分式复习(1)
《分式复习》教案
《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。
2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。
3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。
四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。
教学资源:教材、PPT、练习题、实际问题案例。
教学时间:1课时。
六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。
2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。
3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。
4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。
七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。
分式复习1
其中A叫做分子,B叫做分母.
分式及其相关概念 强化训练:
1.下列各式中,哪些是分式?
m m 1 2 5 a b xy (1) , , x , , , 8 a 3 x6 2 A 5x 2y
2 2
注意:分式
中,分母 B 中一定要有字
5 a 1 ( 2) , ,a a b
2
母。 温馨提示:
B
分式
A
x 1 无意义的条件
{ B≠0
.
(2)
若分式
3x 6 2x 1 B.
的值为 0,则() X 1 2 C. X 1 2 D. X 2
c
A. X -2
本章知识网络
分 2、分式的基本性质 式
3、分式的运算 4、分式方程
1、分式概念 ⑴分式有意义的条件 ⑵分式的值的情况讨论
(2)若值为0,则x应满足( B )
A、x=2 C、 x
2
B、x =-2 D、x =-1或x =2
2
a b ab A 计算 的结果是() a b a A. a -b b B. ab b C. a -b a D. ab a
x+3 2-x 3 10.学完分式运算后,老师出了一道题“化简: + ”. x+2 x2-4 x+3x-2 x-2 x2+x-6-x-2 x2-8 小明的做法是:原式= - 2 = = 2 ; 2 2 x -4 x -4 x -4 x -4 小亮的做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4; x+3 x-2 x+3 1 x+3-1 小芳的做法是:原式= - = - = =1. x+2 x+2x-2 x+2 x+2 x+2 其中正确的是( ) A.小明 B.小亮 C.小芳 D.没有正确的
分式章节复习
未知派教育版权所有 未经允许 请勿外传 第 1 页未知派教育 打造数学补习最高品质 电话:6083301 地址:海沧区嵩屿北一里33号(未来海岸浪琴湾S5)202分式章节复习【知识点一】分式的概念、分式的值为0、分式有无意义的讨论:(1)分式的判断:关键看分母中是否含有字母。
(2)分式的值为0:同时满足两个条件:(1)分母不为0(前提)(2)分子为0.(3)分式有无意义的讨论:关键看分母为不为0.【范例选讲】例1、如果分式23273x x --的值为0,则x 的值应为 . 例2、已知分式235x x x a--+: 当x =2时,分式无意义,则a = ;当a =6时,使分式无意义的x 的值共有 个. 例3、若m 为正实数,且13m m -=,221m m -则= 【对应练习】 1、下列式子是分式的是( ) A .2x B .1+x x C . y x +2 D . 3x 2、已知2111=-b a ,则b a ab -的值是( ) A .21 B .-21 C .2 D .-2 3、设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( ) A. BCD . 34、已知当x =-2时,分式a x b x +-无意义,当x =6时,此分式的值为0,则=⎪⎭⎫ ⎝⎛a b a . 【知识点二】分式的基本性质、分式的符号法则:1、分式的基本性质:B A =C B C A ⋅⋅=C B C A ÷÷(0≠c )2、分式的符号法则:B A =B A --=-B A -=-BA -未知派教育版权所有 未经允许 请勿外传 第 2 页未知派教育 打造数学补习最高品质 电话:6083301 地址:海沧区嵩屿北一里33号(未来海岸浪琴湾S5)202例1、化简aa a -+-111=________ 例2、若把分式xyy x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 例3、解分式方程:1233x x x =+--例4、下列等式:①()a b c--=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +;④m n m --=-m n m -中,成立的( ) A .①② B .③④ C .①③ D .②④【对应练习】1、填空:() 1932=-+a a 2、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( ) A 、扩大3倍; B 、缩小3倍; C 、保持不变; D 、无法确定。
分式复习教案(经典)
分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。
【2013版新教材】2013-2014学年八年级上数学第一单元分式复习(1)导学案
