高中数学 函数的概念 说课稿
高中数学函数说课稿(共8篇)
高中数学函数说课稿(共8篇)篇一:高中数学函数说课稿范文各位评委老师,大家好!我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。
我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。
恳请在座的专家评委批评指正。
一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。
学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,归纳。
高中数学-函数的概念说课稿
《函数的概念》说课稿说课人:张燕各位评委:大家好!今天我说课的内容是人教版高中数学必修1第一章第二节函数的概念第一课时。
我将从教材分析、教学目标、重点难点、教学过程设计及教学评价等方面来对本节课的教学进行说明。
一、教材分析——教材的特点、地位与作用本小节对函数概念的学习是在初中学过的函数概念的基础上从更严密的角度来定义函数.函数概念是整个中学数学中最重要的基本概念之一,它为后续学习指数函数、对数函数、幂函数等内容打下基础.而函数又是初等数学和高等数学中最基本最重要的内容之一,经常用到数学的各个分支里.它还是数形结合思想、函数与方程思想产生的载体.二、教学目标(1)知识与技能①理解函数的概念,初步学会用函数的定义判断函数.②会求一些最基本的函数的定义域、值域.③能通过函数的定义域和对应法则判断两个函数是否相等.(2)过程与方法①回顾初中函数的定义,然后通过三个背景实例,分别设置问题,在问题的引导下分析概括出三个实例的共同点,进而引出函数的概念.②在引入了函数概念的基础上给出函数的三要素.(3)情感、态度与价值观①通过对函数概念形成的探究,培养学生主动发现问题和分析问题的能力.②培养学生的抽象概括能力;学会数学表达和交流,发展数学应用意识.三、教学的重点和难点①重点:体会函数是描述变量之间相互依赖关系的重要数学模型,正确理解函数的概念、了解函数的三要素.②难点:对函数概念及符号()y f x的理解.四、教学过程设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(1).回忆旧知,引出困惑问题一:请举出初中学过的一些函数.x y 2=,2x y =,x y 1=等. 问题二:请同学们回忆初中函数的定义是什么? 在一个变化过程中,有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么说y 是x 的函数,x 叫自变量.[设计意图]:通过回忆初中的函数及函数的定义,为探究问题三作好铺垫. 问题三:)(0R x y ∈=是函数吗?学生活动:先由学生思考回答,对产生的两种意见展开小组讨论,学生可能解决不了.[设计意图]:由于受认知能力的影响,利用初中所学函数知识很难回答这些问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望,从而引出本节课的主题(用幻灯片打出课题).(2).创设情境,形成概念实例一:一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高为m 845,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:25130t t h -=.问题四1.t 的范围是什么?h 的范围是什么?2.t 和h 有什么关系?这个关系有什么特点?[设计意图]:引导学生用集合与对应的语言来刻画实例一,同时培养学生分析问题和提取信息的能力.事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高,需求越来越大,对环境的影响也越来越重,下面请同学们自学有关臭氧层空洞的问题和恩格尔系数的问题(课本实例二、三):实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从2001~1979年的变化情况. 实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”通过先对两个实例学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题五:实例一、实例二、实例三的对应关系在呈现方式上有什么不同? 问题六:以上三个实例有什么相同的特征?学生活动:让学生分组讨论交流,总结归纳出.共同特点:①都有两个非空数集B A 、;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B中都有唯一确定的y 值和它对应.[设计意图]:由前三个实例,抽象出函数概念的本质,未设计不是函数关系的对应图,这样处理有利于形成知识的正迁移.通过学生的“观察 分析 比较 归纳 概括 培养学生抽象思维的能力,同时也培养了学生的创新意识.问题七:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充)函数概念:设B A 、是非空的数集,如果按某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(. 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集. 问题八:请同学们根据现在函数的定义判断前面三个实例是否表示两个集合的函数关系?