28。
由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。
【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。
【分析】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.根据法则直接计算.【解答】 A 选项中3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B 是幂的乘方,幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方(底数不变,指数相乘),结果应该-86a ;C 是平方差公式的应用,结果应该是24a 1-;D.是多项式除以单项式,除以2a 变成乘以它的倒数,约分后得2a-1。
江西省中等学校2017届中考数学试卷(样卷一)(含解析)
2017年江西省中等学校中考数学试卷(样卷一)一、选择题(本大题共6小题,每小题3分,共18分)1.下列计算正确的是()A.﹣2﹣2=0 B.C.3÷=1 D.52=202.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各式运算正确的是()A.x+x2=x3B.(xy2)3=xy6C.x•x2=x3D.x8÷x2=x44.实数a、b在数轴上对应点如图,那么下列各式中一定为负数的是()A.a+b B.b﹣a C.|a﹣b| D.|a|﹣|b|5.下列各数中,是有理数的是()A.面积为3的正方形的长B.长为3,宽为2的长方形的对角线长C.体积为8的正方体的棱长D.对角线分别为2、4的菱形边长6.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元二、填空题(本大题共6小题,每小题3分,共18分)7.若3n=,则n= .8.分式方程: +=2的解为.9.将一条长为20cm的线段绕着中点旋转180°,该线段所扫过的面积是.10.在同一平面内,△ABC与△A1B1C1关于直线m对称,△A1B1C1与△A2B2C2关于直线n对称,且有m∥n,则△ABC可以通过一次变换直接得到△A2B2C2.11.如图,D、E、F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3= 度.12.已知在x轴上有线段AB,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在二次函数y=x2﹣2x﹣2的图象上,则点C的坐标为.三、解答题(本大题共5小题,每小题6分,共30分)13.先化简,再求值:(a﹣2)2+a(a+4),其中a=;(2)解不等式组,并求出不等式组的非负整数解.14.(6分)化简(x﹣4+)÷(1﹣),并问其代数式的值可能为﹣2,0,1吗?15.(6分)下表是2016年3月份某居民小区部分居民的用电情况:(1)画出这20户家庭3月份用电量的条形统计图;。
2017年江西省中考数学试卷(含解析版)
2017年江西省中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣6的相反数是( )A .16B .﹣16C .6D .﹣62.(3分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×1033.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算正确的是( )A .(﹣a 5)2=a 10B .2a•3a 2=6a 2C .﹣2a +a=﹣3aD .﹣6a 6÷2a 2=﹣3a 35.(3分)已知一元二次方程2x 2﹣5x +1=0的两个根为x 1,x 2,下列结论正确的是( )A .x 1+x 2=﹣52B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.(3分)如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.(3分)函数y=√x−2中,自变量x的取值范围是.8.(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.9.(3分)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.10.(3分)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.11.(3分)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.12.(3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)(1)计算:x+1x2−1÷2x−1;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.14.(6分)解不等式组:{−2x<63(x−2)≤x−4,并把解集在数轴上表示出来.15.(6分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.16.(6分)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.17.(6分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18.(8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.19.(8分)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)...46810 (150)双层部分的长度y(cm)…737271…(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.20.(8分)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.五、(本大题共2小题,每小题9分,共18分).21.