分式复习学案一、学习目标: 姓名:1、 灵活运用分式的符号法则,熟练地进行分式的运算;2、 会解可化为一元一次方程的分式方程,并会验根;以及分式方程的应用。
二、学习重点:1、 分式的四则混合运算;2、 解分式方程以及分式方程的应用;三、课前知识梳理:8、分式方程: 的方程;解分式方程的思路:去分母,化分式方程为 ;解分式方程的关键:方程两边同乘以 ;解分式方程易错处:分式方程一定要验根!切记。
四、例题讲解例1、先化简,再求值:321111a a a a a------,其中a=12。
点拨:本题可以看作两个分式与三个整式的和,也可以看作是两个分式与一个整式的和。
通分时,整式看作是分母为的分式,分数线起着括号的作用,应该是211a a ++-,小心! 解:原式=31a a - 211a a ++- 【练习】化简:①35(2)242a a a a -÷+---; =31a a - 2(1)(1)1a a a a -++-- =∴当a=12时,原式= 。
例3、解方程:232t t t t -=+-; 【练习】解方程:21820242x x x ++=+--; 本题转化为整式方程后一定要检验! 解:解:两边同乘以 ,得 解之得检验:把t= 代入 ,∴ 。
例4、当m 取什么值时,关于x 的方程2361x m x x x x++=--有增根? 点拨:先把分式方程去掉分母转化成整式方程,化简整式方程。
因为原方程有增根,那么这个增根就会使分母等于0,故得到增根,代入化简后的整式方程,从而得到m 的值。
解:原方程可化为 ;两边同乘以 ,得 ;整理得 。
∵关于x 的方程2361x m x x x x++=--有增根 ∴x= 或者x= ;当x= 时,代入 ,解得m= ;当x= 时,代入 ,解得m= 。
∴当m 时,关于x 的方程2361x m x x x x++=--有增根。
例6、市政公司承建一条6000米长的防洪大堤,修了30天后,气象部门通知汛期将提前到达,公司增派人手抢建大堤,工效比原来提高20%,工程恰好比原计划提前5天完工。
北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第五章复习一、填空题 1.当x 时,分式2+x x有意义。
2.在函数y=22-x 中,自变量x 的取值范围是 。
3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。
5.约分:112--x x = 。
6.化简211xx x -÷的结果是 . 7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。
二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。
10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab的结果为( ) A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。
13.计算()a b a bb a a+-÷的结果为( )A .a b b - B .a b b + C .a b a - D .a ba+ 14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中31x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
初中数学方程与不等式之分式方程知识点总复习附答案解析(1)
初中数学方程与不等式之分式方程知识点总复习附答案解析(1)一、选择题1.关于x 的分式方程230+=-x x a解为4x =,则常数a 的值为( ) A .1a = B .2a =C .4a =D .10a =【答案】D 【解析】 【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可. 【详解】解:把x=4代入方程230+=-x x a,得 23044a +=-, 解得a=10.经检验,a=10是原方程的解 故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为0.2.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x【答案】B 【解析】 【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【详解】解:设第一批购进x 件衬衫,则所列方程为:10000x +10=()1470001400x +.故选B .此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.3.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.解:211x k x x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.5.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.若关于x 的分式方程233x mx x -=--有增根,则m 的值是( ) A .1- B .1C .2D .3【答案】B 【解析】根据分式方程的增根的定义得出x-3=0,再进行判断即可. 【详解】 去分母得:x-2=m , ∴x=2+m ∵分式方程233x mx x -=--有增根, ∴x-3=0, ∴x= 3, ∴2+m=3, 所以m=1, 故选:B . 【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0, 解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.