化工原理课程设计 乙醇-水连续浮阀精馏塔的设计解析

合集下载

乙醇水连续阀式精馏塔的设计

乙醇水连续阀式精馏塔的设计

化工原理课程设计任务书一设计题目:乙醇-水连续浮阀式精馏塔的设计二任务要求设计一连续筛板浮阀精馏塔以分乙醇和水具体工艺参数如下:原料加料量 F=100kmol/h进料组成 x=273F=馏出液组成 xD=釜液组成 xw塔顶压力 p=100kpa单板压降≤ kPa2 工艺操作条件:常压精馏,塔顶全凝器,塔底间接加热,泡点进料,泡点回流。

三主要设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔径及提馏段塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高4、设计结果汇总5、工艺流程图及精馏塔工艺条件图目录NO TABLE OF CONTENTS ENTRIES FOUND.摘要本设计是以乙醇――水物系为设计物系,以浮阀塔为精馏设备分离乙醇和水。

浮阀塔是化工生产中主要的气液传质设备,此设计针对二元物系乙醇--水的精馏问题进行分析,选取,计算,核算,绘图等,是较完整的精馏设计过程。

通过逐板计算得出理论板数为16块,回流比为,算出塔效率为,实际板数为32块,进料位置为第11块,在板式塔主要工艺尺寸的设计计算中得出塔径为1米,有效塔高米,浮阀数(提馏段每块76)。

通过浮阀塔的流体力学验算,证明各指标数据均符合标准。

本次设计过程正常,操作合适。

关键词:乙醇、水、二元精馏、浮阀连续精馏精馏塔、提馏段第1章前言精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。

对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合。

精馏塔底部是加热区,温度最高;塔顶温度最低。

精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。

精馏塔对塔设备的要求精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。

常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下:一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

化工原理水-乙醇连续精馏塔设计

化工原理水-乙醇连续精馏塔设计

【设计计算】(一)设计方案的确定本设计任务为分离乙醇和水的混合物。

对于二元混合物的分离,应采用常压下的连续精馏装置。

本设计采用泡点进料,将原料液经过预热器加热至泡点后送入精馏塔内,塔顶上升蒸汽采用全凝气冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器后送入储罐。

该物系属不易分离物系,最小回流比较小,故操作回流比取最小回流比的1.6倍,塔釜采用直接加热蒸汽加热,塔底产品经冷却后送至储罐。

(二)工艺计算1、物料衡算:原料液及塔顶、塔底产品的摩尔分数如下。

M A =46kg/kmol (乙醇) M B =18kg/kmol (水)x F =18/60.046/40.046/40.0+=0.21x D =18/08.046/92.046/92.0+=0.82又M F =M A ×x F +(1-x F )×M B=46×0.21+(1-0.21)×18=23.88 M D =0.82×46+(1-0.82)×18=40.96 ∴ q n.D =18)82.01(4682.0)24330/(1078.1⨯-+⨯⨯⨯=55.48kmol/hη=F D x q x q F n D n ⨯⨯..=21.0.82.048.55⨯⨯F qn =0.99∴ q n.F =218.82kmol/hq n.D /q n.F =(x F -x W )/(x D -x W )即 55.48/218.82=wwx x --82.021.0∴ x w =0.00295q n.F ×x F =q n.D +q n.w ×x w218.82×0.21=55.48×0.82+q n.w ×0.00295 ∴ q n.w =155.46kmol2、R min 的确定0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.000.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.00yx24610246810图1乙醇—水体系为非理想体系,其平衡曲线有下凹部分,当操作线与q 线的交点尚未落在平衡线上之前,操作线已与平衡线相切,如图1。

化工原理课程设计---乙醇—水溶液连续板式精馏塔设计

化工原理课程设计---乙醇—水溶液连续板式精馏塔设计

前言转眼之间,我们已经结束了大三的学习。

在这三年的学习当中,我们系统的学习了化工原理,物理化学,无机化学,有机化学,分析化学,化工设备与机械基础,机械制图,化工热力学等方面的知识,初步掌握了化学生产与化学设备之间的相互关系。

在李志礼老师的指导下,我们开始了化工原理课程设计。

实践是检验真理的唯一标准,学习了那么多的理论知识以后,终于有机会在现实过程中运用自己学习到的知识。

在这次设计过程中,我们得到了老师学长学姐们很多的帮助,在此对他们表示衷心的感谢,由于我们所知识的有限和能力的不足,在设计过程中难免会遇到设计不合理,考虑不周全的地方,希望老师给予理解与指导,我们会更加努力,争取做得更好。

设计者: 2011.7.6目录第一章设计题目与要求1.1 设计题目…………………………………………………………………………1.2 任务要求与数据……………………………………………………………第二章筛板式精馏塔的工艺设计与计算2.1 塔板数的确定2.2 塔径的确定第一章设计题目与要求1.1设计题目:乙醇—水溶液连续板式精馏塔设计1.2任务要求与数据:1、设计一连续精馏塔分离乙醇和水,具体工艺参数如下:(1)原料乙醇含量:质量分率40%(2)年产量:30000t(3)摩尔分率:x D=0.82;x W=0.022、工艺操作条件:常压精馏,塔顶全凝,泡点进料,泡点回流,R=(1.2~2)R min。

