一次函数中考试题分类

合集下载

中考《一次函数》经典例题及解析

中考《一次函数》经典例题及解析

一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0 图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0) k>0,b>0 一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b (k≠0) k<0,b>0 一、二、四y随x的增大而减小k<0,b<0 二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系—正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.八、一次函数的实际应用1.主要题型: (1)求相应的一次函数表2.用一次函数解决实际问题的一般步骤为(1)设定实际问题中的自变量与因变量的取值范围;(4)利用函数性质解决问题3.方案最值问题:对于求方案问题,通常涉及两个相关量事物的取值范围,再根据另一个事物所要满4.方法技巧求最值的本质为求最优方案,解法有两种(2)直接利用所求值与其变量之间满足的若为分段函数,则应分类讨论,先计算出每显然,第(2)种方法更简单快捷.经典例1.若一次函数22y x =+的图象经过点【答案】8【分析】将点(3,)m 代入一次函数的解析式【解析】解:由题意知,将点(3,)m 代入一即:232=⨯+m ,解得:8m =.故答案【点睛】本题考查了一次函数的图像和性质2.有一个装有水的容器,如图所示.容器中,水面高度以每秒0.2cm 的速度匀速增加关系是( )A .正比例函数关系B .一次函数关系【答案】B【分析】设水面高度为,hcm 注水时间为【详解】解:设水面高度为,hcm 注水时间所以容器内的水面高度与对应的注水时间满【点睛】本题考查的是列函数关系式,判断函数表达式;(2)结合一次函数图象求相关量、求步骤为:变量;(2)通过列方程(组)与待定系数法求一次函数关决问题;(5)检验所求解是否符合实际意义;(6)关量,解题方法为根据题中所要满足的关系式,通过所要满足的条件,即可确定出有多少种方案. 两种:(1)可将所有求得的方案的值计算出来,再进满足的一次函数关系式求解,由一次函数的增减性可算出每个分段函数的取值,再进行比较. 经典例题 一次函数和正比例函数的定义过点(3,)m ,则m =_________. 解析式中即可求出m 的值.代入一次函数22y x =+的解析式中, 故答案为:8.和性质,点在图像上,则将点的坐标代入解析式中即容器内的水面高度是10cm ,现向容器内注水,并同速增加,则容器注满水之前,容器内的水面高度与对关系C .二次函数关系D .反比例函数关系间为t 分钟,根据题意写出h 与t 的函数关系式,从而水时间为t 分钟,则由题意得:0.210,h t =+ 时间满足的函数关系是一次函数关系,故选B . 判断两个变量之间的函数关系,掌握以上知识是解求实际问题的最值等. 函数关系式;(3)确定自变量)答. 通过列不等式,求解出某一个再进行比较;减性可直接确定最优方案及最值;定义式中即可.并同时开始计时,在注水过程度与对应的注水时间满足的函数关系从而可得答案.识是解题的关键.1.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值A .﹣2 B .﹣23【答案】A【分析】根据分段函数的解析式分别计算【解析】解:若x <2,当y =3时,﹣x 若x ≥2,当y =3时,﹣2x=3,解得:x=﹣【点睛】本题考查了反比例函数的性质、键.2.下列函数关系式:(1)y =﹣x ;(2A .1 B .2【答案】B【分析】根据一次函数的定义条件进行逐一【详解】解:(1)y =﹣x 是正比例函数 (2)y =x ﹣1符合一次函数的定义,故正(4)y =x 2属于二次函数,故错误.综上所【点睛】本题主要考查了一次函数的定义b 为常数,k≠0,自变量次数为1.经典1.若m <﹣2,则一次函数()y m x =++A . B .【答案】D【分析】由m <﹣2得出m+1<0,1﹣【解析】解:∵m <﹣2,∴m +1<0,1函数值为3时,自变量x 的值为( )C .﹣2或﹣23D .﹣2或﹣32计算,即可得出结论. +1=3,解得:x =﹣2; ﹣23,不合题意舍去;∴x =﹣2,故选:A .、一次函数的图象上点的坐标特征;根据分段函数)y =x ﹣1;(3)y =1x;(4)y =x 2,其中一次函数C .3D .4行逐一分析即可.函数,是特殊的一次函数,故正确; 故正确;(3)y =1x属于反比例函数,故错误; 综上所述,一次函数的个数是2个.故选:B .定义.本题主要考查了一次函数的定义,一次函数经典例题 一次函数的图象及性质 11m -的图象可能是( )C .D .m >0,进而利用一次函数的性质解答即可. ﹣m >0,段函数进行分段求解是解题的关次函数的个数是( ) 函数y=kx+b 的定义条件是:k 、所以一次函数()11y m x m =++-的图象【点睛】本题考查的是一次函数的图像与性影响是解题的关键 .2.对于一次函数2y x =+,下列说法不正A .图象经过点()1,3 C .图象不经过第四象限 【答案】D【分析】根据一次函数的图像与性质即可求【解析】A.图象经过点()1,3,正确;C.图象经过第一、二、三象限,故错误;【点睛】此题主要考查一次函数的图像与性1.在平面直角坐标系中,已知函数y A . B .【答案】A【分析】求得解析式即可判断.【解析】解:∵函数y =ax +a (a ≠0)的图∴直线交y 轴的正半轴,且过点(1,2,【点睛】此题考查一次函数表达式及图像的2.已知一次函数3y kx =+的图象经过点A .()1,2- B .()1,2-【答案】B【分析】先根据一次函数的增减性判断出【解析】∵一次函数3y kx =+的函数值A .当x=-1,y=2时,-k+3=2,解得选项符合题意;C .当x=2,y=3时,2k+3的图象经过一,二,四象限,故选:D . 像与性质,不等式的基本性质,掌握一次函数y kx +法不正确的是( ) B .图象与x 轴交于点()2,0- D .当2x >时,4y <即可求解.B.图象与x 轴交于点()2,0-,正确 ; D.当2x >时,y >4,故错误;故选D . 像与性质,解题的关键是熟知一次函数的性质特点=ax +a (a ≠0)的图象过点P (1,2),则该函数的 C . D .的图象过点P (1,2),∴2=a +a ,解得a =1,∴),故选:A . 图像的相关知识.经过点A ,且y 随x 的增大而减小,则点A 的坐标可以C .()2,3D .()3,4断出k 的符号,再将各项坐标代入解析式进行逐一判数值y 随x 的增大而减小,∴k ﹤0,k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3b =中的,k b 对函数图像的特点.函数的图象可能是( )∴y =x +1, 标可以是( ) 逐一判断即可. ,k+3=-2,解得k=-5﹤0,此,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B . 【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.经典例题 用待定系数法确定一次函数的解析式1. 小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x (日) 1 2 3 4成绩y (个) 4043 4649小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y =3x +37.【分析】利用待定系数法即可求出该函数表达式. 【解析】解:设该函数表达式为y =kx +b ,根据题意得:40243k b k b +⎧⎨+⎩==,解得337k b ⎧⎨⎩==,∴该函数表达式为y =3x +37.故答案为:y =3x +37.【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.2.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解析】解:∵将函数y =2x 的图象向上平移3个单位,∴所得图象的函数表达式为:y =2x +3.故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.1.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 1112 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【答案】(1)x =7,y =2.75这组数据错误斤.【分析】(1)利用描点法画出图形即可判断【解析】解:(1)观察图象可知:x =7(2)设y =kx +b ,把x =1,y =0.75,x 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当x 答:秤杆上秤砣到秤纽的水平距离为【点睛】此题考查画一次函数的图象的方法解此题的关键.2.把直线y =2x ﹣1向左平移1个单位长度【答案】y =2x +3【分析】直接利用一次函数的平移规律进而【解析】解:把直线y =2x ﹣1向左平移再向上平移2个单位长度,得到y =2x 【点睛】本题考查了一次函数的平移,熟练经典1.在平面直角坐标系xOy 中,对于横、纵坐据错误;(2)秤杆上秤砣到秤纽的水平距离为16厘米可判断.(2)设函数关系式为y =kx +b ,利用待定系,y =2.75这组数据错误.=2,y =1代入可得0.7521k b k b +=⎧⎨+=⎩,=16时,y =4.5,16厘米时,秤钩所挂物重是4.5斤.的方法,待定系数法求一次函数的解析式,一次函数位长度,再向上平移2个单位长度,则平移后所得直律进而得出答案.平移1个单位长度,得到y =2(x +1)﹣1=2x +1, +3.故答案为:y =2x +3. 熟练掌握是解题的关键.经典例题一次函数与一元一次方程 纵坐标相等的点称为“好点”.下列函数的图象中厘米时,秤钩所挂物重是4.5待定系数法解决问题即可. 次函数的实际应用,正确计算是所得直线的解析式为_____. 象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-【答案】B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【解析】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =是原方程的解,即“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.2.在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2 B .3C .4D .6【答案】B【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB 的面积=12⨯3×2=3,故选:B . 【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.1.已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y x +2C .y =4x +2D .y +2 【答案】C【分析】分别求出点A 、B 坐标,再根据各选项解析式求出与x 轴交点坐标,判断即可. 