把分式方程11122x x x--=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2【答案】D 【解析】 【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘. 【详解】 解:11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2 故选:D 【点睛】本题考查解分式方程.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则下面所列方程正确的是( ) A .4116x x x +=+- B .416x x x =-+ C .4116x x x +=-- D .4116x x x +=-+ 【答案】D 【解析】 【分析】首先根据工程期限为x 天,结合题意得出甲每天完成总工程的11x -,而乙每天完成总工程的16x +,据此根据题意最终如期完成了工程进一步列出方程即可. 【详解】∵工程期限为x 天,∴甲每天完成总工程的11x -,乙每天完成总工程的16x +, ∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成, ∴可列方程为:4116x x x +=-+, 故选:D. 【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( ) A .50004000100051.2x x x=+- B .5000100040005 1.2x x x +=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D 【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解. 故选B . 【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥-【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【详解】213x mx -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤, 故选:A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值13.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10, 不等式组整理得:y<9y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.若关于x 的分式方程2233x mx x -=--有增根,则m 的值为( ). A .3 B.CD.【答案】D 【解析】解关于x 的方程2233x mx x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m = 故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.16.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()A.5x+16=52xB.5x=52x+16C.5x+10=52xD.5x-10=52x【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得, 5x=52x+16所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.17.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A.【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.18.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806 x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.19.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a,若数a使关于x的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.20.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4故选D .【点睛】 本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.。
分式计算复习专题课教案(提高版)
分式计算复习专题课教案(提高版)第一章:分式的概念与基本性质1.1 分式的定义解释分式的含义:分子与分母都为整式,分母不为零的代数表达式。
强调分式中的各个元素:分子、分母、分界线。
1.2 分式的基本性质复习分式的基本性质,如:分式的值不随分子、分母的符号变化而变化。
演示分子与分母乘以(或除以)同一个非零整式,分式的值不变。
第二章:分式的运算2.1 分式的加减法讲解分式加减法的运算规则:通分后分子相加(减),分母保持不变。
举例说明如何进行分式的加减运算,并强调通分的重要性。
2.2 分式的乘除法解释分式乘除法的运算规则:分子与分子相乘,分母与分母相乘。
演示如何进行分式的乘除运算,并提示约分的技巧。
第三章:分式的化简与求值3.1 分式的化简介绍分式化简的常见方法:约分、因式分解。
举例说明如何化简分式,并强调化简的目的:简化表达式,便于计算。
3.2 分式的求值讲解如何求解分式的值:将变量代入分式中,进行计算。