问题九:)(0R x y ∈=是函数吗?问题十:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时叫学生判断这些平移和旋转中的弧是否表示函数图像.方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? [设计意图]:是对函数概念的简单理解,同时也解决了问题三.(3).质疑解惑,辨析概念:问题十一:请同学们勾画出概念中的关键词,并用简洁的语言说明. 通过交流得出以下几点:① B A 、都是非空的数集;② 任意性与唯一性;③ 确定的对应关系,对应关系f 可以是解析式、图象、表格.问题十二:函数由几部分组成?三要素:定义域、值域、对应法则,缺一不可.问题十三:怎样理解符号)(x f ?在法则f 下,x 所对应的函数值,并结合生活实例说明.[设计意图]:目的在于帮助学生巩固函数的概念.(4).讨论研究,深化理解【例1】已知函数213)(+++=x x x f , (1)求函数的定义域;(2)求)32(),3(f f -的值;(3)当0>a 时,求)1(),(-a f a f 的值.想一想:函数的定义域该怎么求?符号()f a (a 为常数)与()f x 有哪些区别与联系?(学生先思考、计算,老师提问,师生共同完成)[设计意图]: 教师引导学生总结常见函数定义域的求法,使学生加深对定义域的认识;重在强化任意自变量的函数值是唯一的,加深对符号)(x f 的理解,体会由特殊到一般、具体到抽象的分析问题的方法,同时培养运算能力.这组问题重在加深对函数三要素的理解,以此培养学生观察问题、分析问题的能力.(5).即时训练,巩固新知练习1.求函数131)(-++-=x x x f 的定义域:练习2.已知函数,23)(3x x x f +=求)()2(a f f -+的值;学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善。
函数的说课稿
函数的说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“函数”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“函数”是中学数学中的重要概念之一,它不仅是数学学科的基础,也是解决实际问题的有力工具。
本节课选自人教版数学教材必修一,函数这一内容在教材中起着承上启下的作用。
函数的概念是在初中函数的基础上进行了深化和拓展,为后续学习指数函数、对数函数、幂函数等具体函数的性质和应用奠定了基础。
同时,函数的思想方法也贯穿于整个高中数学的学习中,对于培养学生的数学思维和解决问题的能力具有重要意义。
二、学情分析授课对象是高一年级的学生,他们在初中已经接触过函数的概念,对函数有了初步的认识。
但对于函数的本质和抽象概念的理解还存在一定的困难。
这个阶段的学生思维活跃,具有较强的好奇心和求知欲,但抽象思维能力和逻辑推理能力还有待提高。
因此,在教学中需要通过具体的实例和直观的图像,引导学生逐步理解函数的概念。
三、教学目标1、知识与技能目标理解函数的概念,能准确判断两个变量之间是否构成函数关系。
掌握函数的定义域、值域的求法。
会用区间表示函数的定义域和值域。
2、过程与方法目标通过对具体实例的分析和归纳,培养学生的观察、分析和概括能力。
经历函数概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过合作探究,培养学生的团队合作精神和创新意识。
四、教学重难点1、教学重点函数的概念。
函数的定义域和值域的求法。
2、教学难点对函数概念中“唯一确定”的理解。
函数符号的理解和运用。
五、教法与学法1、教法启发式教学法:通过设置问题,引导学生思考,激发学生的学习积极性。
讲授法:对重点和难点知识进行详细讲解,使学生能够准确理解。
实例教学法:结合生活中的实际例子,让学生感受到函数的广泛应用,提高学生的学习兴趣。
《函数的概念》说课稿(通用9篇)
《函数的概念》说课稿(通用9篇)《函数的概念》说课稿(通用9篇)作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,说课稿有助于提高教师的语言表达能力。
那么你有了解过说课稿吗?以下是小编整理的《函数的概念》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《函数的概念》说课稿篇1一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。
函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。
又是沟通代数、方程、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。
函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。
本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。
所以,学生对本节课的学习是相对比较容易的。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。
(三)情感态度价值观在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。