【解析】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0) A. y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B. y x +2与x ,0);故直线y x +2与x 轴的交点在线段AB 上;C.y=4x+2与x轴的交点为(﹣12,D.yx+2与x【点睛】本题考查了求直线与坐标轴的交点2.如图,直线542y x=+与x轴、y轴分则点1A的坐标是_____.【答案】(4,125)【分析】首先根据直线AB来求出点A案.【解析】解:在542y x=+中,令∴A(8-5,0),B(0,4),由旋转可得∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90∴∠OBO1=90°,∴O1B∥x轴,∴点A横坐标为O1B=OB=4,故点A1的坐标是【点睛】本题主要考查了旋转的性质以及一关键.经典例1.如图,直线y=kx+b(k、b是常数k≠00);故直线y=4x+2与x轴的交点不在线段AB上,0);故直线y+2与x轴的交点在线段的交点,注意求直线与x轴交点坐标,即把y=0代入轴分别交于A、B两点,把AOBV绕点B逆时针旋转和点B的坐标,A1的横坐标等于OB,而纵坐标等x=0得,y=4,令y=0,得5042x=+,解得x=-5可得△AOB ≌△A1O1B,∠ABA1=90°,OB=90°,OA=O1A1=85,OB=O1B=4,1的纵坐标为OB-OA的长,即为48-5=125;标是(4,125),故答案为:(4,125).以及一次函数与坐标轴的交点问题,利用基本性质结经典例题一次函数与一元一次不等式)与直线y=2交于点A(4,2),则关于x的不等式上;在线段AB上;故选:C代入函数解析式.针旋转90°后得到11AO BV,坐标等于OB-OA,即可得出答8,性质结合图形进行推理是解题的等式kx+b<2的解集为_____.【答案】x <4【分析】结合函数图象,写出直线y =+【解析】解:∵直线y =kx +b 与直线y ∴关于x 的不等式kx +b <2的解集为:【点睛】本题考查的是利用函数图像解不等2.一次函数y kx b =+的图象如图所示,A .k 0<B .1b =-C .【答案】B【分析】根据一次函数的图象与性质判断即【解析】由图象知,k ﹥0,且y 随x 的增大图象与y 轴负半轴的交点坐标为(0,-1当x ﹥2时,图象位于x 轴的上方,则有【点睛】本题考查一次函数的图象与性质1.如图,直线(0)y kx b k =+<经过点A .1x ≤B .1x ≥ 【答案】A 【分析】将(1,1)P 代入(y kx b k =+【解析】解:由题意将(1,1)P 代入y =+整理kx b x +≥得,()10k x b -+≥,∴【点睛】本题考查了一次函数的图像和性质kx b 在直线y =2下方所对应的自变量的范围即可=2交于点A (4,2),∴x <4时,y <2,x <4.故答案为:x <4.解不等式,理解函数图像上的点的纵坐标的大小对图,则下列结论正确的是( )y 随x 的增大而减小 D .当2x >时,kx b +<判断即可.的增大而增大,故A 、C 选项错误; 1),所以b=﹣1,B 选项正确;则有y ﹥0即+kx b ﹥0,D 选项错误,故选:B . 性质,利用数形结合法熟练掌握一次函数的图象与性过点(1,1)P ,当kx b x +≥时,则x 的取值范围为(C .1x < D .1x >0)<,可得1k b -=-,再将kx b x +≥变形整理,得(0)kx b k <,可得1k b +=,即1k b -=-,∴0bx b -+≥,由图像可知0b >,∴10x -≤和性质,解题关键在于灵活应用待定系数法和不等式围即可.小对图像的影响是解题的关键.0x象与性质是解答本题的关键. ( )得0bx b -+≥,求解即可.,∴1x ≤,故选:A .不等式的性质.1.某公司新产品上市30天全部售完,图销售利润与上市时间之间的关系,则最大日【答案】1800【解析】【分析】从图1和图2中可知,当t=30润=销售量×每件产品销售利润即可求解【详解】由图1知,当天数t=30时,市场从图2知,当天数t=30时,每件产品销售所以当天数t=30时,市场的日销售利润最【点睛】本题考查一次函数的实际应用,利用数形结合法理解题目已知信息是解答的2.小华端午节从家里出发,沿笔直道路匀路线匀速回家装载货物,然后按原路原速返从商店出发开始所用时间为t (分钟),图中线段AB 表示小华和商店的距离1y (列问题:(1)填空:妈妈骑车的速度是__________经典例题 一次函数的应用图1表示产品的市场日销售量与上市时间之间的关最大日销售利润是__________元.时,日销售量达到最大,每件产品的销售利润也达求解.市场日销售量达到最大60件;品销售利润达到最大30元,利润最大,最大利润为60×30=1800元,故答案为:,也考查了学生的观察能力、理解能力和解决实际解答的关键.道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮原速返回商店,小华到达商店比妈妈返回商店早5图1表示两人之间的距离s (米)与时间t (分钟(米)与时间t (分钟)的函数关系的图象的一部分______米/分钟,妈妈在家装载货物所用时间是_____间的关系,图2表示单件产品的润也达到最大,所以由日销售利:1800决实际问题的能力,仔细审题,时骑三轮车从商店出发,沿相同分钟.在此过程中,设妈妈分钟)的函数关系的图象;图2一部分,请根据所给信息解答下__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y (米(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2钟)时,两人相距360米.【分析】(1)先求出小华步行的速度,然后达商店比妈妈返回商店早5分钟,即可求出求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <(3)由题意知,小华速度为60米/分钟种情况讨论即可.【解析】解:(1)由题意可得:小华步行的妈妈骑车的速度为:1800601010-⨯∵小华到达商店比妈妈返回商店早5分钟∴装货时间为:35-15×2=5(分钟),即妈妈由题意和图像可得妈妈在M 点时开始返回此时纵坐标为:20×60=1200(米),∴点(2)①当0≤t <15时y 2=120t ,②当将(20,1800),(35,0),代入得1800⎧⎨⎩∴此段的解析式为y 2=-120x+4200,综上其函数图象如图,米)与时间t (分钟)的函数关系式,并在图2中画.)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(然后即可求出妈妈骑车的速度;先求出妈妈回家用可求出装货时间;根据题意和图像可得妈妈在M 点时20时,③当20≤t≤35时三段求出解析式即可,根据解分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后步行的速度为:180030=60(米/分钟), =120(米/分钟);妈妈回家用的时间为:1800120=15分钟,∴可知妈妈在35分钟时返回商店, 即妈妈在家装载货物的时间为5分钟;始返回商店,∴M 点的横坐标为:15+5=20(分钟),点M 的坐标为()20,1200;故答案为:120,5,15≤t <20时y 2=1800,③当20≤t≤35时,设此段函数解20035k b k b =+=+,解得1204200k b =-⎧⎨=⎩, 综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;;中画出其函数图象; ;3)当t 为8,12或32(分回家用的时间,然后根据小华到点时开始返回商店,然后即可根据解析式画图即可;相遇后,③在小华到达以后三(分钟), ),()20,1200;函数解析式为y 2=kx+b ,(3)由题意知,小华速度为60米/分钟①相遇前,依题意有6012036018t t ++②相遇后,依题意有6012036018t t +-③依题意,当20t =分钟时,妈妈从家里出此时小华距商店为180********-⨯=即30t =分钟时,小华到达商店,而此时妈妈距离商店为1800101206-⨯∴()120536018002t -+=⨯,解得∴当t 为8,12或32(分钟)时,两人相距【点睛】本题考查了一次函数的实际应用1.新龟兔赛跑的故事:龟兔从同一地点同遥领先,就躺在路边呼呼大睡起来.当它一S 1、S 2分别表示乌龟和兔子赛跑的路程,A . B .【答案】C【分析】分别分析乌龟和兔子随时间变化它【解析】对于乌龟,其运动过程可分为两段可排除B ,D 选项 对于兔子,其运动过程开始跑得快,所以路程增加快;中间睡觉时【点睛】本题考查了函数图象的性质进行简别作为点的横、纵坐标,那么坐标平面内由2.某种机器工作前先将空油箱加满,然后中,油箱里的油量y (单位:L )与时间(1)机器每分钟加油量为_____L ,机器(2)求机器工作时y 关于x的函数解析式分钟,妈妈速度为120米/分钟, 01800=,解得8t =(分钟); 01800=,解得12t =(分钟); 家里出发开始追赶小华,(米),只需10分钟,20600=(米)360>(米), 32t =(分钟),人相距360米.应用,由图像获取正确的信息是解题关键.地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲当它一觉醒来,发现乌龟已经超过它,于是奋力直追,t 为赛跑时间,则下列图象中与故事情节相吻合的 C . D .变化它们的路程变化情况,即直线的斜率的变化.为两段:从起点到终点乌龟没有停歇,其路程不断增动过程可分为三段:据此可排除A 选项睡觉时路程不变;醒来时追赶乌龟路程增加快.故选进行简单的合情推理,对于一个函数,如果把自变量面内由这些点组成的图形就是这个函数的图象.然后停止加油立即开始工作,当停止工作时,油箱中与时间x (单位:min )之间的关系如图所示.机器工作的过程中每分钟耗油量为_____L .解析式,并写出自变量x的取值范围.骄傲自满的兔子觉得自己遥力直追,最后同时到达终点.用吻合的是( ).问题便可解答.不断增加;最后同时到达终点,故选:C自变量与函数的每一对对应值分油箱中油量为5L.在整个过程(3)直接写出油箱中油量为油箱容积的一半时x 的值.【答案】(1)3,0.5;(2)1352y x =-+,1060x ≤≤;(3)5或40. 【分析】(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可.【解析】(1)由函数图象得:机器每分钟加油量为303()10L = 机器工作的过程中每分钟耗油量为3050.5()6010L -=- 故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y 关于x 的函数解析式y kx b =+ 将点(10,30),(60,5)代入得:1030605k b k b +=⎧⎨+=⎩ 解得1235k b ⎧=-⎪⎨⎪=⎩ 则机器工作时y 关于x 的函数解析式1352y x =-+;(3)设机器加油过程中的y 关于x 的函数解析式y ax =将点(10,30)代入得:1030a = 解得3a = 则机器加油过程中的y 关于x 的函数解析式3y x =油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中:当30152y ==时,315x =,解得5x = ②在机器工作过程中:当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40. 【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.经典例题 一次函数与几何图形综合1.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.。