强调求值时需要注意的问题:确保代入的变量值使分母不为零。
第四章:分式的应用4.1 分式在实际问题中的应用介绍分式在实际问题中的应用场景,如:比例计算、分段函数等。
演示如何将实际问题转化为分式问题,并解决。
4.2 分式的综合应用案例分析提供一些综合性的案例,让学生练习分式的应用。
引导学生运用分式的知识解决实际问题,培养其应用能力。
第五章:分式的复习与拓展5.1 分式的复习要点总结分式的概念、运算规则、化简与求值等关键知识点。
强调学生需要掌握的分式计算的基本技能。
5.2 分式的拓展与提高介绍一些分式的拓展知识,如:分式的极限、分式函数等。
提供一些提高性的练习题,激发学生对分式计算的兴趣与深入学习。
第六章:分式的综合题型6.1 分式的混合运算讲解分式的混合运算,包括加减乘除以及括号的运用。
提供混合运算的例题,引导学生逐步解决复杂分式问题。
6.2 分式的复合运算介绍分式的复合运算,如:先乘除后加减、先化简后求值等。
分式复习专题
分式专题复习(一) 分式基础 导学案学习目标1、经历知识梳理、类比与整合的过程,体验自主学习,感受成功的喜悦。
2、通过复习,进一步了解分式的意义与性质;掌握分式有意义、值为零的条件;一、分式的意义A 、B 是整式,并且 ,那么BA 就叫做分式。
例1. 下列各式:43a ,n m a -8,11-2+x x ,π5-x ,a 34,1-5π,其中分式是二、分式有意义的条件分式B A 有意义的条件是 ; 分式BA 无意义的条件是 例2. 当x 时,分式21+-x x 有意义; 若分式122-+x x 无意义,则x三、分式值为零的条件分式BA 值为零的条件是 例3.(1)当x 时,分式21-+x x 的值为0 (2)当x 时,分式33--x x =0; 若分式242--a a 的值为0,则a四、分式的基本性质:分式的基本性质是 例4. 填空: (1)b a ab b a 2)(=+ (2))()(222y x y x y x -=+-五、复习成果检验1、代数式13+x x 、212+-x 、1+πa 、112--x x 、πa 中,分式有( ) A 、1个 B 、2个 C 、3个 D 、4个2、如果把分式yx xy +2中的x 和y 的值都扩大2倍,那么分式的值( ) A 、扩大两倍 B 、不变 C 、缩小两倍 D 、无法确定3、分式)1)(32()1(4+-+x x x x 有意义的条件是( ) A 、x ≠23 B 、x ≠-1 C 、x ≠23或x ≠-1 D 、x ≠23且x ≠-1 4、当x___________时,分式43x x --有意义; 当x____________时,分式||99x x -+的值为零; 当x 时,分式422--x x 无意义。
5、(1)ba ab a 22)(2=-; (2)2)(22-=-x x x x 八、本节课小结教学反思:。
人教版八年级数学《分式》期末复习一
分式复习一1、分式的概念:形如BA ,其中A ,B 都是整式, 且B 中含有字母。
.例1:下列式子:(1)b a b a +- (2)π32-x (3)14-x (4)2x属于分式的有(1)(3} 。
例2:有理式x2,)(31y x +,3-πx ,x a -5,42yx -中,分式有( B )。
(A )1个 (B )2个 (C )3个 (D )4个小练习: 1.下列各式:x 2、22+x 、x xyx -、33yx +、23+πx 、()()1123-++x x x 中,分式有(C )A 、1个 B 、2个 C 、3个 D 、4个 2.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π中,分式有 。
2、分式是否有意义:对于分式A B来说,当分母B ≠0时,分式A B有意义;当分母B=0时,分式A B无意义。
例3、分式322--x x 有意义,则x 取值为( C )。
(A )2≠x (B )3≠x (C )23≠x (D )23-≠x例4、当x 时,分式42-x x无意义。
小练习:1、当x ≠ 3时,代数式32-x 有意义.当38-时,分式8x 32x +-无意义;2、当x 时分式xx2121-+有意义。
3、使分式24xx -有意义的x 的取值范围是(B) A. 2x = B.2x ≠ C.2x =- D.2x ≠-4、列分式中,一定有意义的是(D )(A )152--x x (B )yy 312+ (C )12+x x (D )112+-y y3、分式A B等于0,则分子A=0,且B ≠0。
例5、若分式xx-+44的值为0,则x 值为( a )。
(A )4-=x (B )4=x (C )0=x (D )0≠x例6、若分式293x x-+的值为0,则x 的值为( B )。
(A )3=x (B )3-=x (C )3x =± (D )不存在小练习:1、若分式112+-x x 的值为0,则x 的取值为( A )A 、1=xB 、1-=xC 、1±=xD 、无法确定2、分式392--x x 当x = -3 时分式的值为零。
分式方程应用题-复习 (1)
解:设甲每小时做x个零件则乙每小时做( x -6)个零件,
依题意得:9Leabharlann 6090x6
x
60x
x 6
请审题分析题意 设元
90x 60x 540
我们所列的是一
30x 540
x 18
个分式方程,这 是分式方程的应
用
经检验X=18是原方程的根。
由x=18得x-6=12
答:甲每小时做18个,乙每小时12个
未知量,而是设另外的量为未知量,这种设未知数的 方法叫做设间接未知数.
在列分式方程解应用题时,设间接未知数,有时 可使解答变得简捷.
【例】 甲、乙两人做某种机器零件,已知甲每小时 比乙多做6个,甲做90个零件所用的时间和乙做60个零 件所用时间相等,求甲、乙每小时各做多少个零件?