3、设备形式筛板塔。

4、设计工作日每年330天,每天24小时连续运行。

第二章 筛板式精馏塔的工艺设计与计算2.1 塔板数的确定2.1.1全塔物料衡算原料液中:设 乙醇(A ); 水(B ) 查附表得: M A =46.07 M B =18.02由已知条件可知:x F =0.4 x D =0.82 x W =0.02 年产量:30000t 每年330天,每天24小时连续运行h /34kmol .92)02.18*18.007.46*82.0(*24*33030000000=+=D由 F = D + Wx F *F=xD*D+x W *W得 F=194.4(kmol/h ),W=102.6(kmol/h ),由t-x(y)图用内插法可知: 塔顶温度t D = 78.3℃,塔底温度t w = 95.3℃平均温度℃8.8623.953.78=+=t进料温度:=f t 80.7℃相对挥发度的确定当t=95.5℃时:1(1)0.17(10.019)(1)(10.17)0.019BAABy xy xy xy xα-⨯-===--⨯=10.58当t=89.0℃时:2(1)0.3891(10.0721)8.20(1)(10.3891)0.0721A BB Ay x y xy x y xα-⨯-====--⨯当t=86.7℃时:3(1)0.4375(10.0966)7.27(1)(10.4375)0.0966A BB Ay x y xy x y xα-⨯-====--⨯当t=85.3℃时:4(1)0.4704(10.1238) 6.29(1)(10.4704)0.1238A BB Ay x y xy x y xα-⨯-====--⨯当t=84.1℃时:5(1)0.5058(10.1661)(1)(10.5058)0.1661BAABy xy xy xy xα-⨯-===--⨯=5.20当t=82.7℃时:6(1)0.5445(10.2337) 3.92(1)(10.5445)0.2337A BB Ay x y xy x y xα-⨯-====--⨯当t=82.3℃时:7(1)0.558(10.2608) 3.58(1)(10.558)0.2608A BB Ay x y xy x y xα-⨯-====--⨯当t=81.5℃时:8(1)0.5826(10.3273) 2.87(1)(10.5826)0.3273A BB Ay x y xy x y xα-⨯-====--⨯当t=80.7℃时:9(1)0.6122(10.3965)(1)(10.6122)0.3965BAABy xy xy xy xα-⨯-===--⨯=2.40当t=79.8℃时:10(1)0.6564(10.5079) 1.85(1)(10.6564)0.5079A BB Ay x y xy x y xα-⨯-====--⨯当t=79.7℃时:11(1)0.6599(10.5198) 1.79(1)(10.6599)0.5198A BB Ay x y xy x y xα-⨯-====--⨯当t=79.3℃时:12(1)0.6841(10.5732) 1.61(1)(10.6841)0.5732A BB Ay x y x y x y x α-⨯-====--⨯当t=78.74℃时:13(1)0.7385(10.6763) 1.35(1)(10.7385)0.6763A BB Ay x y x y x y x α-⨯-====--⨯当t=78.41℃时:14(1)0.7815(10.7472)(1)(10.7815)0.7472BAABy x y xy xy xα-⨯-===--⨯=1.21平均相对挥发度n n αααα...21==29.321.135.1...20.858.1014=⨯⨯⨯⨯泡点进料,泡点回流4.0x x 1q q ==∴=FxD=0.82α=3.29∴0.69x 11x *y qq q =+=)—(αα 46.0min =--=qq q D x y y x R回流比系数我们取折中值1.6R=1.6Rmin=0.73根据理论板数的捷算法有m i n ()(1)R R R -+=0.156由吉利兰关联图54.4lg )]x x -1)(x -1x[(lg ww D D min==αN→得5.01min=+-NNN →N=10块操作方程的确定精馏段:V =(R+1)D =(0.73+1)⨯92.34=159.25(kmol/h ),L =RD =0.73×92.34 =67.41(kmol/h ),提馏段:V =V –(1-q)F =159.75kmol/h ),-L =L +qF = 67.41+ 1×194.4=261.8(kmol/h ), 则精馏段操作线方程: 111+++=+R x x R Ry D n n =0.422x n +0.474 提馏段操作线方程:y n+1 = 0128.0-639x .1x x n n =-+VF D X V L FD全塔效率塔顶温度t D = 78.3℃, 塔底温度t w = 95.3℃ , 进料温度:=f t 80.7℃平均温度℃8.8623.953.78=+=t[8]由表用内差法求86.8℃ 下的粘度:μA= 0.449mpas ,μB =0.332mpas①则平均粘度μL = x F μA +(1-x F )μB=0.4*0.449+(1-0.4)*0.332=0.379mpasαμL =3.29*0.379=1.246②求全塔效率E T由αμL =1.246,由《化学化工物性数据手册》164页图10-20查得464.0)246.1(*49.0)*(49.0245.0245.0===--L T E μα ③求实际板数由TTE N N =得N=21.5≈22块 2.2精馏段物料衡算物料组成:塔顶温度t D = 78.3℃, 塔底温度t w = 95.3℃ , 进料温度:=f t 80.7℃平均温度℃8.8623.953.78=+=t查表2-1 得(1)塔顶 y 1= X D = 0.82 α= 3.29 nnn y y )1(x --=αα x 1=0.58(2)进料 x f =0.3965 y f =0.6122平均分子量 m M(1)塔顶:MVDm=0.82⨯46.07+(1-0.82)⨯18.02=41.54(mol g /)MLDm=0.58⨯46.07+(1-058)⨯18.02=34.29(mol g /)(3)(2)进料: MVFm=0.6122⨯46.07+(1-0.6122)⨯18.02=35.19(mol g /)MLFm=0.3965⨯46.07+(1-0.3965)⨯18.02=29.14(mol g /)平均分子量MVm =2VFmVDm M M +=38.37(mol g /)MLm =2LFMLDM M M +=31.72(mol g /)平均密度m ρ 由书]3[:1/LM ρ=a A /LA ρ+a B /LB ρ 塔顶:在78.3℃下:LA ρ=744.5(3/m kg ) LB ρ=972.96(3/m kg )LMDρ1=0.82/744.5+0.18/972.96 则LMD ρ=777.36(3/m kg )进料:在进料温度80.7℃下:LA ρ=741.5 (3/m kg ) LB ρ=971.4(3/m kg )a A =627.002.18)3965.01(07.46*3965.007.46*3965.0=-+LMFρ1=4.971)627.01(5.741627.0-+ 则LMF ρ=813.01(3/m kg ) 即精馏段的平均液相密LM ρ=(777.36+813.01)/2=795.18(3/m kg ) 平均气相密度VM ρ=RT PM VM =30.1)8.8615.273(*314.837.38*325.101=+(3/m kg ) 液体表面张力m σ(1) 塔顶: 查图表求得在78.3℃下:(物化手册)9.17=A σm mN / 89.62=B σm mN /(mN/m)00.2689.62*18.09.17*82.0=+=MD σ(m mN /)(2) 进料: 在80.7℃下:m mN / m mN A /86.17=σ m mN B /47.62=σm mN MF /78.4447.62*)3965.01(86.17*3965.0=-+=σ (m mN /)则 m σ=(MD σ+MF σ)/2=(26.00+44.78)/2=35.39(m mN /)气液负荷的计算由已知条件V =159.75h kmol / L =67.41h kmol / 得S V =VMVMvm ρ3600=31.130.1*360037.38*75.159= (s m /3) S L =LM LM LM ρ3600=00075.018.795*360072.31*41.67= (s m /3)塔径D 的计算两相流动参数计算如下LV F =VsLs∴LV F =0142.030.118.79531.100075.0=参考化工原理下表10-1(p129),我们取板间距 H T =0.45m m 6.00=L h H T -m 39.0=L h参考化工原理下图10-42筛板的泛点关联得:C 20f =0.081f C =2.02020⎪⎭⎫⎝⎛σf C =091.0)2035.39(081.02.0= u =f 5.02.02020⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛VVL f C ρρρσ=s m /25.2)30.130.118.795(*091.05.0=- 本物系不易起泡,取泛点百分率为85%,可求出设计气速n u '=0.85⨯2.25=1.91s m /)m u V D S 934.091.1*14.331.1*44===π 根据塔设备系列化规格,将D '圆整到D=1m 作为初选塔径,因此重新校核流速us m D V u s n /668.11*31.1*4422===ππ 实际泛点百分率为%3.74250.2668.1==f n u u222785.01785.04m D A T =⨯==π塔板详细设计由于S L =0.000753m /s ,D=1m ,所以2.7(m3/h )<45(m3/h).根据《化工原理(下)》表10-2选择单溢流,弓形降液管,不设进口堰。