本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
(数学说课稿)函数的概念和图象 说课稿
函数的概念和图象说课稿一.本课贯彻的教学理念老师作为课堂的支架,让同学学习函数的过程成为在老师指导下让同学在学习数学的过程中,用自己的体验,用自己的思维方式,重新制造函数概念的过程。
本堂课的教学过程是呈现同学学习行为的过程,是让同学的思维得到呈现的过程。
二.说教材1.教材分析函数一章在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在学问方面,更重要的是在函数的思想、方法方面,将会让同学在今后的学习、工作和生活中受益无穷。
本小节介绍了函数概念和图象,我将本小节分为两课时,第一课时完成函数概念的教学,其次课时完成函数图象的教学。
这里我仅谈函数概念的教学。
函数的概念局部用三个实际例子设计数学情境,让同学探寻变量和变量的对应关系,结合学校学习的函数理论,在集合论的根底上,促使同学建构出函数的概念,体验结合旧学问,探究新学问,争辩新问题的欢快。
2.教学目标〔1〕学问目标1理解函数的概念,同学理解把怎样的对应关系才能称为函数;2理解函数定义域和值域的概念,并会求一些简洁函数的定义域。
〔2〕力量目标由实际问题动身,培育同学探究学问和抽象概括学问等方面的力量。
〔3〕情感目标通过对函数概念形成的探究过程培育同学发觉问题,探究问题,不断超越的创新品质3.教学重点和难点教学重点:对函数的概念的理解是重点。
本课通过同学对函数概念的建构过程和生疏稳固过程突出本课重点。
教学难点:从主观学问抽象成为客观概念是本课的难点。
本课通过老师创设多个教学情境,组织开展同学活动,老师作为同学活动的支架,解决本课的教学难点。
三.说教法曹一鸣博士认为:“突破教学模式,实现无模式教学,才是数学开展所追求的崇高境界。
〞在本课中,老师在教学过程中接受设问、引导、启发、发觉的方法,并机敏应用多媒体手段,以同学为主体,创设和谐、愉悦互动的环境,组织同学自主、合作的探究活动,引导同学探究新学问。
四.说学法首先,同学通过争辩老师在课堂上供应的实例和提出的问题,开放分析和争辩,发表个人的见解,接下来接受同学评价同学的方法提炼问题的中心思想。
高中数学函数的说课稿(精选5篇)
高中数学函数的说课稿(精选5篇)高中数学函数的说课稿(精选5篇)作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。
那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的高中数学函数的说课稿(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学函数的说课稿1一、教材说明本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题1.教材所处低位和作用学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。
特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。
2.学情分析学生的年龄特点和认知特点学生已具备的基本知识与技能二、教学目标知识与技能1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法2. 能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力过程与方法1. 通过三种方法的学习,渗透数形结合的思想2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣三、教学重点,难点重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)四、教法分析与学法指导本着以“学生发展为本”。
引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。
整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。
通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育五、教学过程教学环节教学环节与教学内容设计意图引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。
新人教高中数学必修1---函数的概念--说课稿
函数的概念各位老师,大家好!我是第xx组xx号考生,很高兴能够站在这里参加面试,我叫某某,毕业于某某大学某某专业,性格比较开朗,随和,能关心周围的人和事,和亲人朋友能够和睦相处,对生活充满信心,在某某公司从事某某一职,对教师这一职业非常崇敬。
我今天说课的题目是《函数的概念》,下面,我将从教材分析、教学目标、教学重难点、教学方法、学习方法、教学过程和板书设计等方面进行说课。
一、教材分析本节内容是选自新人教A版高中数学必修1第1章第2节第1部分的内容。
函数是中学数学一个重要的基本概念,函数思想也是整个高中数学最重要的数学思想之一,它不仅对所学过的集合作了巩固和发展,而且也是学好后继知识的基础和工具。
函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。