(9分)如图1,⊙O 的直径AB=12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC=30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当DC ̂=AC ̂时,延长AB 至点E ,使BE=12AB ,连接DE . ①求证:DE 是⊙O 的切线;②求PC 的长.22.(9分)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.六、(本大题共12分)23.(12分)我们定义:如图1,在△ABC中,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2√3,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.2017年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2017•江西)﹣6的相反数是( )A .16B .﹣16C .6D .﹣6【考点】14:相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣6的相反数是6,故选C【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.2.(3分)(2017•江西)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×103【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将13000用科学记数法表示为:1.3×104.故选B .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)(2017•江西)下列图形中,是轴对称图形的是( )A.B.C. D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•江西)下列运算正确的是()A.(﹣a5)2=a10 B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【考点】4I:整式的混合运算.【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=6a3,故B错误;(C)原式=a,故C错误;(D)原式=﹣3a4,故D错误;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(3分)(2017•江西)已知一元二次方程2x2﹣5x+1=0的两个根为x1,x2,下列结论正确的是()A.x1+x2=﹣52B.x1•x2=1C.x1,x2都是有理数D.x1,x2都是正数【考点】AB:根与系数的关系.【分析】先利用根与系数的关系得到x1+x2=52>0,x1x2=12>0,然后利用有理数的性质可判定两根的符号.【解答】解:根据题意得x1+x2=52>0,x1x2=12>0,所以x1>0,x2>0.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.6.(3分)(2017•江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【考点】LN:中点四边形.【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解答】解:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选:D.【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7.(3分)(2017•江西)函数y=√x−2中,自变量x的取值范围是x≥2.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.8.(3分)(2017•江西)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=75度.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=12(180°﹣30°)=75°,故答案为:75.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.9.(3分)(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3.【考点】11:正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.10.(3分)(2017•江西)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是8.【考点】U2:简单组合体的三视图;I9:截一个几何体.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为:8.【点评】本题考查了简单组合体的三视图,从上边看是一个等腰梯形是解题关键.11.(3分)(2017•江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是 5 .【考点】W5:众数;W1:算术平均数;W4:中位数.【分析】根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数.【解答】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7, 解得y=9,x=5,∴这组数据的众数是5.故答案为5.【点评】本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.12.