乙醇水连续精馏塔的设计

乙醇水连续精馏塔的设计

乙醇—水连续精馏塔的设计目的:通过课程设计进一步巩固课本所学的容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。

在常压连续精馏塔中精馏分离含乙醇20%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于4%(均为质量分数)。

已知参数:(1)设计任务●进料乙醇 X = 20 %(质量分数,下同)●生产能力 Q = 80 t/d●塔顶产品组成 > 94 %●塔底产品组成 < 0.1 %(2)操作条件●操作压强:常压●精馏塔塔顶压强:Z = 4 KPa●进料热状态:泡点进料●回流比:自定待测●冷却水: 20 ℃●加热蒸汽:低压蒸汽,0.2 MPa●单板压强:≤ 0.7●全塔效率:E T = 52 %●建厂地址:天津地区●塔顶为全凝器,中间泡点进料,筛板式连续精馏设计容:(1)设计方案的确定及流程说明(2)塔的工艺计算(3)塔和塔板主要工艺尺寸的计算(a、塔高、塔径及塔板结构尺寸的确定;b、塔板的流体力学验算;c、塔板的负荷性能图)(4)设计结果概要或设计一览表(5)精馏塔工艺条件图(6)对本设计的评论或有关问题的分析讨论目录一、精馏流程的确定 (3)二、课程设计报告容 (3)1.塔的物料计算 (3)1.1 料液及塔顶、塔底产品含乙醇摩尔分数 (3)1.2 平均摩尔质量 (3)1.3 物料衡算 (3)2.塔板数的确定 (4)2.1 理论塔板数的求取 (4)2.2 全塔效率 (6)2.3 实际塔板数 (6)3.塔点工艺条件及物性数据计算 (6)3.1 操作压强 (6)3.2 温度 (6)3.3 平均摩尔质量 (7)3.4 平均密度 (7)3.5 液体表面力 (9)3.6 液体黏度 (9)4.精馏段气液负荷计算 (10)5.塔和塔板主要工艺尺寸计算 (11)5.1 塔径 (11)5.2 溢流装置 (12)5.3 塔板布置 (15)5.4 筛孔数与开孔率 (15)5.5 塔的有效高度(精馏段) (16)5.6 塔高计算 (16)6.筛板的流体力学验算 (16)6.1 气体通过筛板压强降相当的液柱高度 (16)6.2 雾沫夹带量的验算 (18)6.3 漏液的验算 (18)6.4 液泛验算 (18)7.塔板负荷性能图 (19)7.1 雾沫夹带线(1) (19)7.2 液泛线(2) (20)7.3 液相负荷上限线(3) (21)7.4 漏液线(气相负荷下限线)(4) (21)7.5 液相负荷下限线(5) (22)8.筛板塔的工艺设计计算结果总表 (23)9.精馏塔的附属设备及接管尺寸 (24)三、设计小结 (25)四、主要参考文献 (25)一、精馏流程的确定乙醇—水混合液经原料预热器加热至泡点后,送入精馏塔。