二、教学目标根据上述对教材的分析,我确定本节课的教学目标为:1、知识与技能目标:掌握函数的概念;理解函数的特征。
2、过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力。
3、情感、态度与价值观目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的科学态度。
[设计意图]:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。
三、重点与难点根据本节课的知识要求和教学目标,本节课的教学重点是:理解函数的模型化思想,用集合与对应的语言来刻画函数;教学难点是:符号“y=f(x)”的含义,函数定义域和值域的区间表示。
[设计意图]:首先通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。
四、教学方法新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者,基于这一教学理念和本节课的教学目标,我采用如下的教学方法:(1)在教师指导下的引导发现教学法:通过这样的教法可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力。
《函数的概念》说课稿
《函数的概念》说课一、教材解读1.学习任务分析函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”.2.学情分析从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.鉴于上述分析我制定了本节课的教学目标.3、教学目标设计根据《函数的概念》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:(1)知识目标:①掌握函数的概念,理解函数是一种特殊的映射;②掌握函数的三要素;③准确把握函数记号的含义,熟练掌握函数的几种表示法;(2)能力目标:①渗透数形结合的数学思想方法,具备函数模型化的思想与意识②培养学生观察、联想、类比、猜测、归纳的能力;(3)情感目标:①认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。
[设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现了素质教育的要求.4、重难点分析及课时安排教学重点:理解函数的概念,理解函数的模型化思想,用集合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;课时安排:1课时二、教法分析任何一堂课都是各种不同教学方法综合作用的结果,但我们认为本堂课有以下主要的教法.1. 创设问题情景: 以实际问题为背景,以学生熟悉的情境入手激活学生的原有知识,形成学生的“再创造”欲望,让学生在熟悉的环境中发现新知识,使新知识和原知识形成联系,由例子引出函数概念。
函数的定义说课稿
函数的定义说课稿各位评委老师:上午好!我今天我说课的课题是函数的定义。
下面我将围绕本节课教什么,怎么教,以及为什么这么教三个问题,从教材,教学方法,教学过程等三个方面逐一加以分析和说明。
一、说教材:1、地位、作用:函数的定义是高等教育出版社《数学》(基础模块)上册第三章第一节的内容。
本节是在对函数有了基本的认识之后编排的。
通过本节课的学习,既可以对初中所学的函数知识进一步巩固和深化,又可以为后面学习函数的表示方法打下基础,所以这节课在整个数学体系中起到一个承上启下的作用,以及为其他学科和今后的学习打下基础。
2、教学目标:根据本课教材的特点,教学大纲对本节的教学要求以及中职学生的知识储备和心理认知水平,确定以下教学目标:(1)知识目标:理解函数及函数值的概念及表示.(2)能力目标:通过函数概念的学习,培养学生的数学思维能力;(3)情感目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力,推理论证能力以及通过师生双边活动,初步培养学生运用知识的能力和良好的思维习惯的养成,以及学生的合作意识和创新精神,培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力。
3、教学的重点和难点:本着课程标准,在吃透教材基础上,我确立了如下的重难点:(1)教学重点:通过函数的概念突出重点如何求函数的定义域(2)教学难点:通过对函数的概念及记号的理解突破难点如何求函数在某一点处的函数值二、说教法:考虑到实际的校情和学情,我认为教学过程中的组织、管理和控制,是对教师最大的考验,在教学中我将更多的利用学生的形象思维、直觉思维和非智力因素,使用多媒体投影以及计算机辅助教学,为学生提供直观感性的材料,加深学生对问题的理解和认识,以期顺利完成教学任务。
老师采用数学实验法使学生对概念有直观的认识,采用点拨启发法使学生指出定义域,学生采用小组讨论法概括出函数的概念,活动法通过实践得出如何求函数的定义域,练习法总结出如何求函数在某一点处的函数值。
2.1.1函数的概念(第一课时)说课稿
及时反馈与调节原
[认知理论]
一切事物 都是相互联 系的辨证唯 物主义观。
4.总结提高
(1)函数的定义
一般地,设A,B是两个非空的数集,如果按某种对应法则f,对 于集合A中的每一个元数x,在集合B中都有唯一确定的元素y和它 对应,那么这样的对应叫做从A到B的一个函数(function),通常 记为
y=f(x),x∈A.