(3分)(2017•江西)已知点A (0,4),B (7,0),C (7,4),连接AC ,BC 得到矩形AOBC ,点D 的边AC 上,将边OA 沿OD 折叠,点A 的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为 :(√7,3)或(√15,1)或(2√3,﹣2) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】由已知得出∠A=90°,BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,当A'E :A'F=1:3时,求出A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,∠OA'D=∠A=90°,在Rt △OA'F 中,由勾股定理求出OF=√42−32=√7,即可得出答案;②当A'E :A'F=3:1时,同理得:A'(√15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,由A'F :A'E=1:3,则A'F :EF=1:2,求出A'F=12EF=12BC=2,在Rt △OA'F 中,由勾股定理求出OF=2√3,即可得出答案.【解答】解:∵点A (0,4),B (7,0),C (7,4),∴BC=OA=4,OB=AC=7,分两种情况:(1)当点A'在矩形AOBC 的内部时,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图1所示:①当A'E :A'F=1:3时,∵A'E +A'F=BC=4,∴A'E=1,A'F=3,由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=√42−32=√7,∴A'(√7,3);②当A'E :A'F=3:1时,同理得:A'(√15,1);(2)当点A'在矩形AOBC 的外部时,此时点A'在第四象限,过A'作OB 的垂线交OB 于F ,交AC 于E ,如图2所示:∵A'F :A'E=1:3,则A'F :EF=1:2,∴A'F=12EF=12BC=2, 由折叠的性质得:OA'=OA=4,在Rt △OA'F 中,由勾股定理得:OF=√42−22=2√3,∴A'(2√3,﹣2);故答案为:(√7,3)或(√15,1)或(2√3,﹣2).【点评】本题考查了折叠的性质、矩形的性质、坐标与图形性质、勾股定理等知识;熟练掌握折叠的性质和勾股定理是解决问题的关键.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)(2017•江西)(1)计算:x+1x2−1÷2x−1;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且∠EFG=90°.求证:△EBF∽△FCG.【考点】S8:相似三角形的判定;6A:分式的乘除法;LE:正方形的性质.【分析】(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可;(2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG.【解答】(1)解:原式=x+1(x+1)(x−1)•x−12 =12; (2)证明:∵四边形ABCD 为正方形,∴∠B=∠C=90°,∴∠BEF +∠BFE=90°,∵∠EFG=90°,∴∠BFE +∠CFG=90°,∴∠BEF=∠CFG ,∴△EBF ∽△FCG .【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了分式的乘除法和正方形的性质.14.(6分)(2017•江西)解不等式组:{−2x <63(x −2)≤x −4,并把解集在数轴上表示出来.【考点】CB :解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据解集在数轴上的表示即可确定不等式组的解集.【解答】解:解不等式﹣2x <6,得:x >﹣3,解不等式3(x ﹣2)≤x ﹣4,得:x ≤1,将不等式解集表示在数轴如下:则不等式组的解集为﹣3<x ≤1【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(6分)(2017•江西)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)直接利用概率公式求出取出的是肉粽的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:1 4;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:212=16.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.16.(6分)(2017•江西)如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM 是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.【点评】本题考查复杂作图、平行四边形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(6分)(2017•江西)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【考点】T8:解直角三角形的应用.【分析】(1)Rt△ABC中利用三角函数即可直接求解;(2)延长FE交DG于点I,利用三角函数求得∠DEI即可求得β的值,从而作出判断.【解答】解:(1)∵Rt△ABC中,tanA=BCAB,∴AB=BCtanA=BCtan20°=20411=55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=DIDE=2830=1415,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.【点评】此题综合性比较强,解此题的关键是把实际问题转化为数学问题,本题只要把实际问题抽象到几何图形中来考虑,就能迎刃而解.四、(本大题共3小题,每小题8分,共24分).18.(8分)(2017•江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有800人,其中选择B类的人数有240人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VA:统计表;VB:扇形统计图.【分析】(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.