等量关系:甲用时间=乙用时间
解:设甲每小时行驶x千米,那么乙每小时行驶(x+4)千米 根据题意,得
5x 4(x 4) 20 40
x4
x 60 60
解之得, x1=16, x2= - 2, 都是原方程的根
但x= - 2 不合题意,舍去
所以x=16时, x+4=20
答:甲车的速度为16千米/小时,乙车的速度为20 千米/小时。
5、A,B两地相距135千米,两辆汽车从A地开往B地,
大汽车比小汽车早出发5小时,小汽车比大汽车晚到30
分钟.已知小汽车与大汽车的速度之比是5:2,求两辆
汽车各自的速度.
解:设小汽车的速度为5x,大汽车的速度为2x,则
135 135 5 30
2x 5x
60
解得x=9
经检验x=9是方程的解。
2、某工人师傅先后两次加工零件各1500个,当第 二次加工时,他革新了工具,改进了操作方法,结 果比第一次少用了18个小时.已知他第二次加工效 率是第一次的2.5倍,求他第二次加工时每小时加 工多少零件?
初中数学方程与不等式之分式方程知识点总复习附解析(1)
初中数学方程与不等式之分式方程知识点总复习附解析(1)一、选择题1.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .2.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且B . 2 B 3m m >≠C .m<2m 3≠且D .m>2 【答案】B【解析】【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠.【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠故选:B.【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2 【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】 解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3,将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2, ∴52m +≠2, ∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.6.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.7.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】【分析】【详解】 甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A.8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D【解析】【分析】 根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月饼共1500个,已知购进 A 种月饼和 B 种月饼的费用分别为3000元和2000元,且 A 种月饼的单价比 B 种月饼单价多1元.求 A 、B 两种月饼的单价各是多少?设 A 种月饼单价为x 元,根据题意,列方程正确的是( )A .3000200015001x x +=+ B .2000300015001x x +=+ C .3000200015001x x +=- D .2000300015001x x +=- 【答案】C【解析】【分析】设A 种月饼单价为x 元,再分别表示出A 种月饼和B 种月饼的个数,根据“购进A 、B 两种汾阳月饼共1500个”,列出方程即可.【详解】设A 种月饼单价为x 元,则B 种月饼单价为(x -1)元, 根据题意可列出方程3000200015001x x +=-, 故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2,∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】 首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 【答案】D【解析】【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解.【详解】方程两边同乘以3x (x+5)得,x+5=6x ,解得x=1,经检验,x=1是原分式方程的解.故选D.【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.13.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.14.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .15.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6【答案】A【解析】【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【详解】 解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k , ∵不等式组只有4个整数解,∴0≤﹣3k <1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1, ∵分式方程的解为正数,∴﹣2k +1>0且﹣2k +1≠1,解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2,故选A .【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.16.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15 C .﹣6 D .﹣4【答案】D【解析】【分析】先根据分式方程有正整数解确定出a的值,再由不等式组无解确定出满足题意的a的值,求出之和即可.【详解】解:分式方程去分母得:2+ax﹣2x+6=﹣4,整理得:(a﹣2)x=﹣12(a﹣2≠0),解得:x12a2 =--,由分式方程有正整数解,得到a=1,0,﹣1,﹣2,﹣4,﹣10,当a=﹣2时,x=3,原分式方程无解,所以a=1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9 y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a有1,0,﹣1,﹣4,∴a=1,0,﹣1,﹣4,之和为﹣4,故选:D.【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.17.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.18.