2023年湖南省中考数学真题分类汇编:一次函数、二次函数(含答案)

2023年湖南省中考数学真题分类汇编:一次函数、二次函数(含答案)

;2023年湖南省中考数学真题分类汇编:一次函数、二次函数一、选择题1.(2023·长沙)下列一次函数中,y随x的增大而减小的函数是( )A.y=2x+1B.y=x―4C.y=2x D.y=―x+1 2.(2023·邵阳)已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=―2;②点(0,3)在抛物线上;③若x1>x2>―2,则y1>y2;④若y1=y2,则x1+x2=―2其中,正确结论的个数为( )A.1个B.2个C.3个D.4个3.(2023·株洲)如图所示,直线l为二次函数y=a x2+bx+c(a≠0)的图像的对称轴,则下列说法正确的是( )A.b恒大于0B.a,b同号C.a,b异号D.以上说法都不对4.(2023·衡阳)已知m>n>0,若关于x的方程x2+2x―3―m=0的解为x1,x2(x1<x2).关于x的方程x2+2x―3―n=0的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x2二、填空题5.(2023·郴州)在一次函数y=(k―2)x+3中,y随x的增大而增大,则k的值可以是 (任写一个符合条件的数即可).6.(2023·郴州)抛物线y=x2―6x+c与x轴只有一个交点,则c= .三、综合题7.(2023·常德)如图,二次函数的图象与x轴交于A(―1,0),B(5,0)两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1.5(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.8.(2023·株洲)某花店每天购进16支某种花,然后出售.如果当天售不完,那么剩下的这种花进行作废处理、该花店记录了10天该种花的日需求量n(n为正整数,单位:支),统计如下表:日需求量n131415161718天数112411(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n―80;当n≥16时,日利润为80元.①当n=14时,间该花店这天的利润为多少元?②求该花店这10天中日利润为70元的日需求量的频率.9.(2023·张家界)如图,在平面直角坐标系中,已知二次函数y=a x2+bx+c的图象与x轴交于点A(―2,0)和点B(6,0)两点,与y轴交于点C(0,6).点D为线段BC上的一动点.(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.10.(2023·郴州)已知抛物线y=a x2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;的值;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC?若存在,求出点Q的坐(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12标;若不存在,请说明理由.11.(2023·邵阳)如图,在平面直角坐标系中,抛物线y=a x2+x+c经过点A(―2,0)和点B(4,0),且与直线l:y=―x―1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.12.(2023·株洲)已知二次函数y=a x2+bx+c(a>0).(1)若a=1,c=―1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO =23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =―a 2―b 2,求2a +b 的值.13.(2023·岳阳)已知抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),B 两点,交y 轴于点C(0,3).(1)请求出抛物线Q 1的表达式.(2)如图1,在y 轴上有一点D(0,―1),点E 在抛物线Q 1上,点F 为坐标平面内一点,是否存在点E ,F 使得四边形DAEF 为正方形?若存在,请求出点E ,F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q 1向右平移2个单位,得到抛物线Q 2,抛物线Q 2的顶点为K ,与x 轴正半轴交于点H ,抛物线Q 1上是否存在点P ,使得∠CPK =∠CHK ?若存在,请求出点P 的坐标;若不存在,请说明理由.14.(2023·衡阳)如图,已知抛物线y =a x 2―2ax +3与x 轴交于点A(―1,0)和点B ,与y 轴交于点C ,连接AC ,过B 、C 两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大,若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.15.(2023·怀化)如图一所示,在平面直角坐标系中,抛物线y=a x2+bx―8与x轴交于A(―4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=―(3)设直线l1:y=kx+k―35437上总存在一点E,使得∠MEN为直角.4答案解析部分1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】3(答案不唯一)6.【答案】97.【答案】(1)解:∵二次函数的图象与x 轴交于A(―1,0),B(5,0)两点.∴设二次函数的表达式为y =a(x +1)(x ―5)∵AO =1,tan ∠ACO =15,∴OC =5,即C 的坐标为(0,5)则5=a(0+1)(0―5),得a =―1∴二次函数的表达式为y =―(x +1)(x ―5);(2)解:y =―(x +1)(x ―5)=―(x ―2)2+9∴顶点的坐标为(2,9)过D 作DN ⊥AB 于N ,作DM ⊥OC 于M ,四边形ACDB 的面积=S △AOC +S 矩形OMDN ―S △CDM +S △DNB=12×1×5+2×9―12×2×(9―5)+12×(5―2)×9=30;(3)解:如图,P 是抛物线上的一点,且在第一象限,当∠ACO =∠PBC 时,连接PB ,过C 作CE ⊥BC 交BP 于E ,过E 作EF ⊥OC 于F ,∵OC =OB =5,则△OCB 为等腰直角三角形,∠OCB =45°.由勾股定理得:CB =52,∵∠ACO =∠PBC ,∴tan ∠ACO =tan ∠PBC ,即15=CE CB =CE 52,∴CE =2由CH ⊥BC ,得∠BCE =90°,∴∠ECF =180°―∠BCE ―∠OCB =180°―90°―45°=45°.∴△EFC 是等腰直角三角形∴FC =FE =1∴E 的坐标为(1,6)所以过B 、E 的直线的解析式为y =―32x +152令y =―32x +152y =―(x +1)(x ―5)解得x =5y =0,或x =12y =274所以BE 直线与抛物线的两个交点为B(5,0),P(12,274)即所求P 的坐标为P(12,274)8.【答案】(1)解:当n <16时,该种花需要进行作废处理,则该种花作废处理情形的天数共有:1+1+2=4(天);(2)解:①当n <16时,日利润y 关于n 的函数表达式为y =10n ―80,当n =14时,y =10×14―80=60(元);②当n <16时,日利润y 关于n 的函数表达式为y =10n ―80;当n≥16时,日利润为80元,80>70,当y=70时,70=10n―80解得:n=15,由表可知n=15的天数为2天,则该花店这10天中日利润为70元的日需求量的频率为2.9.