【解答】解:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为:800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.19.(8分)(2017•江西)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x (cm ) (4)68 10 (150)双层部分的长度y (cm ) … 73 72 71…(1)根据表中数据的规律,完成以下表格,并直接写出y 关于x 的函数解析式; (2)根据小敏的身高和习惯,挎带的长度为120cm 时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm ,求l 的取值范围.【考点】FH :一次函数的应用.【分析】(1)观察表格可知,y 是x 的一次函数,设y=kx +b ,利用待定系数法即可解决问题;(2)列出方程组即可解决问题;(3)由题意当y=0,x=150,当x=0时,y=75,可得75≤l ≤150. 【解答】解:(1)观察表格可知,y 是x 的一次函数,设y=kx +b ,则有{4k +b =736k +b =72,解得{k =−12b =75, ∴y=﹣12x +75.(2)由题意{x +y =120y =−12x +75,解得{x =90y =30, ∴单层部分的长度为90cm .(3)由题意当y=0,x=150,当x=0时,y=75, ∴75≤l ≤150.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2017•江西)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.【考点】G8:反比例函数与一次函数的交点问题;FA:待定系数法求一次函数解析式;Q3:坐标与图形变化﹣平移.【分析】(1)把点P(2,4)代入直线y=k1x,把点P(2,4)代入双曲线y=k2 x,可得k1与k2的值;(2)根据平移的性质,求得C(6,43),再运用待定系数法,即可得到直线PC的表达式;(3)延长A'C交x轴于D,过B'作B'E⊥y轴于E,根据△AOB≌△A'PB',可得线段AB扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积,据此可得线段AB扫过的面积.【解答】解:(1)把点P(2,4)代入直线y=k1x,可得4=2k1,∴k1=2,把点P(2,4)代入双曲线y=k2x,可得k2=2×4=8;(2)∵A (4,0),B (0,3), ∴AO=4,BO=3,如图,延长A'C 交x 轴于D , 由平移可得,A'P=AO=4, 又∵A'C ∥y 轴,P (2,4), ∴点C 的横坐标为2+4=6,当x=6时,y=86=43,即C (6,43),设直线PC 的解析式为y=kx +b ,把P (2,4),C (6,43)代入可得{4=2k +b 43=6k +b ,解得{k =−23b =163,∴直线PC 的表达式为y=﹣23x +163;(3)如图,延长A'C 交x 轴于D , 由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4), ∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4), ∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO ×B'E +AO ×A'D=3×2+4×4=22.【点评】本题主要考查了反比例函数与一次函数交点问题,待定系数法的运用以及平移的性质的运用,解决问题的关键是将线段AB 扫过的面积转化为平行四边形POBB'的面积+平行四边形AOPA'的面积.五、(本大题共2小题,每小题9分,共18分).21.(9分)(2017•江西)如图1,⊙O 的直径AB=12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC=30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当DĈ=AC ̂时,延长AB 至点E ,使BE=12AB ,连接DE . ①求证:DE 是⊙O 的切线; ②求PC 的长.【考点】MR :圆的综合题.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP ,PD 的长;(2)①首先得出△OBD 是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.【解答】解:(1)如图2,连接OD , ∵OP ⊥PD ,PD ∥AB , ∴∠POB=90°, ∵⊙O 的直径AB=12, ∴OB=OD=6,在Rt △POB 中,∠ABC=30°,∴OP=OB•tan30°=6×√33=2√3,在Rt △POD 中,PD=√OD 2−OP 2=√62−(2√3)2=2√6;(2)①证明:如图3,连接OD ,交CB 于点F ,连接BD ,∵DĈ=AC ̂, ∴∠DBC=∠ABC=30°, ∴∠ABD=60°, ∵OB=OD ,∴△OBD 是等边三角形, ∴OD ⊥FB ,∵BE=12AB ,∴OB=BE , ∴BF ∥ED ,∴∠ODE=∠OFB=90°, ∴DE 是⊙O 的切线;②由①知,OD ⊥BC ,∴CF=FB=OB•cos30°=6×√32=3√3, 在Rt △POD 中,OF=DF ,∴PF=12DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF ﹣PF=3√3﹣3.【点评】此题主要考查了圆的综合以及直角三角形的性质和锐角三角三角函数关系,正确得出△OBD是等边三角形是解题关键.22.(9分)(2017•江西)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省2017年中等学校招生考试数学模拟试卷试题卷一、选择题:(本大题6小题,每小题3分,共18分,每小题只有一个正确选项) 1.实数a ,b ,c ,d 在数轴上对应的位置如图所示,绝对值相等的两个实数是 ( ) A .a 与b B .b 与c C .c 与d D .a 与d2.