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x+-=+,即:202412x x-=+.故选B.考点:分式方程的应用.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A .【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知关于x 的分式方程22124x mx x x --=+-无解,则m 的值为( ) A .0B .0或-8C .-8或-4D .0或-8或-4 【答案】D【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2),整理得:(4+m )x =8,当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8;当x =2时原方程分母为0,此时m =0,故选:D .【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.。
华师大版数学八年级下册第16章《分式》(第1课时)单元复习教学设计
华师大版数学八年级下册第16章《分式》(第1课时)单元复习教学设计一. 教材分析华师大版数学八年级下册第16章《分式》是学生在掌握了实数、代数式、方程等基础知识后的进一步学习。
本章主要介绍了分式的概念、分式的运算、分式方程的解法等。
本章内容在学生的数学知识体系中起到承上启下的作用,为后续学习函数、几何等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等概念有一定的了解。
但学生在学习过程中,对于分式的理解容易出现模糊不清、概念混淆等问题。
此外,学生对于分式的运算和分式方程的解法,也需要通过实例讲解和练习来进一步巩固。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算,包括分式的加减乘除。
3.掌握分式方程的解法,并能应用于实际问题中。
四. 教学重难点1.分式的概念和基本性质的理解。
2.分式的运算方法。
3.分式方程的解法及应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过问题引导学生思考,案例讲解分式的概念和运算方法,小组合作探讨分式方程的解法,提高学生的学习兴趣和参与度。
六. 教学准备1.教学PPT,包括分式的概念、运算方法和分式方程的解法等内容。
2.练习题,包括分式的运算和分式方程的应用问题。
3.教学视频或动画,用于讲解分式的概念和运算方法。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如计算“某商品打八折后的价格是120元,求原价”。
让学生思考如何用数学表达式表示原价和打折后的价格,从而引出分式的概念。
2.呈现(15分钟)讲解分式的概念,通过PPT展示分式的定义和基本性质。
结合实例讲解分式的运算方法,包括分式的加减乘除。
同时,展示教学视频或动画,帮助学生更好地理解分式的概念和运算方法。
3.操练(10分钟)让学生分组练习分式的运算,包括分式的加减乘除。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)讲解分式方程的解法,通过PPT展示分式方程的解法步骤。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(一)(含答案)
第十五章分式实际应用题综合复习(一)1.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)2.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)3.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?4.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?5.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.8.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?9.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?10.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案1.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.2.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个3.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.4.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.5.解:设原计划每天加工x个,根据题意,得,解得:x=400,经检验,x=400是原方程的解且符合题意.答:原计划每天加工400个.6.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.解:设改装前每节车厢乘坐x人,由题意列分式方程得:=+4,解得:x=120,经检验知x=120是原分式方程的解,则改装后每节车厢可以搭载的乘客人数=120×=200人,答:改装后每节车厢可以搭载的乘客人数为200人8.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.9.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.10.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.。
期终复习一(分式)
2
2
2
三、分式的运算
1.分式的乘除法法则: (1)两个分式相乘,把分子相乘的积作为积的 分子,把分母相乘的积作为积的分母; b d bd ; a c ac (2)两个分式相除,把除式的分子分母颠倒位置 后,再与被除式相乘.
11、解下列方程
(1)
2x 1 1 x2 2 x
3 x 1 ( 2) 1 0 x 4 4 x 2 3x x 2x ( 3) 2 1 x 1 x1
你真正理解分式方程中的 增根的意义吗?
12、 m为何值时,关于x的方程
2 mx 3 2 x2 x 4 x2
b d b c bc . a c a d ad
(3) 分式乘方: 把分子分母各自乘方.
b bn n. a a
n
三、分式的运算
• (4)分式加减法法则
①同分母分式加减法的法则:分母不变,分子相加减. b c bc ; a a a ②异分母分式加减法的法则:先通分,把异分母分 式化为同分母分式.
x
2
x 0.5
.