【答案】(1)解:由题意可知,设抛物线的表达式为y=a(x+2)(x―6),将(0,6)代入上式得:6=a(0+2)(0―6),a=―1 2所以抛物线的表达式为y=―12x2+2x+6;(2)解:作点O关于直线BC的对称点E,连接EC、EB,∵B(6,0),C(0,6),∠BOC=90°,∴OB=OC=6,∵O、E关于直线BC对称,∴四边形OBEC为正方形,∴E(6,6),连接AE,交BC于点D,由对称性|DE|=|DO|,此时|DO|+|DA|有最小值为AE的长,AE=AB2+BE2=82+62=10∵△AOD的周长为DA+DO+AO,AO=2,DA+DO的最小值为10,∴△AOD的周长的最小值为10+2=12;(3)解:由已知点A(―2,0),B(6,0),C(0,6),设直线BC的表达式为y=kx+b,将B(6,0),C(0,6)代入y=kx+b中,6k+b=0b=0,解得k=―1b=6,∴直线 BC 的表达式为 y =―x +6 ,同理可得:直线 AC 的表达式为 y =3x +6 ,∵PD ∥AC ,∴设直线 PD 表达式为 y =3x +a ,由(1)设 P(m ,―12m 2+2m +6) ,代入直线 PD 的表达式得: a =―12m 2―m +6 ,∴直线 PD 的表达式为: y =3x ―12m 2―m +6 ,由 y =―x +6y =3x ―12m 2―m +6 ,得 x =18m 2+14m y =―18m 2―14m +6 ,∴D(18m 2+14m ,―18m 2―14m +6) ,∵P ,D 都在第一象限,∴S =S △PAD +S △PBD =S △PAB ―S △DAB=12|AB|[(―12m 2+2m +6)―(―18m 2―14m +6)]=12×8(―38m 2+94m)=―32m 2+9m =―32(m 2―6m)=―32(m ―3)2+272,∴当 m =3 时,此时P 点为 (3,152) .S 最大值=272.10.【答案】(1)解:∵抛物线y =a x 2+bx +4与x 轴相交于点A(1,0),B(4,0),∴a +b +4=016a +4b +4=0,解得:a =1b =―5,∴y =x 2―5x +4;(2)解:∵y =x 2―5x +4,当x =0时,y =4,∴C(0,4),抛物线的对称轴为直线x =52∵△PAC 的周长等于PA +PC +AC ,AC 为定长,∴当PA +PC 的值最小时,△PAC 的周长最小,∵A ,B 关于对称轴对称,∴PA +PC =PB +PC ≥BC ,当P ,B ,C 三点共线时,PA +PC 的值最小,为BC 的长,此时点P 为直线BC 与对称轴的交点,设直线BC 的解析式为:y =mx +n ,则:4m +n =0n =4,解得:m =―1n =4,∴y =―x +4,当x =52时,y =―52+4=32,∴P(52,32),∵A(1,0),C(0,4),∴PA =(52―1)2+(32)2=322,PC =(52)2+(4―32)2=522,∴PA PC =35;(3)解:存在,∵D 为OC 的中点,∴D(0,2),∴OD =2,∵B(4,0),∴OB =4,在Rt △BOD 中,tan ∠OBD =OD OB =12,∵tan ∠QDB =12=tan ∠OBD ,∴∠QDB =∠OBD ,①当Q 点在D 点上方时:过点D 作DQ ∥OB ,交抛物线与点Q ,则:∠QDB =∠OBD ,此时Q 点纵坐标为2,设Q 点横坐标为t ,则:t 2―5t +4=2,解得:t =5±172,∴Q(5+172,2)或Q(5―172,2);②当点Q 在D 点下方时:设DQ 与x 轴交于点E ,则:DE =BE ,设E(p ,0),则:D E 2=O E 2+O D 2=p 2+4,B E 2=(4―p)2,∴p 2+4=(4―p)2,解得:p =32,∴E(32,0),设DE 的解析式为:y =kx +q ,=2+q =0,解得:q =2k =―43,∴y =―43x +2,联立y =―43x +2y =x 2―5x +4,解得:x =3y =―2或x =23y =109,∴Q(3,―2)或Q(23,109);综上:Q(5+172,2)或Q(5―172,2)或Q(3,―2)或Q(23,109).11.【答案】(1)解:∵抛物线y =a x 2+x +c 经过点A(―2,0)和点B(4,0),∴4a ―2+c =016a +4+c =0,解得:a =―12c =4,∴抛物线解析式为:y =―12x 2+x +4;(2)解:∵抛物线y =―12x 2+x +4与直线l :y =―x ―1交于D 、E 两点,(点D 在点E 的右侧)联立y =―12x 2+x +4y =―x ―1,解得:x =2+14y =―3―14或x =2―14y =―3+14,∴D(2+14,―14―3),E(2―14,14―3),∴x D ―x E =(2+14)―(2―14)=214,∵点M 为直线l 上的一动点,设点M 的横坐标为t .则M(t ,―t ―1),N(t ,―12t 2+t +4),∴MN =―12t 2+t +4―(―t ―1)=―12t 2+2t +5=―12(t ―2)2+7,当t =2时,MN 取得最大值为7,∵S △END =12(x D ―x E )×MN ,∴当MN 取得最大值时,S △END 最大,∴S △END =12×214×7=714,∴△NED 面积的最大值714;(3)解:∵抛物线与y 轴交于点C ,∴y =―12x 2+x +4,当x =0时,y =4,即C(0,4),∵B(4,0),M(t ,―t ―1)∴BC =42+42=42,B M 2=(4―t)2+(―t ―1)2=2t 2―6t +17,C M 2=t 2+(t +5)2=2t 2+10t +25,①当BC 为对角线时,MB =CM ,∴2t 2―6t +17=2t 2+10t +25,解得:t =―12,∴M(―12,―12),∵BC ,MR 的中点重合,∴R x ―12=4R y ―12=4,解得:R x =92R y =92,∴R(92,92),②当BC 为边时,当四边形BMRC 为菱形,BM =BC∴2t 2―6t +17=(42)2,解得:t =3―392或t =3+392,∴―t ―1=―3―392―1=―5+392或―t ―1=―3+392―1=―5―392,∴M(3―392,―5+392)或M(3+392,―39―52),由CM ,BR 的中点重合,∴R x +4=3―392+0R y +0=―5+392+4或R x +4=3+392+0R y +0=―5―392+4,解得:R x =―5―392R y =3+392或R x =―5+392R y =3―392,∴R(―5―392,3+392)或R(―5+392,3―392),当BC =MC 时;如图所示,即四边形CMRB 是菱形,点R 的坐标即为四边形BMRC 为菱形时,M 的坐标,∴R 点为R(3―392,―5+392)或R(3+392,―39―52),综上所述,R 点为R(3―392,―5+392)或R(3+392,―39―52)或R(―5―392,3+392)或R(―5+392,3―392)或R(92,92).12.【答案】(1)解:∵a =1,c =―1,∴二次函数解析式为y =x 2+bx ―1,∵该二次函数的图象过点(2,0),∴4+4b―1=0解得:b=―32;(2)解:①∵∠DOF=∠DEO,∠ODF=∠EDO,∴△DOF∽△DEO∴DF DO =OF EO∴DO EO =OF DF∵OF=32DF∴DO EO =2 3;②∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,∴OA=―x1,OB=x2,∵BE=1.∴OE=x2―1,∵⊙O的半径长为线段OA的长度的2倍∴OD=―2x1,∵DO EO =2 3,∴―2x1x2―1=23,∴3x1+x2―1=0,即x2=1―3x1①,∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴x1,x2是方程a x2+bx+c=0的两个根,∴x1+x2=―b a,∵4ac=―a2―b2,a≠0,∴4·ca+1+(ba)2=0,即4(x1x2)+1+(x1+x2)2=0②,①代入②,即4x1(1―3x1)+1+(x1+1―3x1)2=0,即4x1―12x21+1+1+4x21―4x1=0,整理得―8x21=―2,∴x21=14,解得:x 1=―12(正值舍去)∴x 2=1―(―32)=52,∴抛物线的对称轴为直线x =―b 2a =x 1+x 22=―12+522=1,∴b =―2a ,∴2a +b =0.13.