乙醇_水连续浮阀式精馏塔的设计说明

乙醇_水连续浮阀式精馏塔的设计说明

毕业设计(论文)手册学院:职业技术学院专业班级:练油技术0932 姓名:韩宏宇指导教师:时维振2012 年 6 月毕业设计(论文)任务书毕业设计(论文)任务书毕业设计(论文)评阅书毕业设计(论文)评阅书毕业答辩情况表乙醇-水连续浮阀式精馏塔的设计摘要化工生产常需进行二元液相混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和多次部分冷凝达到轻重组分分离目的的方法。

精馏操作在化工、石油化工、轻工等工业生产中占有重要的地位。

为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。

(7)塔设备是化工、炼油生产中最重要的设备类型之一。

本次设计的浮阀塔是化工生产中主要的气液传质设备。

此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程,该设计方法被工程技术人员广泛的采用。

本设计书对苯和甲苯的分离设备─浮阀精馏塔做了较详细的叙述,主要包括:工艺计算,辅助设备计算。

(4)关键词:乙醇、水、二元精馏、浮阀连续精馏精馏塔、提馏段AbstractChemical production often require two yuan of liquid mixture separation to achieve the purification or recovery of useful components of the purpose, distillation is the use of liquid mixtures of volatile components in the different degree with the help of repeated many of vaporization and condensation to light hydrocarbon separation method. Distillation in chemical, petrochemical, light industry and other industrial production plays an important role. Therefore, mastering the vapor-liquid phase equilibrium relations, familiar with the various types of towers operating characteristics, to choose, design and analysis in the process of separation of various parameters is very important. Tower equipment is chemical, oil refining production in the most important equipment of one type of. The design of the floating valve tray in chemical production is mainly of gas-liquid mass transfer equipment. The design for the two yuan of property of the distillation problem analysis, selection, calculation, calculation, drawing, is a complete distillation design process, the design method widely adopted by engineering technical personnel. The design of books on benzene and toluene separation equipment - float valve tower are describe in detail, mainly including: process calculation, calculation of auxiliary equipment, tower equipment drawings.Key words: ethanol, water, two yuan of distillation, float valve continuous distillation distillation tower, the stripping section目录前言 (11)第一章精馏塔的相关概述 (12)1.1 精馏原理及其在化工生产上的应用 (12)1.2 精馏塔对塔设备的要求 (12)1.3 常用板式塔类型及本设计的选型 (12)1.4 本设计所选塔的特性 (13)第二章精馏塔的设计容 (14)2.1 塔板的工艺设计 (14)2.1.1精馏塔全塔物料衡算 (14)2.1.2 乙醇-水相关计算 (14)2.1.3理论塔板的计算 (22)2.1.4塔径的初步设计 (24)2.1.5溢流装置 (25)2.1.6塔板布置及浮阀数目与排列 (27)2.2 塔板的流体力学计算 (29)2.2.1 气相通过浮阀塔板的压降 (29)2.2.2淹塔 (31)2.2.3物沫夹带 (32)2.2.4塔板负荷性能图 (33)2.3 塔附件设计 (39)2.3.1接管 (39)2.3.2筒体与封头 (41)2.3.3除沫器 (41)2.3.4裙座 (42)2.3.5 吊柱 (42)2.3.6人孔 (42)2.4 塔总体高度的设计 (43)2.4.1塔的顶部空间高度 (43)2.4.2 塔的底部空间高度 (43)2.4.3塔体高度 (43)2.5 附属设备设计 (43)2.5.1 冷凝器的选择 (43)2.5.2再沸器的选择 (44)第三章总结 (46)谢辞 (47)参考文献 (48)前言乙醇和水的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。