14、某公司生产的960件新产品需要精加工后,才能投 放市场,现有甲、乙两个工厂都想加工这批产品,该公 司技术部了解到有如下信息:: ①甲工厂单独完成这批产品比乙工厂单独完成这批产 品多用20天;②甲工厂每天加工的数量是乙工厂每天加 2 工的数量的 。③公司需付甲工厂加工费每天80元, 3 需付乙工厂加工费每天120元.根据以上三条信息,解决 如下问题: (1)甲、乙两个工厂每天各能加工多少件新产品? (2)公司制定产品加工方案如下:可以由一个厂家单独 完成,也可以两厂合作完成,在加工过程中,公司派一 名工程师每天到厂进行技术指导,并负担每天5元的用 餐补助费,请你帮助公司选择一种既省时又省钱的加工 方案,并说明理由。
初中数学方程与不等式之分式方程知识点总复习有答案解析(1)
初中数学方程与不等式之分式方程知识点总复习有答案解析(1)一、选择题1.方程1235x x =+的解为( ). A .1x =- B .0x =C .3x =-D .1x =【答案】D 【解析】 【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解. 【详解】方程两边同乘以3x (x+5)得, x+5=6x , 解得x=1,经检验,x=1是原分式方程的解. 故选D. 【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.2.解分式方程11222x x x-+=--的结果是( ) A .x="2" B .x="3"C .x="4"D .无解【答案】D 【解析】 【分析】 【详解】解:去分母得:1﹣x+2x ﹣4=﹣1, 解得:x=2,经检验x=2是增根,分式方程无解. 故选D .考点:解分式方程.3.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3)D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A 【解析】 【分析】根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=,∵关于x 的分式方程的解为非负数,∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误; 故选:A . 【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.4.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x=- D .120100x 10x=+ 【答案】A 【解析】 【分析】 【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-. 故选A.5.把分式方程11122x x x--=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2【答案】D 【解析】 【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘. 【详解】 解:11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2 故选:D 【点睛】本题考查解分式方程.6.下列运算正确的是( )A .25= B .()33626x x =C .3222x x x ÷=D .若111x x -=-则211x x -+= 【答案】C 【解析】 【分析】分别计算出每一项的结果,再进行判断即可. 【详解】A. 2=B. ()33928x x =,故原选项错误;C. 3222x x x ÷= ,计算正确;D. 若111x x -=-则22=0x -,,故原选项错误 故选C. 【点睛】本题主要考查了二次根式的混合运算、积的乘方与幂的乘方、单项式除以单项式和解分式方程,熟练运用法则是解题关键.7.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( )A .50004000100051.2x x x=+- B .5000100040005 1.2x x x +=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D 【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.8.已知关于x 的分式方程22124x mxx x --=+-无解,则m 的值为( ) A .0 B .0或-8C .-8或-4D .0或-8或-4【答案】D 【解析】 【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0. 【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2), 整理得:(4+m )x =8, 当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8; 当x =2时原方程分母为0,此时m =0, 故选:D . 【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.9.方程10020x +=6020x-的解为( ) A .x =10 B .x =﹣10C .x =5D .x =﹣5【答案】C 【解析】 【分析】方程两边同时乘以(20+x )(20﹣x ),解得,x =5,经检验,x =5是方程的根. 【详解】解:方程两边同时乘以(20+x )(20﹣x ), 得100(20﹣x )=60(20+x ), 整理,得8x =40, 解得,x =5,经检验,x =5是方程的根, ∴原方程的根是x =5; 故选:C . 【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5 【答案】A 【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( ) A .-2 B .-1C .1D .2【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解. 故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x =20 B .102x -10x=20 C .10x -102x =13D .102x -10x =13【答案】C 【解析】 【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的. 