【答案】(1)解:∵抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),两点,交y 轴于点C(0,3), ∴把A(―3,0),C(0,3)代入Q 1:y =―x 2+bx +c ,得,―9―3b +c =0c =3,解得,b =―2c =3,∴抛物线的解析式为:y =―x 2―2x +3;(2)解:假设存在这样的正方形DAEF ,如图,过点E 作ER ⊥x 于点R ,过点F 作FI ⊥y 轴于点I ,∴∠AER +∠EAR =90°,∵四边形DAEF 是正方形,∴AE =AD ,∠EAD =90°,∴∠EAR +∠DAR =90°,∴∠AER =∠DAO ,又∠ERA =∠AOD =90°,∴△AER≅△DAO ,∴AR =DO ,ER =AO ,∵A(―3,0),D(0,―1),∴OA =3,OD =1,∴AR =1,ER =3,∴OR =OA ―AR =3―1=2,∴E(―2,3);同理可证明:△FID≅△DOA,∴FI=DO=1,DI=AO=3,∴IO=DI―DO=3―1=2,∴F(1,2);(3)解:∵y=―x2―2x+3=―(x+1)2+4,∴抛物线的顶点坐标为(―1,4),对称轴为直线x=―1,令y=0,则―x2―2x+3=0,解得,x1=―3,x2=1,∴B(1,0),∴将抛物线的图象右平移2个单位后,则有:K(―1,4),对称轴为直线x=―1+2=1,H(1+2,0),即H(3,0),∴点B在平移后的抛物线的对称轴上,∴HB=HO―OB=3―1=2,KB=4,∴KH=KB2+HB2=42+22=25,CB=CO2+BO2=32+12=10;CH=CO2+HO2=32,设直线CH的解析式为y=kx+b,把(3,0),(0,3)代入得,3k+b=0b=3,解得,k=―1 b=3,∴直线CH的解析式为y=―x+3,当x=1时,y=―1+3=2,∴S(1,2),此时KS=4―2=2,∴CS=(0―1)2+(3―2)2=2,∴HS=CH―CS=32―2=22,又KH CH =2510=2;KSCS=22=2;HSBS=222=2,∴KH CH =KSCS=HSBS=2,∴△KSH∼△CSB,∴∠CBK=∠CHK,所以,当点P与点B重合时,即点P的坐标为(1,0),则有∠CPK=∠CHK.14.【答案】(1)解:抛物线y=a x2―2ax+3与x轴交于点A(―1,0),得a +2a +3=0,解得:a =―1;(2)解:存在D (―12,154),理由如下:设B ′C ′与y 轴交于点G ,由(1)中结论a =―1,得抛物线的解析式为y =―x 2+2x +3,当y =0时,x 1=―1,x 2=3,即A (―1,0),B (3,0),C (0,3),OB =OC ,∠BOC =90°,即△BOC 是等腰直角三角形,∴∠BCO =45°,∵B ′C ′∥BC ,∴∠BCO =∠B ′GO =45°,设D (t ,―t 2+2t +3),过点D 作DE ∥y 轴交B ′C ′于点E ,作DF ⊥B ′C ′于点F ,∴∠DEF =∠B ′GO =45°,即△DEF 是等腰直角三角形,设直线BC 的解析式为y =kx +b ,代入B (3,0),C (0,3),得3k +b =0b =3,解得k =―1b =3,故直线BC 的解析式为y =―x +3,将直线BC 向下平移m(m >0)个单位长度,得直线B ′C ′的解析式为y =―x +3―m ,∴E (t ,―t +3―m ),DE =―t 2+2t +3―(―t +3―m )=―t 2+3t +m =―(t ―32)2+94+m ,当t =32时,DE 有最大值94+m ,此时DF =22DE 也有最大值,D (32,154);(3)解:存在P (―23,119)或P (2,3),理由如下:当点P 在直线BC 下方时,在y 轴上取点H (0,1),作直线BH 交抛物线于(异于点B )点P ,由(2)中结论,得∠OBC=45°,∴OH=OA=1,OB=OC,∠BOH=∠COA=90°,∴△BOH≌△COA(SAS),∴∠OBH=∠AOC,∴∠PBC+∠ACO=∠PBC+∠OBH=∠OBC=45°,设直线BP的解析式为y=k1x+b1,代入点B(3,0),H(0,1),得3k1+b1=0b1=1,解得k1=―13b1=1,故设直线BP的解析式为y=―13x+1,联立y=―13x+1y=―x2+2x+3,解得x1=3y1=0(舍)x2=―23y2=119,故P(―23,119);当点P在直线BC上方时,如图,在x轴上取点I,连接CI,过点P作BP∥CI抛物线于点P,∠PBC=∠BCI,OI=OA=1,OC=OC,∠COI=∠COA=90°,∴△COI≌△COA(SAS),∴∠OCI=∠AOC,∴∠PBC+∠ACO=∠BCI+∠OCI=∠OCB=45°,设直线CI的解析式为y=k2x+b2,代入点I(1,0),C(0,3),得k2+b2=0b2=3,解得k2=―3b2=3,故设直线CI的解析式为y=―3x+3,BP∥CI,且过点B(3,0),故设直线BP的解析式为y=―3x+9,联立y=―3x+9y=―x2+2x+3,解得x1=2y1=3,x2=3y2=0(舍),故P(2,3),综上所述:P(―23,119)或P(2,3)15.【答案】(1)解:将A(―4,0)、B(2,0)代入y=a x2+bx―8,得16a―4b―8=04a+2b―8=0,解得:a=1 b=2,∴抛物线解析式为:y=x2+2x―8,∴对称轴为x=―b2a=―1∴当x=―1时,y=(―1)2+2×(―1)―8=―9∴顶点坐标为(-1,-9);(2)解:如图所示,过点P作PD⊥x轴于点D,交AC于点E,由y=x2+2x―8,令x=0,解得:y=―8,∴C(0,―8),设直线AC的解析式为y=kx―8,将点A(―4,0)代入得,―4k―8=0,解得:k=―2,∴直线AC的解析式为y=―2x―8,设P(m,m2+2m―8),则E(m,―2m―8),∴PE=―2m―8―(m2+2m―8)=―m 2―4m=―(m +2)2+4,当m =―2时,PE 的最大值为4∵S △PAC =12PE ×OA =12×4×PE =2PE ∴当PE 取得最大值时,△PAC 面积取得最大值∴△PAC 面积的最大值为2×4=8,此时m =―2,m 2+2m ―8=4―4―8=―8∴P(―2,―8)(3)解:设M(x 1,y 1)、N(x 2,y 2),MN 的中点坐标为Q(x 1+x 22,y 1+y 22), 联立y =kx +k ―354y =x 2+2x ―8,消去y ,整理得:x 2+(2―k)x ―k +34=0, ∴x 1+x 2=k ―2,x 1x 2=―k +34,∴x 1+x 22=k 2―1,∴y 1+y 22=12k(x 1+x 2)+k ―354=12k(k ―2)+k ―354=12k 2―354,∴Q(12k ―1,12k 2―354),设Q 点到l 2的距离为QE ,则QE =12k 2―354―(―374)=12k 2+12,∵M(x 1,y 1)、N(x 2,y 2),∴y 1+y 2=k 2―352,y 1―y 2=x 21―x 22+2(x 1―x 2)=(x 1―x 2)(x 1+x 2+2)=k(x 1―x 2)∴M N 2=(x 1―x 2)2+(y 1―y 2)2=(x 1―x 2)2+k 2(x 1―x 2)2=(x 1―x 2)2(1+k 2)=[(x 1+x 2)2―4x 1x 2](1+k 2)=[(k ―2)2+4k ―3](k 2+1)=(k 2+1)(k 2+1)=(k 2+1)2∴MN =k 2+1,∴12MN =QE∴QM =QN =QE ,∴E 点总在⊙Q 上,MN 为直径,且⊙Q 与l 2:y =―374相切,∴∠MEN 为直角.∴无论k 为何值,平行于x 轴的直线l 2:y =―374上总存在一点E ,使得∠MEN 为直角.。