(1)每一个问题均涉及两个非空的数集A,B.
例如,在第一个问题中,一个集合A是由年份数组成,即 A={1949,1954,1959,1964,1969,1974,1979,1984,1989,1994,1999} 另一个集合B是由人口数(百万人)组成的,即 B={542,603,672,705,807,909,975,1035,1107,1177,1246}
4.总结提高过程的设计意图 指导思想与原则 认知理论
[设计意图]
[指导思想与原则 ]
使学生能够准
确理解并把握函 数的定义及函数 的三要素。
系统性与循序渐进 性相结合的原则。
[认知理论]
认识要不断 的深入和发展。
5.实践创新
例1:根据函数的定义判断下列对应是否为函数:
(1)x 2 , x 0, x R; x
古语中“函”通“含”。
(2)函数概念的分析
对于函数的意义,应从以下几个方面去理解:
(1) 对于变量x允许取的每一个值组成的集合A为函数y=f(x)的定义 域. (2)对于变量y可能取到的每一个值组成的集合B为函数y=f(x)的值 域. (3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都 有唯一确定的值与它对应。
若一物体下落2s,你能求出它下落距离吗? 这是通过代数表达式来体现:距离随时间的变化而变化
函数的概念说课稿
函数的概念第一.教材分析1.教材地位函数这一章在高中数学中,起着承上启下的作用.本节《函数的概念》是函数这一章的起始课.它上承集合,下引性质.是派生数学概念的强大“固着点”.2.学情分析在初中学生已经学习了变量观点下的函数定义;但对涉及函数本质的内容,要求是初步的. 从认知能力看,高一学生抽象思维能力相对较弱,要从函数实例中抽象出函数概念还有较大的困难.3.目标分析高中阶段要建立函数的“对应说”,强调用集合与对应语言来描述函数概念.4.教学重难点教学重点为:在研究已有函数实例的过程中,感受两个数集a,b之间所存在的对应关系f,进而用集合、对应的语言刻画这一关系,获得函数概念.教学难点也在于从主观知识抽象出函数的客观概念这一过程地突破以及对函数符号y=f(x)的理解。
第二.教法学法针对以上重难点的分析,第二个环节教法学法作如下考虑:1.教法思路以问题串为线索进行教学过程设计,为学生设计适当的认知过程,顺利实现从“变量说”到“对应说”的螺旋上升.2.学法指导众所周知,越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质,但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上强调在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”.第三.教学设计在对函数概念这一课时有了充分认识之后,我的第三个环节教学设计将按以下五个步骤逐层推进:回顾迎新,引入课题,从初中“变量说”下的函数概念出发;接着,以变量说为切入点,结合三个示例反复设问,实现概念认识的螺旋上升;在此基础上,概括抽象出对应观念下的函数概念;概念形成后,针对关键词,重点处理,加深本质理解;最后通过学生的自我总结和论述,达到认识上的升华.1.变量说首先抛出问题,请学生叙述举例.实际教学中,学生对函数的描述,容易与学过的多项式,等式,方程的概念相混淆,这时通过学生的合作探究,思维碰撞,去芜存菁,把其中最错误的认识去除掉.初步统一到函数是一个表示变化过程的概念.并在此基础上共同回顾初中函数概念变量说,学生易于理解,不涉及抽象符号,因此以此为突破口,展开概念的推进.接下来请学生举例,这一过程的教学要让学生广泛参与,大胆讲述.根据学生的举例,在自变量范围,因变量范围,对应关系三个问题上反复追问,让学生体会对应在判断函数概念中的核心地位.例如在正方形面积与边长的例子中要求学生先用概念解释问题,了解他们对函数本质的理解状况;接下来要特别要求指出对应关系是什么;最后要追问边长和面积的取值范围,感受数集的存在及因变量的构成情况.通过这样的设问让学生体会函数实例中存在的共性.对每一个举例都同样处理.通过一问一答的思维活动,在说理与反驳中逐步让学生树立对应关系和2个数集的认识.3.对应说经过这三个例题的学习,学生已经获得了对函数的进一步认识,黑板上也出现了这样一副板书.在教学中一方面要强调让学生在亲身体验中获得内心感悟,另一方面还要依靠明确具体的语言指引,加速领悟过程.这时也来到了第三个环节概括抽象,形成概念.由于前面的一系列铺垫,通过循序渐进地渗透和提高,这时再让学生描述函数就显得水到渠成了.通过右边三个式子直观上的强烈冲击,学生已经能够归纳出函数的主要特征.这时再由教师把”式”, ”图” ,”表”,适时提炼为一个抽象,简洁,统一的对应关系符号”f”,学生经历了从具体到抽象的概括过程,难点顺利突破,课堂也到了这节课的落脚点----函数概念,老师板书函数定义,学生逐词体会.上述一系列活动,始终在学生知识的“最近发展区”,倡导学生主动参与,在师生互动,生生互动中,突破本节课的重点。
函数的概念说课稿(精选)