化工原理课程设计乙醇—水板式精馏塔设计

化工原理课程设计乙醇—水板式精馏塔设计

摘要本设计采用板式精馏塔(浮阀塔)分离乙醇—水溶液,年处理量10620吨,进料组成(质量分数)35.4%,塔顶产品组成92.5%,塔底产品组成0.05%。

首先找出乙醇—水溶液的气液平衡数据,然后利用Excel作图,求出最小回流比为3.23,,再建立总费用和最小回流比之间的关系,求出实际回流比为6.46,逐板计算确定理论板数,利用塔板效率求出实际板数,然后对塔和塔板的工艺尺寸进行计算,计算圆整得塔径D T=1.2m,塔高H=30.2m。

进而对塔的流体力学性能进行验算,利用塔设备的强度要求确定塔体壁厚,再利用产量和分离要求确定塔的附属设备及其尺寸,使之符合要求。

关键词:浮阀塔;回流比;实际板数;工艺尺寸AbstractThe design use the float valve tower distilling and separating the ethanol-water solution, the handing capacity is 10620 tons ,the feed composition (wt%) is 35.4%, the composition of top product is 92.5% and the bottom is 0.05%.At first , we find some necessary date and then use “Excel” to make a drawing and obtain our minimum reflux ratio. Next , we establish the pattern between the reflux ratio and the total cost to select our optional reflux ratio .The reflux ratio is 6.46, and the theoretical and practical plate number of our tower is 13 and 26. We also calculated the size of the tower and the plate and we obtain that the diameter of the tower is 1.2 meters, the height of the tower is 30.2 meters. After the liquid mechanic calculation of the tower, it is suitable to the capable of this floating valve tower. By calculating the intensity of the tower , we can get the thickness of the tower ,then use the production and separation requirements to determine the size of the ancillary equipments of the tower.Keywords: ethanol-water solution; float valves; optional reflux ratio; liquid mechanic calculation; technology dimension目录目录 (1)引言 (3)第1章设计条件与任务 (4)1.1设计条件 (4)1.2设计任务 (4)第2章设计方案的确定 (4)2.1操作条件的确定 (4)2.1.1 装置流程的确定 (5)2.1.2操作压力 (5)2.1.3进料状态 (5)2.1.4加热方式 (5)2.1.5冷却剂与出口温度 (6)2.1.6回流比的选择 (6)2.1.7热能的利用 (6)2.2确定设计方案的原则 (7)2.2.1满足工艺和操作的要求 (7)2.2.2满足经济上的要求 (7)2.2.3保证安全生产 (7)2.3 工艺流程 (8)3.1全塔物料衡算 (9)3.1.1原料液、塔顶及塔底产品的摩尔分数 (9)3.1.2原料液、塔顶及塔底产品的平均摩尔质量 (9)3.1.3原料液的进料流量 (9)3.1.4物料衡算 (9)3.2实际回流比及操作线方程 (10)3.2.1最小回流比及实际回流比确定 (10)3.2.2操作线方程 (11)3.2.3汽、液相热负荷计算 (11)3.3理论塔板数确定 (12)3.4实际塔板数确定 (13)3.5精馏塔的工艺条件及有关物性数据计算 (15)3.5.1操作压力计算 (15)3.5.2操作温度计算 (15)3.5.3平均摩尔质量计算 (15)3.5.4平均密度计算 (16)3.5.5液体平均表面张力计算 (18)3.5.6液体平均黏度计算 (20)3.6精馏塔的塔体工艺尺寸计算 (20)3.6.1塔径计算 (20)3.6.2精馏塔有效高度计算 (22)第4章塔板工艺尺寸的计算 (23)4.1塔板工艺尺寸的计算 (23)4.1.1溢流装置计算 (23)4.1.2塔板设计............................................... 错误!未定义书签。

乙醇---水连续精馏塔的设计化工原理设计

乙醇---水连续精馏塔的设计化工原理设计

化工原理课程设计说明书设计题目:乙醇---水连续精馏塔的设计设计人员:所在班级:2010级化学工程与工艺成绩:指导老师:日期:化工原理课程设计任务书一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%;(3)塔顶易挥发组分回收率为99%;(4)生产能力为50000吨/年90%的乙醇产品;(5)每年按330天计,每天24小时连续运行。

(6)操作条件a)塔顶压强 4kPa (表压)b)进料热状态自选c)回流比自选d)加热蒸汽压力低压蒸汽(或自选)e)单板压降 kPa。

三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论;2、设计图纸要求;1)绘制生产工艺流程图(A2 号图纸);2)绘制精馏塔设计条件图(A2 号图纸);五、设计基础数据:1.常压下乙醇---水体系的t-x-y 数据;2.乙醇的密度、粘度、表面张力等物性参数。

一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。

塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。

三、设备形式:筛板塔四、设计内容:1)精馏塔的物料衡算:原料乙醇的组成 xF==0.1740原料乙醇组成 xD0.7788塔顶易挥发组分回收率90%平均摩尔质量 MF =由于生产能力50000吨/年,.则 qn,F所以,qn,D2)塔板数的确定:甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设计中理论塔板数的计算采用图解法。

15万吨乙醇—水常压精馏塔设计讲解

15万吨乙醇—水常压精馏塔设计讲解

第1章 绪 论1.1 乙醇的成分、理化常数及用途乙醇的结构式为OH H C 52,俗称酒精,它在常温、常压下是一种易燃、易挥用途1.不同浓度消毒剂99.5%的酒精称为无水酒精。