历年初三数学中考一次函数试题分类汇编及答案

历年初三数学中考一次函数试题分类汇编及答案

中考数学一次函数试题分类汇编一、选择题1、已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )BA .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <3、如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4、将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

C A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2)5、如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-16、已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )CA.20y -<< B.40y -<<C.2y <-D.4y <-7、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0B .1C .2D .3二、填空题1、若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

x 2-2、随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强xyO32y x a =+1y kx b =+第7题图1Oxy图(6)2-4 xy Oxy A B1- y x =-2图2(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <24、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。

内蒙古呼伦贝尔市、兴安盟2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

内蒙古呼伦贝尔市、兴安盟2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

内蒙古呼伦贝尔市、兴安盟2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共3小题)1.(2023•内蒙古)端午节吃粽子是中华民族的传统习俗.市场上豆沙粽礼盒的进价比肉粽礼盒的进价每盒便宜10元,某商家用2500元购进的肉粽和用2000元购进的豆沙粽盒数相同.(1)求每盒肉粽和每盒豆沙粽的进价;(2)商家计划只购买豆沙粽礼盒销售,经调查了解到有A,B两个厂家可供选择,两个厂家针对价格相同的豆沙粽礼盒给出了不同的优惠方案:A厂家:一律打8折出售.B厂家:若一次性购买礼盒数量超过25盒,超过的部分打7折.该商家计划购买豆沙粽礼盒x盒,设去A厂家购买应付y1元,去B厂家购买应付y2元,其函数图象如图所示:①分别求出y1,y2与x之间的函数关系;②若该商家只在一个厂家购买,怎样买划算?2.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.3.(2021•兴安盟)移动公司推出A,B,C三种套餐,收费方式如表:套餐月保底费(元)包通话时间(分钟)超时费(元/分钟)A381200.1B C118不限时设月通话时间为x分钟,A套餐,B套餐的收费金额分别为y1元,y2元.其中B套餐的收费金额y2元与通话时间x分钟的函数关系如图所示.(1)结合表格信息,求y1与x的函数关系式,并写出自变量的取值范围;(2)结合图象信息补全表格中B套餐的数据;(3)选择哪种套餐所需费用最少?说明理由.二.二次函数综合题(共3小题)4.(2023•内蒙古)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴的交点分别为A和B(1,0)(点A在点B的左侧),与y轴交于点C(0,3),点P是直线AC上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P做x轴平行线交AC于点E,过点P做y轴平行线交x轴于点D,求PE+PD的最大值及点P的坐标;(3)如图2,设点M为抛物线对称轴上一动点,当点P,点M运动时,在坐标轴上确定点N,使四边形PMCN为矩形,求出所有符合条件的点N的坐标.5.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)6.(2021•兴安盟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(,)和点B(4,m).抛物线与x轴的交点分别为H、K(点H在点K的左侧).点F在线段AB 上运动(不与点A、B重合),过点F作直线FC⊥x轴于点P,交抛物线于点C.(1)求抛物线的解析式;(2)如图1,连接AC,是否存在点F,使△FAC是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;(3)如图2,过点C作CE⊥AB于点E,当△CEF的周长最大时,过点F作任意直线l,把△CEF沿直线l翻折180°,翻折后点C的对应点记为点Q,求出当△CEF的周长最大时,点F的坐标,并直接写出翻折过程中线段KQ的最大值和最小值.三.平行四边形的判定与性质(共1小题)7.(2022•内蒙古)如图,在平行四边形ABCD中,点O是AD的中点,连接BO并延长交CD 的延长线于点E,连接BD,AE.(1)求证:四边形ABDE是平行四边形;(2)若BD=CD,判断四边形ABDE的形状,并说明理由.四.圆心角、弧、弦的关系(共1小题)8.(2021•兴安盟)如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB 于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.五.相似形综合题(共1小题)9.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.六.解直角三角形的应用-仰角俯角问题(共2小题)10.(2023•内蒙古)某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为α,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30°,线段AM=24米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tanα=2.求河流的宽度CD(结果精确到1米,参考数据:≈1.7).11.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)七.频数(率)分布直方图(共2小题)12.(2023•内蒙古)为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组,A组:75≤x<80,B组:80≤x<85,C组:85≤x<90,D组:90≤x<95,E组:95≤x≤100,并绘制了如图不完整的统计图表.请结合统计图表,解答如下问题:(1)本次调查的样本容量为 ,学生成绩统计表中m= ;(2)所抽取学生成绩的中位数落在 组;(3)求出扇形统计图中“E”所在扇形的圆心角度数;(4)若成绩在90分及以上为优秀,学校共有2000名学生,估计该校成绩优秀的学生有多少名?学生成绩统计表组别成绩x频数A75≤x<8020B80≤x<85mC85≤x<90144D90≤x<9545E95≤x≤100n13.(2021•兴安盟)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云健身”任务.为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):一班:100 94 86 86 84 94 76 69 59 94二班:99 96 82 96 79 65 96 55 96(2)整理、描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如图;(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差一班①9486147.76二班83.796②215.21根据以上数据填出表格中①、②两处的数据并补全二班的频数分布直方图;(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).八.列表法与树状图法(共1小题)14.(2021•兴安盟)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字﹣2,0.3,,0.(1)从口袋中随机摸出一个小球,求摸出的小球上的数字是分数的概率(直接写出结果);(2)从口袋中一次随机摸出两个小球,摸出的小球上的数字分别记作x、y,请用列表法(或树状图)求点(x,y)在第四象限的概率.