统计学原理公式及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学原理》常用公式汇总及计算题目分析
第一部分常用公式
第三章统计整理
a)组距=上限-下限
b)组中值=(上限+下限)÷2
c)缺下限开口组组中值=上限-1/2邻组组距
d)缺上限开口组组中值=下限+1/2邻组组距
第四章综合指标
i.相对指标
1.结构相对指标=各组(或部分)总量/总体总量
2.比例相对指标=总体中某一部分数值/总体中另一部分数值
3.比较相对指标=甲单位某指标值/乙单位同类指标值
4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象
总量指标
5.计划完成程度相对指标=实际数/计划数
=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标
1.简单算术平均数:
2.加权算术平均数或
iii.变异指标
1.全距=最大标志值-最小标志值
2.标准差: 简单σ= ;加权σ=
3.标准差系数:
第五章抽样估计
1.平均误差:
重复抽样:
不重复抽样:
2.抽样极限误差
3.重复抽样条件下:
平均数抽样时必要的样本数目成数抽样时必要的样本数目
4.不重复抽样条件下:
平均数抽样时必要的样本数目
第七章相关分析
1.相关系数
2.配合回归方程y=a+bx
3.估计标准误:
第八章指数分数
一、综合指数的计算与分析
(1)数量指标指数
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(-)
此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
(-)
此差额说明由于质量指标的变动对价值量指标影响的绝对额。
加权算术平均数指数=
加权调和平均数指数=
(3)复杂现象总体总量指标变动的因素分析
相对数变动分析:
= ×
绝对值变动分析:
-= (-)×(-)第九章动态数列分析
一、平均发展水平的计算方法:
(1)由总量指标动态数列计算序时平均数
①由时期数列计算
②由时点数列计算
在间断时点数列的条件下计算:
a.若间断的间隔相等,则采用“首末折半法”计算。公式为:
b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为:
(2)由相对指标或平均指标动态数列计算序时平均数
基本公式为:
式中:代表相对指标或平均指标动态数列的序时平均数;
代表分子数列的序时平均数;
代表分母数列的序时平均数;
逐期增长量之和累积增长量
二. 平均增长量=─────────=─────────
逐期增长量的个数逐期增长量的个数
(1)计算平均发展速度的公式为:
(2)平均增长速度的计算
平均增长速度=平均发展速度-1(100%)
第二部分计算题分析
要求写出公式和计算过程,结果保留两位小数。计算参考作业及期末复习指导。
1、根据所给资料分组并计算出各组的频数和频率,编制次数分布表;根据整理表计算、算术平均数.
例:某单位40名职工业务考核成绩分别为:
68 89 88 84 86 87 75 73 72 68
75 82 97 58 81 54 79 76 95 76
71 60 90 65 76 72 76 85 89 92
64 57 83 81 78 77 72 61 70 81
单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90
分为良,90─100分为优。
要求:
1.将参加考试的职工按考核成绩分组并编制一张考核成绩次数分配表;
2.指出分组标志及类型及采用的分组方法;
3.根据整理表计算职工业务考核平均成绩;
4.分析本单位职工业务考核情况。
解:(1)
(2) 分组标志为"
成绩",其类型为"数量标志";分
组方法为:变量分组
中的开放组距式分组,组限表示方法是重叠组限;
(3)平均成绩:
(分)
2、根据资料计算算术平均数指标、计算变异指标比较平均指标的代表性。
成 绩 职工人数 频率(%) 60分以下
60-70
70-80 80-90 90-100 3
6
15 12 4 7.5
15
37.5
30
10 合 计
40
100
例:某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:
日产量(件)工人数(人)
15 25 35 45 15 38 34
13
要求:⑴计算乙组平均每个工人的日产量和标准差;
⑵比较甲、乙两生产小组哪个组的日产量更有代表性?
解:(1)
(件)
(件)
(2)利用标准差系数进行判断:
因为0.305 >0.267
故甲组工人的平均日产量更有代表性
3、采用简单重复抽样的方法计算平均数(成数)的抽样平均误差;根据要求进行平均数(成数)的区间估计。
例:采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件.
要求:(1)计算合格品率及其抽样平均误差
(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其概率保证程度是多少?
解:(1)样本合格率
p = n1/n = 190/200 = 95%
抽样平均误差:
= 1.54%
(2)抽样极限误差Δp= t·μp = 2×1.54% = 3.08%
下限: △p=95%-3.08% = 91.92%
上限: △p=95%+3.08% = 98.08%