函数的概念说课稿(精选)篇一:《函数概念》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。
下面介绍我对本节课的设计和构思,请您多提宝贵意见。
我的说课有以下六个部分:一、背景分析1、学习任务分析2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。
另外,通过对集合的学习,学生基本适应了有效的课堂模式,初步具备了小组合作、自主探究的学习能力。
基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。
二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。
1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;⑤会求一些简单函数的定义域。
2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。
3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。
三、课堂结构设计为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识,小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。
高中数学函数说课
高中数学函数说课篇一:高中数学函数的概念的说课稿关于函数的概念的说课稿一、说教材1、说教材的地位和作用《函数的概念》是高中新课标标准试验教材必修1第二章第二节第一课时的内容。
在此之前,学生已学习了一次函数,二次函数以及函数的传统定义,函数的后续内容主要有指数函数、对数函数和三角函数,函数是高中数学的主要内容,也是高考的主要内容,还是数学分析,复变函数的内容,在实践中应用广泛,是高中学生必须掌握的重点。
2、教学目标按照《新课程标准》的要求,根据上述对教材的分析,我确定本节课的教学目标是:知识与技能目标:掌握函数的概念;理解构成函数的要素;能求一些简单函数的定义域。
过程与方法目标:通过对具体问题的思考,分析,引导学生抽象概括出函数的概念,培养学生抽象概括的能力。
情感态度价值观目标:通过师生共同探索出函数的概念,总结出函数的要素,激发学生学习数学的兴趣,培养学生刻苦专研的精神。
3、教学重、难点根据上面对教材的分析及教学目标,我确定本节课的教学重点是函数的概念,难点是对函数的概念的理解,对符号y?f?x?的掌握。
二、说学情从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.三、说教法学法1、本节课采用的方法有:直观教学法、启发教学法、课堂讨论法。
2、采用这些方法的理论依据:我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。
函数的概念说课教案8篇
函数的概念说课教案8篇在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是作者为您分享的函数的概念说课教案8篇,感谢您的参阅。
函数的概念说课教案篇1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国#年4月份非典疫情统计:日期#新增确诊病例数#3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b 为从集合a到集合b的一个函数(function).记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本p20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本p22第1题2.判断两个函数是否为同一函数课本p21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
《函数的概念》说课稿[规整]
《函数的概念》说课稿[规整]函数的概念是数学中最基础、最重要的概念之一,更是理解数学本质的关键所在。
在高中数学的教学中,函数的概念被视为数学课程的重头戏,教师需要通过灵活的授课方法来向学生阐述函数的基本概念及其特点,并通过多样的教学方式引导学生深入理解和掌握函数的应用。
一、引入首先,我会展示一个常见的数学问题:“有一条直线过点A和点B,如何绘制这条直线?”这个问题通过平面直角坐标系的概念可以解答。
以直线上的两个点A(x1, y1)和B(x2, y2)为例,我们可以通过两点的坐标差值计算出直线的斜率k,即k=(y2-y1)/(x2-x1),进而绘制出直线,如下图所示。
(示意图)二、引入函数的概念接着,我会介绍另一个问题:“在第一象限内,如何将一个由点组成的图形与其坐标系上的每个点一一对应?”这个问题的答案就是函数的概念。
通过将坐标系上的每个点表示为(x, y)的形式,将x看作自变量,y看作因变量,可以将一个由点组成的图形看作一个函数y=f(x)。
在函数中,自变量x是图形上的点,因变量y是对应的y坐标,通过函数的定义,不同的自变量对应不同的因变量,从而实现对每个点的一一对应。