内蒙古呼伦贝尔市、兴安盟2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共3小题)1.(2023•内蒙古)端午节吃粽子是中华民族的传统习俗.市场上豆沙粽礼盒的进价比肉粽礼盒的进价每盒便宜10元,某商家用2500元购进的肉粽和用2000元购进的豆沙粽盒数相同.(1)求每盒肉粽和每盒豆沙粽的进价;(2)商家计划只购买豆沙粽礼盒销售,经调查了解到有A,B两个厂家可供选择,两个厂家针对价格相同的豆沙粽礼盒给出了不同的优惠方案:A厂家:一律打8折出售.B厂家:若一次性购买礼盒数量超过25盒,超过的部分打7折.该商家计划购买豆沙粽礼盒x盒,设去A厂家购买应付y1元,去B厂家购买应付y2元,其函数图象如图所示:①分别求出y1,y2与x之间的函数关系;②若该商家只在一个厂家购买,怎样买划算?【答案】(1)50,40元;(2)①y1=32x,y2=;②该商家购买豆沙粽礼盒的数量若少于75盒,从A厂家购买比较划算;若等于75盒,从A和B两个厂家任选一家即可;若超过75盒,从B厂家购买比较划算.【解答】解:(1)设每盒肉粽和每盒豆沙粽的进价分别为x元和y元.根据题意,得,解得.∴每盒肉粽和每盒豆沙粽的进价分别为50元40元.(2)①根据题意,得:y1=0.8×40x=32x;当x≤25时,y2=40x;当x>25时,y2=25×40+0.7×40(x﹣25)=28x+300.综上,y1=32x;y2=.②设y1和y2两函数图象交点的横坐标为x,则32x=28x+300,解得x=75.根据函数图象可知:当x<75时,y1<y2;当x=75时,y1=y2;当x>75时,y2<y1.∴该商家购买豆沙粽礼盒的数量若少于75盒,从A厂家购买比较划算;若等于75盒,从A和B两个厂家任选一家即可;若超过75盒,从B厂家购买比较划算.2.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.【答案】见试题解答内容【解答】解:(1)设该商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,由题意,得,解得,∴该商店购进A种纪念品每件需50元,购进B种纪念品每件需100元;(2)设该商店购进A种纪念品x个,购进B种纪念品y个,根据题意,得50x+100y=10000,由50x+100y=10000得x=200﹣2y,把x=200﹣2y代入x≥6y,解得y≤25,∵y≥20,∴20≤y≤25且为正整数,∴y可取得的正整数值是20,21,22,23,24,25,与y相对应的x可取得的正整数值是160,158,156,154,152,150,∴共有6种进货方案;(3)设总利润为W元,则W=20x+30y=﹣10y+4000,∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值,W最大=﹣10×20+4000=3800(元),∴当购进A种纪念品160件,B种纪念品20件时,可获得最大利润,最大利润是3800元.3.(2021•兴安盟)移动公司推出A,B,C三种套餐,收费方式如表:套餐月保底费(元)包通话时间(分钟)超时费(元/分钟)A381200.1B 58 360 0.1 C118不限时设月通话时间为x分钟,A套餐,B套餐的收费金额分别为y1元,y2元.其中B套餐的收费金额y2元与通话时间x分钟的函数关系如图所示.(1)结合表格信息,求y1与x的函数关系式,并写出自变量的取值范围;(2)结合图象信息补全表格中B套餐的数据;(3)选择哪种套餐所需费用最少?说明理由.【答案】(1);(2)58,360,0.1;(3)当0≤x≤320 时,A套餐所需费用最少;当320<x≤960时,B套餐所需费用最少;当x>960 时,C套餐所需费用最少.【解答】解:(1)当0≤x≤120 时,y1=38;当x>120时,y1=38+0.1(x﹣120)=0.1x+26,∴;(2)由图象可知,当月保底费为58元;包通话时间360分钟;超时费:(70﹣58)÷(480﹣360)=0.1(元),故答案为:58,360,0.1;(3)当x>360时,设:y2=kx+b,又∵图象过点(360,58),(480,70)两点,∴,解得,∴y2=0.1x+22;∴;当y1=58,0.1x+26=58,解得x=320,∴当x=320 时,A、B套餐所需费用一样多,都比C套餐花费少;当0≤x<320 时,A套餐所需费用最少.当y2=118时,0.1x+22=118,解得x=960,当x=960 时,B、C套餐所需费用一样多,都比A套餐花费少;当320<x<960时,B套餐所需费用最少.当x>960 时,C套餐所需费用最少,综上所述:当0≤x≤320 时,A套餐所需费用最少;当320<x≤960时,B套餐所需费用最少;当x>960 时,C套餐所需费用最少.二.二次函数综合题(共3小题)4.(2023•内蒙古)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴的交点分别为A和B(1,0)(点A在点B的左侧),与y轴交于点C(0,3),点P是直线AC上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P做x轴平行线交AC于点E,过点P做y轴平行线交x轴于点D,求PE+PD的最大值及点P的坐标;(3)如图2,设点M为抛物线对称轴上一动点,当点P,点M运动时,在坐标轴上确定点N,使四边形PMCN为矩形,求出所有符合条件的点N的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)PD+PE取最大值,P(﹣,);(3)N点坐标为(0,4).【解答】解:(1)把B(1,0),C(0,3)代入y=﹣x2+bx+c得:,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)在y=﹣x2﹣2x+3中,令y=0得0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),由A(﹣3,0),C(0,3)得直线AC解析式为y=x+3,设P(t,﹣t2﹣2t+3),则D(t,0),E(﹣t2﹣2t,﹣t2﹣2t+3),∴PD+PE=﹣t2﹣2t+3+(﹣t2﹣2t)﹣t=﹣2t2﹣5t+3=﹣2(t+)2+,∵﹣2<0,∴当t=﹣时,PD+PE取最大值,此时P(﹣,);(3)设M(﹣1,m),P(t,﹣t2﹣2t+3),设PC的中点为K(t,﹣t2﹣t+3),∵N点、M点的中点为K,∴N(t+1,﹣t2﹣2t+6﹣m),∵N点在坐标轴上,∴t+1=0或﹣t2﹣2t+6﹣m=0,当t=﹣1时,此时PM∥y轴,∵四边形PMCN是矩形,∴PM⊥MC,∴M(﹣1,3),∴N(0,4);当m=t2+2t﹣6=(t+1)2﹣7时,∵P点在直线AC上方,∴﹣3<t<0,∴﹣7≤m<﹣3,当P点与A点重合时,m=,∴m>,∴此时M点不存在,综上所述:N点坐标为(0,4).5.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【答案】(1)y=﹣x2+x+,C(0,);(2)△MBC的面积有最大值,M(,);(3)(2,)或(﹣4,﹣)或(4,﹣).【解答】解:(1)将B(3,0),D(﹣2,﹣)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+,令x=0,则y=,∴C(0,);(2)作直线BC,过M点作MN∥y轴交BC于点N,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+设M(m,﹣m2+m+),则N(m,﹣m+),∴MN=﹣m2+m,∴S△MBC=•MN•OB=﹣(m﹣)2+,当m=时,△MBC的面积有最大值,此时M(,);(3)令y=0,则﹣x2+x+=0,解得x=3或x=﹣1,∴A(﹣1,0),设Q(0,t),P(m,﹣m2+m+),①当AB为平行四边形的对角线时,m=3﹣1=2,∴P(2,);②当AQ为平行四边形的对角线时,3+m=﹣1,解得m=﹣4,∴P(﹣4,﹣);③当AP为平行四边形的对角线时,m﹣1=3,解得m=4,∴P(4,﹣);综上所述:P点坐标为(2,)或(﹣4,﹣)或(4,﹣).6.(2021•兴安盟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(,)和点B(4,m).抛物线与x轴的交点分别为H、K(点H在点K的左侧).点F在线段AB 上运动(不与点A、B重合),过点F作直线FC⊥x轴于点P,交抛物线于点C.(1)求抛物线的解析式;(2)如图1,连接AC,是否存在点F,使△FAC是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;(3)如图2,过点C作CE⊥AB于点E,当△CEF的周长最大时,过点F作任意直线l,把△CEF沿直线l翻折180°,翻折后点C的对应点记为点Q,求出当△CEF的周长最大时,点F的坐标,并直接写出翻折过程中线段KQ的最大值和最小值.【答案】(1);(2)存在点F(3,5)或(,);(3)当时,CF最大即△FEC的周长最大,此时F点坐标为,折叠过程中,KQ的最大值为,KQ的最小值为.