下列运算正确的是 ( ) A .a 2+a 2=a 4 B .a 6÷a 3=a 2 C .a 3×a 2=a 5D .(a 3b )2=a 5b 33.按如图所示的方法折纸,下面结论正确的个数 ( ) ①∠2=90°②∠1=∠AEC ③△ABE ∽△ECF ④∠BAE =∠3 A .1个 B .2个 C .3个 D .4个4.若α、β是一元二次方程x 2+2x -6=0的两个不相等的根,则α2-2β的值是 ( ) A .10 B .16 C .-2 D .-105.如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是 ( ) A .PA ,PB ,AD ,BC B .PD ,DC ,BC ,AB C .PA ,AD ,PC ,BC D .PA ,PB ,PC ,AD6.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且30=∠AGH °.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的 ( )图1 第5题图 图2图1 第6题图图2A .线段CGB .线段AGC .线段AHD .线段CH 二、填空题(本大题共6小题,每小题3分,共18分)7.据了解2016年11月12日凌晨双“十一”天猫的总成交金额达到1207亿元,1207亿元用科学记数法可表示为 元.8.如图,ABC △中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若BD =10,BO =8,则 AO 的长为 . 9.《孙子算经》是中国传统数学的重要著 作之一,其中记载 的“荡杯问题”很 有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为 . 10.一次函数y =-2x +4与y =12x 交于点(m ,n ),则112m n+= . 11.二次函数2y x bx =+的图象如图,对称轴为直线x =1.若关于x 的一元二次方程20x bx y +-=(t为实数)在-1<x <4的范围内有解,则y 的取值范围是 .12.在菱形ABCD 中,AB =5,AC =8,点P 是AC 上的一个动点,过点P 作EF 垂直于 AC 交AD 于点E ,交AB 于点F ,将△AEF 沿EF 折叠,使点A 落在点A'处,当△A'CD 是直角三角形时,AP 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:3+12213≤⎧⎪-⎨>⎪⎩x x x(2)如图,已知正五边形ABCDE ,AF ∥CD 交DB 的延长线于点F ,交DE 的延长线于点G .求∠G 的度数.A'FE BACDP 第8题图 第11题图第12题图14.先化简,再求值:a +2a +3÷a 2-4 a 2+3a -1,其中a =12.15.如图,四边形ABCD 是平行四边形,点E 在AD 上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1)在图1中,过点E 作直线EF 将四边形ABCD 的面积平分; (2)在图2中,DE =DC ,作∠A 的平分线AM ;16.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随机抽取一张奖券,抽得奖券“紫气东来”、“化开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元,小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类 紫气东来 化开富贵 吉星高照 谢谢惠顾 出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.ABCDEABCDE图1 第15题图 图217.近两年,市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物 图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm , DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)四、(本大题3小题,每小题8分,共24分)18.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价 规则如图①所示,若车辆以平均速度v km/h 行驶了s km ,则打车费用为(ps +60q ·s v)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y (元)与行驶里程x (km )的函数关系也可由如图②表示. (1)当x ≥6时,求y 与x 的函数关系式. (2)若p =1,q =0.5,求该车行驶的平均速度.图① 第10题图 图②x (km )O69 12 8y (元)0元起步费p 元 / 公里q 元 / 1分钟 9元最低消费++计价规则①第18题图 ②19.我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整. (3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,求出所选两个班正好不在同一年级的概率.20.如图所示,已知四边形OABC 是菱形,OC 在x 轴上,B (18,6),反比例函数ky x(k ≠0)的图象经过点A ,与OB 交于点E . (1)求出k ; (2)求OE :EB ;第19题图第20题图五、(本大题2小题,每小题9分,共18分)21.如图,圆形靠在墙角的截面图,A 、B 分别为⊙O 的切点,BC ⊥AC ,点P 在AmB ⌒上以2°/s 的速度由A 点向点B 运动(A 、B 点除外),连接AP 、BP 、BA 。