生物学中的用途:叶绿体中的色素能在有机溶剂无水乙醇(或丙酮)中,所以用无水乙醇可以提取叶绿体中的色素95%的酒精用于擦拭紫外线灯。

这种酒精在医院常用,而在家庭中则只会将其用于相机镜头的清洁。

70%~75%的酒精用于消毒。

这是因为,过高浓度的酒精会在细菌表面形成一层保护膜,阻止其进入细菌体内,难以将细菌彻底杀死。

若酒精浓度过低,虽可进入细菌,但不能将其体内的蛋白质凝固,同样也不能将细菌彻底杀死。

其中70%的酒精消毒效果最好。

40%~50%的酒精可预防褥疮。

长期卧床患者的背、腰、臀部因长期受压可引发褥疮,如按摩时将少许40%~50%的酒精倒入手中,均匀地按摩患者受压部位,就能达到促进局部血液循环,防止褥疮形成的目的。

25%~50%的酒精可用于物理退热。

高烧患者可用其擦身,达到降温的目的。

因为用酒精擦拭皮肤,能使患者的皮肤血管扩张,增加皮肤的散热能力,酒精蒸发,吸热,使病人体表面温度降低,症状缓解。

但酒精浓度不可过高,否则可能会刺激皮肤,并吸收表皮大量的水分。

2.饮料乙醇是酒主要成分(含量和酒的种类有关系)如白酒为56度的酒。

注意:我们喝的酒内的乙醇不是把乙醇加进去,而是发酵出来的乙醇,当然根据使用的发酵酶不同还会有乙酸或糖等有关物质。

白酒的度数表示酒中含乙醇的体积百分比(西方国家常用proof表示酒精含量),通常是以20℃时的体积比表示的,如50度的酒,表示在100毫升的酒中,含有乙醇50毫升(20℃)。

另外对于啤酒是表示啤酒生产原料麦芽汁的浓度,以12度的啤酒为例,是麦芽汁发酵前浸出物的浓度为12%(重量比)。

麦芽汁中的浸出物是多种成分的混合物,以麦芽糖为主。

啤酒中乙醇浓度一般低于10%。

3.基本有机化工原料乙醇可用来制取乙醛、乙醚、乙酸乙酯、乙胺等化工原料,也是制取、染料、涂料、洗涤剂等产品的原料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计乙醇-水连续精馏塔的设计姓名学号年级专业化学工程与工艺系(院)化学化工学院指导教师张杰2013年 6月目录第一章绪论 (1)第二章塔板的工艺设计 (3)2.1 精馏塔全塔物料衡算 (3)2.2 常压下乙醇-水气液平衡组成(摩尔)与温度关系 (3)2.3 理论塔板的计算 (8)2.4 塔径的初步计算 (10)2.5 溢流装置 (11)2.6 塔板布置及浮阀数目与排列 (12)第三章塔板的流体力学计算 (14)3.1 气相通过浮阀塔板的压降 (14)3.2 淹塔 (15)3.3 液沫夹带 (15)3.4 塔板负荷性能图 (16)第四章附件设计 (20)4.1 接管 (21)4.2 筒体与封头 (22)4.3 除沫器 (22)4.4 裙座 (22)4.5 吊柱 (22)4.6 人孔 (23)第五章塔总体高度的设计 (23)第六章塔附属设备设计 (23)Q (23)6.1确定冷凝器的热负荷c6.2 冷凝器的选择 (24)参考书目 (24)主要符号说明 (25)结束语 (26)(一)设计题目乙醇-水连续精馏塔的设计(二)设计任务及操作条件1) 进精馏塔的料液含乙醇30%(质量分数,下同),其余为水;2) 产品的乙醇含量不得低于93%; 3) 残液中乙醇含量不得高于0.5%;4) 每年实际生产时间:7200小时/年,处理量:80000吨/年;5) 操作条件a) 塔顶压力:常压 b) 进料热状态:饱和液体进料 (或自选)c) 回流比: R=1.55Rmin d) 加热方式:直接蒸汽 e) 单板压降:≤0.7kPa (三)板类型浮阀塔(四)厂址临沂地区(五)设计内容1、设计说明书的内容1) 精馏塔的物料衡算;2) 塔板数的确定;3) 精馏塔的工艺条件及有关物性数据的计算;4) 精馏塔的塔体工艺尺寸计算;5) 塔板主要工艺尺寸的计算;6) 塔板的流体力学验算;7) 塔板负荷性能图;8) 精馏塔接管尺寸计算;9)设计结果汇总10) 对设计过程的评述和有关问题的讨论。

2、设计图纸要求绘制生产工艺流程图(选作);注:常压下乙醇-水气液平衡组成与温度的关系见课程设计教材附录(105页)第一章绪论塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的形式,可以分为填料塔和板式塔。

板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。

工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。

塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。

板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。

精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

本设计的题目是乙醇-水连续精馏浮阀塔的设计,即需设计一个精馏塔用来分离易挥发的乙醇和不易挥发的水,采用连续操作方式,需设计一板式塔将其分离。

设计方案简介本次课程设计的任务是设计分离乙醇-水的精馏塔,塔型选为浮阀塔,因为筛板塔与浮阀塔相比,浮阀塔有降液槽和溢流堰,气体顶开浮阀上升与塔盘上液体接触,传质在塔盘上进行,液体通过降液槽下降,其操作弹性较大。