【详解】 由题意可得,10x -102x =13, 故选:C . 【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.13.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.14.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B 【解析】 【分析】解关于y 的不等式组,结合解集无解,确定a 的范围,再由分式方程有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可. 【详解】由关于y 的不等式组,可整理得∵该不等式组解集无解, ∴2a +4≥﹣2 即a ≥﹣3 又∵得x =而关于x 的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.15.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.16.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax ﹣x ﹣1=2,整理得:(a ﹣1)x =3,由分式方程的解为非正数,得到31a -≤0,且 31a -≠﹣1,解得:a <1且a ≠﹣2. 不等式组整理得:224a x x -⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a -<4,解得:a >﹣6,∴满足题意a 的范围为﹣6<a <1,且a ≠﹣2,即整数a 的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a 的和是﹣13,故选C .点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17.解分式方程21211x x =--时,去分母化为一元一次方程,正确的是( ) A .x +1=2(x ﹣1) B .x ﹣1=2(x +1) C .x ﹣1=2 D .x +1=2 【答案】D 【解析】 【分析】先确定分式方程的最简公分母,然后左右两边同乘即可确定答案; 【详解】解:由题意可得最简公分母为(x+1)(x-1) 去分母得:x +1=2, 故答案为D . 【点睛】本题考查了分式方程的解法,解答的关键在于最简公分母的确定.18.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x 千米/时,则下面所列方程正确的为( )A .5x +16=52x B .5x =52x +16C .5x+10=52x D .5x-10=52x【答案】B 【解析】 【分析】设小明骑车的速度为x 千米/小时,校车速度为2x 千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程. 【详解】设小明骑车的速度为x 千米/小时,校车速度为2x 千米/小时,由题意得,5x =52x +16所以答案为B. 【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.已知关于x 的分式方程13222mx x x-+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且 B .2m ≠C .1m =或2m =D .1m ≠或2m ≠【答案】A 【解析】 【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可. 【详解】13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3( x 5) 3( x 5) 无意义。 当 x=_____时, =0 ( x 1) x 2 ( x 1) x 2
a 1 1) 2 a 1 a 2a 1
例 2 请你先化简,再选一个你喜欢的 a 的值代入求值。 ( 例 3 已知 x
1 x2 4, 求 4 的值 。 x x x2 1
n
1 (a 0, n是正整数) , an
a 1
1 (a 0) a
n
③整数指数幂有哪些运算法则:设 a 0,m,n 都是整数,则:
a m a n a m n, am amn , ab anbn
n
二 例题精讲 例 1 填空: 当 x=_____,分式
学 案 设 计
主备课人:
课 题:分式复习(1)
执教者:
执教时间 201 年 月 累计 节
日 (第
周 星期 ) 节教完,本节为 第 节
教学目标: 1 使学生系统了解本章的知识体系及知识内容; 2 进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分 式的运算。 教学重点:梳理知识内容,形成知识体系。 教学难点:熟练进行分式的运算。 教学用具与教学方法: 教学准备: 个人调整与补充 内容 课型:新课
三 课堂练习,巩固提高 1、若分式
x 1 的值为 0,那么 x 的值为____. x 1
1 x x2 4 2 x x 2x
2、2、化简: x 1
四 反思小结,拓展提高这节课你有什么收获? 作业布置: P39 复习题 1 A 1,2,3,4,5,6
教后梳理或反思:
一 知识结构与知识要点 设 f、g 都是整式,且 g 中含有字母, 我们把 f 除以 g 所得的商记作
f f ,把 叫做分式。 g g
f f h g g h
(2)分式基本性质设 h 0,则
(3)分式的符号变换法则是什么?
f f f f f , g g g g g
(4)分式的运算法则 ①分式的乘法:
分式的概念 约分 1 浏览第 2 章目录, 阅读 p 61---63 复 分式的性质 通分 习与小结。 分式的符号变号法则 2 这章学习了哪些内容? 分式 乘除法 分式的运算 乘方 加减法 3 你还记得下面知识要点吗? 分式方程的解法 (1)什么叫分式? 分式方程 分式方程的应用
形象的理解为:分式的分子分母的符号可以移动
f u f u 可以先把分子、分母分别相乘再约分,也可以先约分 g v g v
再分子、分母分别相乘。 ②分式的除法:
Hale Waihona Puke f u f v f v g v g u g u
③分式加减法:同分母:
f h f h ,分母不变,分子相加减。 g g g
异分母:先通分,化为同分母的分子然后相加减。 怎样找最简公分母?系数:取各分母的系数最少公倍数。字母因式:取所有的,指 数最高的。 (5)整数指数幂的运算法则 ①同底数的幂的除法: am an amn (m、n都是正整数,m>n,a 0) ② 零 次 幂 和 负 整 数 指 数 幂 : a 0 1(a 0) , a