(1)当∠PBA =28°,求∠OAP 的度数;(2)若点P 不在AO 的延长线上,请写出∠OAP 与∠PBA 之间的关系; (3)当点P 运动几秒时,△APB 为等腰三角形.22.已知三个全等的等边三角形如图1所示放置,其中点B 、C 、E 在同一直线上, (1)写出两个不同类型的结论;(2)连接BD ,P 为BD 上的动点(D 点除外),DP 绕点D 逆时针旋转60º到DQ ,如图2,连接PC ,QE ,①判断CP 与QE 的大小关系,并说明理由;②若等边三角形的边长为2,连接AP ,在BD 上是否存在点P ,使AP+CP+DP 的值最小,A C第21题图OBpm并求最小值.六、(本大题共12分)23.如图,抛物线2y ax bx c =++(a >0)的顶点为M ,若△MCB 为等边三角形,且点C ,B 在抛物线上,我们把这种抛物线称为“完美抛物线”,已知点M 与点O 重合,BC =2. (1)求过点O 、B 、C 三点完美抛物线1y 的解析式;(2)若依次在y 轴上取点M 1、M 2、…M n 分别作等边三角形及完美抛物线1y 、2y 、…n y ,其中等边三角形的相似比都是2:1,如图,n 为正整数.①则完美抛物线2y = ,完美抛物线3y = ; 完美抛物线n y = ; ②直接写出B n 的坐标;③判断点B 1、B 2、…、B n 是否在同一直线,若在,求出直线的解析式,若不在同一直线上,说明理由.江西省2017年中等学校招生考试ABCE DDABCEPB图1 第22题图 图20 1 2 3 4-1-2-3数学模拟试卷答案及评分意见一、选择题(本大题共6小题,每小题3分,共18分)1.D 2.C 3.C 4.A 5.A 6.D二、填空题 (本大题共6小题,每小题3分,共18分)7.1.207×1011 8.12 9.65413121=++xxx10.411.-1≤t<812.2或78三、(本大题共5个小题,每小题6分,共30分)13.(1)3+12213≤⎧⎪-⎨>⎪⎩xxx解:解不等式①,得x≤2,解不等式②,得x<-1,不等式组的解集为x<-1.………3分(2)解:∵五边形ABCDE是正五边形,∴∠DCB=∠EDC=108°,DC=BC∴∠CDB=36°∴∠GDB=72°,∵AF∥CD∴∠CDB=∠F=36°∴∠G=72°……………………3分14.解:a+2a+3÷a2-4a2+3a-1=a+2a+3÷(a+2)(a-2)a (a+3)-1 …………………2分=a+2a+3·a (a+3)(a+2)(a-2)-1=aa-2-a-2a-2………………………………4分=2a-2.………………………………………5分当a=12时,原式=-43.………………………6分15.解:如图,每个3分…………6分16.解:(1)50011000020=或5%.………………………2分(2)平均每张奖券获得的购物券金额为:500100020006500100502001410000100001000010000⨯+⨯+⨯+⨯=(元)∵14>10 ∴选择抽奖更合算.………………………6分17.解:(1)在Rt△ADF中,由勾股定理得,AD=AF 2-FD2=252-202=15(cm).………………………2分(2)AE=AD+CD+EC=15+30+15=60(cm).过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=EHAE,①②∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ). 答:点E 到AB 的距离为58.2cm .………………………6分四、(本大题3小题,每小题8分,共24分) 18.解:(1)当x ≥6时,设y 与x 之间的函数关系式为y =kx +b .根据题意,当x =6时,y =9;当x =8时,y =12.所以⎩⎨⎧9=6k +b ,12=8k +b . 解得⎩⎨⎧k =1.5,b =0.所以,y 与x 之间的函数关系式为y =1.5x .………3分 (2)根据图象可得,当x =8时,y =12,又因为p =1,q =0.5,………………5分可得12=1·8+60·0.5·8v,解得v =60.经检验,v =60是原方程的根. 所以该车行驶的平均速度为60 km/h . ………………8分19.解:(1)3÷25%=12(个),………………………1分112×360°=30°. 故投稿篇数为2所对应的扇形的圆心角的度数为30°;………………………2分 (2)12-1-2-3-4=2(个),(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇),………………………4分 该条形统计图补充完整为:…………………5分 (3)画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:8÷12=34.……………8分 20.解:(1)过点B 作BF ⊥x 轴于点F ,由题意可得BF =6,OF =18 ∵四边形OABC 是菱形, ∴OC =BC在Rt △OBC 中,62+(18-BC )2=BC 2 解得BC =10所以点A (8,6)将点A (8,6)代入ky x=,解得k =48, ………………4分 (2)设E (48,a a ),过点E 作EG ⊥x 轴于点G ,根据题意可知OG =a ,EG = 由作图可知EG ∥BF ∴△OGE ∽△BOF ∴ ,解得a =12,…………7分∴∴ ………………8分五、(本大题2小题,每小题9分,共18分)48a122183==OE OB 221==OE EB 48618=a a21.解:(1)连接OP ,∵∠PBA =12∠POA =28°,∴∠POA =56°,∵OP =OA , ∴∠POA =56°,∠OAP =12(180°-56°)=62°. ………………2分(2)当∠PBA <90°时,∠OAP =12(180°-2∠PBA )=90°-∠PBA …… 4分当∠PBA >90°时,∠OAP =∠PBA -90°……………6分(3)当AB 为腰时,当AB =AP 时,点P 的运动弧的度数是90度,故时间t =902︒︒=45,当AB =BP 时,点P 的运动弧的度数是180度,时间t =1802︒︒=90,当AB 为底时,即PB =AP 时,点P 的运动弧的度数是135度,故时间t =13567.52︒=︒9分 22.解:(1)答案不唯一,合理即可,如AD ∥BE ,四边形ABCD 、ACED 是菱形;四边形ABED 是等腰梯形;四边形ABED 是轴对称图形;………………2分 (2)①CP =QE ;理由:∵△AEC 是等边三角形, ∴CD=DE ,∠CDE =60º, ∵DP 绕点D 逆时针旋转60º到DQ , ∴PD =DQ ,∠PDQ =60º, ∴∠PDQ =∠QDE ,∴△DPC ≌△DQE∴CP =QE 。