本设计任务为分离乙醇-水混合物,进料为饱和液体进料,操作压力是一个大气压。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。

塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。

第二章 塔板的工艺设计2.1 精馏塔全塔物料衡算F :原料液流量(kmol/h) x F :原料组成(摩尔分数,下同) D :塔顶产品流量(kmol/h) x D :塔顶组成 W :塔底残液流量(kmol/h) x W :塔底组成原料乙醇组成:0.3046.070.1440.300.7046.0718.02F x ==+塔顶组成:0.9346.070.8390.930.0746.0718.02D x ==+塔底组成:0.00546.070.001960.0050.99546.0718.02W x ==+进料平均分子量:M =46.07×0.144+18.02×0.856=22.06kg/kmol进料量:7810503.677720022.06F ⨯==⨯kmol/h 物料衡算式为:F D WF D WFx Dx Wx =+=+ (1)联立代入求解:D=85.471 kmol/h W=418.206 kmol/h 2.2 常压下乙醇-水气液平衡组成(摩尔)与温度关系2.2.1 温度利用表中数据由插值法可求得t F 、t D 、t W 。

① t F :85.385.384.112.3816.6114.412.38Ft --=--,t F =84.73℃ ② t D :78.4178.4178.1574.7289.4383.974.72Dt --=--,t D =78.25℃ ③ t W :10010095.50 1.900.1960W t --=--,t W =99.536℃④精馏段平均温度:184.73+78.2581.4922F D t t t -+===℃ ⑤提馏段平均温度:284.7399.53692.13322F W t t t -++===℃2.2.2 密度 已知:混合液密度1ABLABa a ρρρ=+(2)混合气密度0022.4V T MT ρρρ-=(a 为质量分率,M -为平均分子量) (3)塔顶温度: t D =78.25℃ 气相组成y D :78.4178.1578.2578.1578.1589.4310089.43D y --=--, y D =85.09%进料温度:t F =84.73℃ 气相组成y F :85.384.185.384.7347.0450.8947.04100Fy --=--, y F =48.87%塔底温度:t W =99.536℃ 气相组成y W :10095.510099.536017.000100Wy --=--, y W =1.75%(1) 精馏段液相组成x 1:1x =x x D F +()/2,x 1=49.15% 气相组成y 1:1y ()/2D F y y =+,y 1=66.98%所以 146.070.491518.02(10.4915)L M -=⨯+⨯- =31.81kg/kmol 146.070.669818.02(10.6698)V M -=⨯+⨯- =36.81kg/kmol (2)提馏段液相组成x 2:2()/2W F x x x =+,x 2=7.30% 气相组成y 2:2y ()/2W F y y =+,y 2=25.31%所以 246.070.073018.02(10.0730)L M -=⨯+⨯- =20.07kg/kmol 246.070.253118.02(10.2531)V M -=⨯+⨯- =25.12kg/kmol由不同温度下乙醇和水的密度求得在1t -与2t -下乙醇和水的密度(单位:-3kg m )181.49t -=℃,1858081.4980730735735ρ--=--,1733.510ρ= kg/m ³2858081.4980968.6971.8971.8ρ--=--,2970.846ρ= kg/m ³同理:292.133t -=℃,'1722.293ρ= kg/m ³,'2963.828ρ= kg/m ³ 在精馏段110.491546.07/[0.491546.0718.02(10.4915)]10.7119733.510970.846L ρ⨯⨯+⨯--=+液相密度:1789.085L ρ= kg/m ³ 气相密度:136.81273.1522.4(273.1581.49)V ρ⨯=⨯+ =1.2657kg/m ³在提馏段210.073046.07/[0.073046.0718.02(10.0730)]10.1676722.293963.828L ρ⨯⨯+⨯--=+液相密度:2912.677L ρ= kg/m ³ 气相密度:225.12273.150.83922.4(273.1592.133)V ρ⨯==⨯+ kg/m ³2.2.3 混合液体表面张力二元有机物-水溶液表面张力可用下列各式计算公式: 114140m sw w so σϕσϕσ=+ (4)注:w w w w w o o x V x V x V ϕ=+ (5) o o o w w o ox V x V x V ϕ=+ (6)sw w sw sx V V ϕ= (7) so o so sx V V ϕ= (8)q wlg oB ϕϕ⎛⎫=⎪⎝⎭(9) 2320.441o o w w V q Q V T q σσ⎡⎤⎛⎫=⨯- ⎪⎢⎥⎝⎭⎣⎦(10) A B Q =+ (11) 2lg sw so A ϕϕ⎛⎫= ⎪⎝⎭(12) 1sw so ϕϕ+=(13)式中下角标w 、o 、s 分别代表水、有机物及表面部分,Xw 、Xo 指主体部分的分子数,w υ、o υ指主体部分的分子体积,w σ、o σ为水、有机物的表面张力,对乙醇q=2。