三、函数的定义及特点在讲解函数的定义时,我将着重强调以下内容:(1)函数的定义函数是一种特殊的关系,将集合A中的元素与集合B中唯一的元素对应起来,即y=f(x),其中x是A中元素,y是B中元素,x是自变量,y是因变量,f(x)是函数,称为关于自变量x的函数。
函数有两个基本特点,即定义域和值域。
其中,定义域是自变量x可以取的值的范围;值域是因变量y可以取的值的范围。
此外,函数还具有单调性、奇偶性、周期性等特点。
四、函数的应用最后,我将演示数学中常见的函数应用——直线函数。
直线函数可表示为y=kx+b,其中,k是斜率,b是截距。
我们可以利用直线函数解决各类几何问题,例如求两点间的距离、求等腰三角形的重心坐标、求某点到某线段的距离等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《函数的概念》说课稿
尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
今天我将从这一理念出发,以“教什么,怎样教和为什么这样教”为思路,从教材分析、学情分析、教法与学法指导和教学过程等几个方面展开我的说课。
一、说教材
首先谈谈我对教材的理解,《函数的单调性》是北师大版必修一第二章2.3的内容,本节课的内容是函数概念。
函数单调性内容是高中数学学习的一条主线,它贯穿整个高中数学学习中,又是高中数学学习的一个重要的性质,是研究和讨论其他基本初等函数性质的基础。
是已经学习过的函数的概念、图像和性质的延伸和拓展,同时又为后面基本初等函数的学习奠定了理论基础,在整个高中数学学习中起着承前启后的作用。
函数单调性的学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高学生的数学思维能力。
二、说学情
接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,首先就要深入了解所面对的学生。
本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力,在此之前,他们已经学会了函数的概念,函数的图像和表示方法,对函数性质有了初步的认识,这就为本节课内容的学习奠定了基础,但是对于用数学的语言来描述函数的图像性质关系的理解,学生可能会产生一定的困难。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。
(二)过程与方法
通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,进一步理解集合与对应数学思想方法。
(三)情感态度价值观
在自主探究,合作交流中,感受到探索的乐趣和成功的体验,体会到数学的逻辑性和严谨性,逐步养成良好的学习习惯,增强合作意识。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。
本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。
五、说教法和学法
新课标理念认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律,我采用启发法、讲授法、小组合作、自主探究等教学方法。
另外,我还会采用多媒体辅助教学法,用多媒体来直观呈现教学素材,激发学生的学习兴趣,增大教学容量,提高教学效率。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我们都说“好的开始是成功的一半”,同样好的引入能够激发学生的学习兴趣,起到温故知新的作用,因此,我利用学生已学过的知识进行提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。
从而引出本节课的课题《函数概念》。
设计意图:这里主要是利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架形成知识体系。
(二)新知探索
接下来是教学中最重要的新知探索环节,我们知道“兴趣是最好的老师”从学生身边的,感兴趣的事物入手,可以让学生体会到数学源于生活,回归于生活又服务于生活的本质。
因此,首先我利用多媒体展示生活实例
(1)某山的海拔高度与气温的变化关系;
(2)汽车匀速行驶,路程和时间的变化关系;
(3)沸点和气压的变化关系。
引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的概念,判断各个实例中的两个变量之间的关系是否为函数关系。
根据学生的回答,我可能得到以下的预设:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。
接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。
组织学生阅读课本,在阅读过程中注意思考以下问题
问题1:函数的概念是什么?初中与高中对函数概念的定义的异同点是什么?符号“”的含义是什么?