① 精馏段:181.49t -=℃18.0222.84789.085ww wm V ρ=== cm 3/mol46.0736.401.2657oo om V ρ=== dm 3/mol乙醇表面张力:1908016.217.159081.4916.2σ--=--,117.008σ=水表面张力:290809081.4960.762.660.7σ--=--,262.317σ=塔顶表面张力:()()()()2221o w w w w o o o w w o o o o w w o o x V x V x V x V x V x V x V x V ϕϕ-⎡⎤⎣⎦==++()()210.491522.840.2560.491536.400.508522.840.491536.40-⨯⎡⎤⎣⎦==⨯⨯⨯+⨯因为 0.4915o x =, 所以 10.49150.5085w x =-=2lg lg 0.2560.592w o B ϕϕ⎛⎫===- ⎪⎝⎭23230.441o ow w V q Q V T q σσ⎡⎤⎛⎫=⨯- ⎪⎢⎥⎝⎭⎣⎦2323217.00836.400.44162.31722.84 1.01581.49273.152⎡⎤⨯=⨯-⨯=-⎢⎥+⎣⎦0.592 1.015 1.607A B Q =+=--=-联立方程组 2lg sw so A ϕϕ⎛⎫= ⎪⎝⎭1sw so ϕϕ+=代入解得: 0.145sw ϕ= 0.855so ϕ=11414141400.14562.3170.85517.008m sw w so σϕσϕσ=+=⨯+⨯, 21.119m σ=②提馏段:292.133t -=℃''18.0219.744912.677ww wm V ρ=== cm 3/mol''46.0754.910.839oo om V ρ=== dm 3/mol 乙醇表面张力:'11009010092.13315.216.215.2σ--=--, '115.99σ= 水表面张力:,'21009010092.13358.860.758.8σ--=--,'260.29σ= ()()2'2'10.073019.744 3.7460.073054.910.92719.7440.073054.91w oϕϕ-⨯⎡⎤⎣⎦==⨯⨯⨯+⨯因为 '0.073ox =, 所以 '10.0730.927w x =-= '2''lg lg3.7460.574w o B ϕϕ⎛⎫=== ⎪⎝⎭23'23215.9954.910.44160.2919.7440.78592.133273.152Q ⎡⎤⨯=⨯-⨯=-⎢⎥+⎣⎦'''0.5740.7850.211A B Q =+=-=-联立方程组 '2''lg sw so A ϕϕ⎛⎫= ⎪⎝⎭''1swso ϕϕ+= 代入解得:'0.535swϕ= '0.465so ϕ='1/414141/41/40=0.53560.290.46515.99 2.42msw w so σϕσϕσ=+⨯+⨯= 故'34.33m σ= 2.2.4 混合物的粘度不同温度下乙醇和水的粘度如下表:181.49t -=℃,查表得:10.35μ= mPa ·s ,20.44μ= mPa ·s292.133t -=℃,查表得:'10.306μ= mPa ·s ,'20.388μ= mPa ·s 精馏段粘度()()112110.440.49150.3510.49150.39x x μμμ=+-=⨯+⨯-= mPa ·s提馏段粘度()()'''122210.3880.0730.30610.0730.312x x μμμ=+-=⨯+⨯-= mPa ·s2.2.5.相对挥发度①精馏段挥发度:由0.4915A x =,0.6698A y =得0.5085B x =,0.3302B y = 所以 0.66980.50842.100.33020.4915A B B A y x y x α⨯===⨯ (14) ② 提馏段挥发度:由'0.0730Ax =,'0.2531A y =得'0.927B x =,'0.7469B y = 所以 '''''0.25310.9274.300.74690.0730A B B A y x y x α⨯===⨯ (15) 2.2.6.气液相体积流量计算根据x-y 图得:minmin 0.8490.760.747910.8490.73D g D g y y R R x x --===+-- 所以 min 2.97R =取min 1.55 1.55 2.97 4.6035R R ==⨯= (1)精馏段: 4.603585.4710.1093600L RD ⨯=== kmol/s (16)()()4.6035185.47110.1333600V R D +⨯=+== kmol/s (17)已知:131.81L M -= kg/kmol ,136.81V M -= kg/kmol 1789.085L ρ= kg/m ³,1 1.2657V ρ= kg/m ³质量流量:1131.810.109 3.467L L M L -==⨯= kg/s (18) 1136.810.133 4.896V V M V -==⨯= kg/s (19) 体积流量:31113.4674.3910789.085s L L L ρ-===⨯ m ³/s (20)1114.8963.8681.2657s V V V ρ=== m ³/s (21)(2)提馏段:因本设计为饱和液体进料,所以q=1'503.6770.1090.2493600L L qF =+=+= kmol/s (22) ()'10.133V V q F =+-= kmol/s (23) 已知:220.07L M -= kg/kmol ,225.12V M -= kg/kmol 2912.677L ρ= kg/m ³,20.839V ρ= kg/m ³质量流量:'2220.070.249 4.997L L M L -==⨯= kg/s (24) '2225.120.133 3.341V V M V -==⨯= kg/s (25) 体积流量:32224.9975.4810912.677s L L L ρ-===⨯ m ³/s (26)2223.3413.9820.839s V V V ρ=== m ³/s (27)2.3 理论塔板的计算理论板:指离开这种板的气液两相互成平衡,而且塔板上液相组成均匀。

相关文档
最新文档