问题2:构成函数的三要素是什么?
问题3:区间的概念是什么?区间与集合的关系是什么?在数轴上如何表示区间?
给学生十分钟的时间,组织学生进行全班交流。
设计意图:以问题串的形式来探索新知,引起学生的认知冲突,使学生对旧知识产生质疑,从而激发学生的学习动机和求知欲。
根据学生的回答,可能得到以下的预设:①函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。
此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。
②函数的三要素包括:定义域、值域、对应法则。
③区间:对于区间与集合以及区间在数轴上的表示,我将以表格的形式来进行呈现
为了使得学生对函数概念的本质了解的更加深入此时进行追问
追问1:初中的函数概念与高中的函数概念有什么异同点?
讲解过程中注意强调,函数的本质为两个数集之间都有一种确定的对应关系,而且是一对一,或者多对一,不能一对多。
追问2:符号“y=f(x)”的含义是什么?“y=g(x)”可以表示函数吗?
讲解过程中注意强调,符号“y=f(x)”是函数符号,可以用任意的字母表示,f(x)表示与x对应的函数值,一个数不是f与x相乘。
追问3:对应关系f可以是什么形式?
讲解过程中注意强调,对应关系f可以是解析式、图象、表格
追问4:函数的三要素可以缺失吗?指出三个实例中的三要素分别是什么。
讲解过程中注意强调,函数的三要素缺一不可。
追问5:用区间表示三个实例的定义域和值域。
设计意图:在这个过程当中我将课堂完全交给学生,教师发挥组织者,引导者的作用,在运用启发性的原则,学生能够独立思考问题,动手操作,还能在这个过程中和同学之间讨论,加强了学生们之间的交流,这样有利于培养学生们的合作意识和探究能力。
(三)课堂练习
好,通过以上的学习,学生已经基本掌握了本节课的主要内容,这时候,他们急于寻找一块用武之地来展示自我,体验成功。
1、组织学生自己列举几个生活中有关函数的例子,并用定义加以描述,指出函数的定
义域和值域并用区间表示。
2、书本课后习题第二题
设计意图:这样的问题的设置,有助于学生由浅入深,由易到难,各有侧重,让学生对知识进一步巩固,并且能熟练掌握。
(四)课堂小结
在课程的最后我会以学生个体总结,小组归纳和集体补充的形式来进行提问:今天你有什么收获?
引导学生回顾:函数的概念、函数的三要素、区间的表示。
(五)作业设计
新课标指出,数学教育要适应学生个性发展的需要,使不同层次的学生得到不同程度的发展,因此,我将会采用分层作业的形式,分为必做题和选做题,必做题主要是面向全体学生,选做题主要是面向学有余力的学生,使他们在课后能够得到进一步的提升和拔高。
这样的设计能让学生理解本节课的核心,并为下节课学习函数的表示方法做铺垫。
七、板书设计
一份好的板书相当于一份微型教案,有助于学生明确本节课的重点和难点,并且能够及时的掌握与巩固。
我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:
以上几个环节环环相扣,层层深入,充分体现了教师与学生之间的交流与合作,在教师的整体调控下,学生积极的进行自主探究和动手动脑,对知识的理解逐渐深入,达到了较好的课堂效果。
八、课后反思
在本节课后,我会结合学生课上的表现和课后的作业反馈,进行有针对性的及时的反思,以此来做到长善救失,扬长避短,为下一节课的教学做好充分的准备。
以上就是我的说课,谢谢各位评委老师的聆听。