【解答】解:(1)∵直线y=x+2过点B(4,m),∴m=4+2,解得m=6,∴B(4,6),把点A和B代入抛物线的解析式,得:,解得,∴抛物线的解析式为;(2)存在点F,使△FAC为直角三角形,设F(n,n+2),直线AB与x轴交于M,则M(﹣2,0),直线AB与y轴交于点N,则N(0,2),∵FC∥y轴,∴C(n,2n2﹣8n+6),∵直线y=x+2与x轴的交点为M(﹣2,0),与y轴交点为N(0,2),∴OM=ON=2,∴∠ONM=45°,∵FC∥y轴,∴∠AFC=∠ONM=45°,若△FAC为直角三角形,则分两种情况讨论:(i)若点A为直角顶点,即∠FAC=90°,过点A作AD⊥FC于点D,在Rt△FAC中,∵∠AFC=45°,∴AF=AC,∴DF=DC,∴AD=FC,∵n=,化简得:2n2﹣7n+3=0,解得:n1=3,(与A重合舍去),∴F(3,5),(ii)若点C为直角顶点,即∠FCA=90°,则AC∥x轴,在Rt△FAC中,∵∠AFC=45°,∴AC=CF,∴n=(n+2)﹣(2n2﹣8n+6,化简得:4n2﹣16n+7=0,解得:,(舍去),∴F(,),综上所述:存在点F(3,5)或(,),使△FAC为直角三角形;(3)设F(c,c+2),∵FC∥y轴,∴C(c,2c2﹣8c+6),在Rt△FEC中,∵∠AFC=45∴EF=EC=CF•sin∠AFC=,∴当CF最大时,△FEC的周长最大,∵CF=(c+2)﹣(2c2﹣8c+6)=﹣2c2+9c﹣4=,又∵﹣2<0,∴当时,CF最大即△FEC的周长最大,此时F点坐标为,折叠过程中,当K,F,Q共线,且K和Q在F两侧时,KQ的最大,K和Q在F同侧时,KQ的最小,∵CF=,由(1)知点K的坐标为(3,0),∴KF=,∴KQ的最大值为CF+KF=,KQ的最小值为CF﹣KF=.三.平行四边形的判定与性质(共1小题)7.(2022•内蒙古)如图,在平行四边形ABCD中,点O是AD的中点,连接BO并延长交CD 的延长线于点E,连接BD,AE.(1)求证:四边形ABDE是平行四边形;(2)若BD=CD,判断四边形ABDE的形状,并说明理由.【答案】(1)证明见解析;(2)菱形,理由见解析.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABO=∠DEO,∵点O是边AD的中点,∴AO=DO,在△ABO和△DEO中,,∴△ABO≌△DEO(AAS),∴OB=OE,∴四边形ABDE是平行四边形;(2)解:四边形ABDE是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,∵BD=CD,∴AB=BD,∵四边形ABDE是平行四边形,∴平行四边形ABDE是菱形.四.圆心角、弧、弦的关系(共1小题)8.(2021•兴安盟)如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.【答案】(1)见解析;(2)2.【解答】证明:(1)∵==2,∴AD=CD,B是CD的中点,∵AB是直径,∴AD=AC,∴AC=CD;(2)如图,连接BD,∵AD=DC=AC,∴∠ADC=∠DAC=60°,∵CD⊥AB,∴∠DAB=∠DAC=30°,∵BM切⊙O于点B,AB是直径,∴BM⊥AB,∵CD⊥AB,∴BM∥CD,∴∠AEB=∠ADC=60°,∵AB是直径,∴∠ADB=90°,在Rt△BDE中,∵∠DBE=90°﹣∠DEB=30°,∴BE=2DE=4,∴BD===2,在Rt△BDA中,∵∠DAB=30°,∴AB=2BD=4,∴OB=AB=2,在Rt△OBE中,OE===2.五.相似形综合题(共1小题)9.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.【答案】(1)证明见解答;(2)△FBG是等腰三角形,理由见解答;(3)的值为﹣1.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠ABC=∠ADC=90°,∴∠BAC=∠BCA=∠DAC=∠DCA=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).(2)解:△FBG是等腰三角形,理由如下:∵△ABE≌△ADE,∴∠ABE=∠ADE,∴∠ABC﹣∠ABE=∠ADC﹣∠ADE,∴∠EBC=∠EDC,∵AB∥CD,∴∠FGB=∠EDC,∴∠FGB=∠EBC,∵BF⊥BE,∴∠FBE=90°,∴∠FBG=∠EBC=90°﹣∠ABE,∴∠FGB=∠FBG,∴BF=GF,∴△FBG是等腰三角形.(3)解:∵BE=BF=2,∠FBE=90°,∴∠F=∠BEF=45°,∴∠BAC=∠F,∴∠AEG=∠AGF﹣∠BAC=∠AGF﹣∠F=∠FBG,∵∠AGE=∠FGB,且∠FGB=∠FBG,∴∠AGE=∠AEG,∴AE=AG,∵EF===2,BF=GF=2,∴GE=EF﹣GF=2﹣2,∵△ABE≌△ADE,∴BE=DE=2,∵AG∥CD,∴△AGE∽△CDE,∴===﹣1,∴=﹣1,∴的值为﹣1.六.解直角三角形的应用-仰角俯角问题(共2小题)10.(2023•内蒙古)某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为α,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30°,线段AM=24米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tanα=2.求河流的宽度CD(结果精确到1米,参考数据:≈1.7).【答案】64米.【解答】解:过点B作BE⊥MD于点E.则四边形AMEB是矩形.∴BE=AM=24,ME=AB=12米,∵AF∥MD,∴∠ACM=α.在Rt△AMC中,∠AMC=90°,∴tanα==2,∴=2,∴MC=12米,在Rt△BDE中,∠BED=90°,∠DBE=90°﹣30°=60°,∴tan∠DBE=,∴tan60°==,∴DE=24=72(米),CD=DE﹣CE=DE﹣(MC﹣ME)=72﹣(12﹣12)=84﹣12≈84﹣12×1.7=84﹣20.4=64(米).答:河流的宽度CD约为64米.11.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)【答案】建筑物的高度AB约为31.9米.【解答】解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.七.频数(率)分布直方图(共2小题)12.(2023•内蒙古)为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组,A组:75≤x<80,B组:80≤x<85,C组:85≤x<90,D组:90≤x<95,E组:95≤x≤100,并绘制了如图不完整的统计图表.请结合统计图表,解答如下问题:(1)本次调查的样本容量为 400 ,学生成绩统计表中m= 176 ;(2)所抽取学生成绩的中位数落在 C 组;(3)求出扇形统计图中“E”所在扇形的圆心角度数;(4)若成绩在90分及以上为优秀,学校共有2000名学生,估计该校成绩优秀的学生有多少名?学生成绩统计表组别成绩x频数A75≤x<8020B80≤x<85mC85≤x<90144D90≤x<9545E95≤x≤100n【答案】(1)400,176;(2)C;(3)13.5°;(4)300名.【解答】解:(1)本次调查的样本容量为144÷36%=400(人),学生成绩统计表中m=400×44%=176,故答案为:400,176;(2)∵B组的人数为176人,∴所抽取学生成绩的中位数是第200个和第201个成绩的平均数,A,B组的人数和为:20+176=196,C组人数为144,∴所抽取学生成绩的中位数落在C组;故答案为:C;(3)∵n=400﹣20﹣176﹣144﹣45=15,∴360°×=13.5°,答:扇形统计图中“E”所在扇形的圆心角度数13.5°;(4)2000×=300(名).答:估计该校成绩优秀的学生有300名.13.(2021•兴安盟)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云健身”任务.为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):一班:100 94 86 86 84 94 76 69 59 94二班:99 96 82 96 79 65 96 55 96(2)整理、描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如图;(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差一班①9486147.76二班83.796②215.21根据以上数据填出表格中①、②两处的数据并补全二班的频数分布直方图;(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).【答案】(3)84.2,89,补全的二班的频数分布直方图见解答;(4)一班完成情况较好,理由见解答.【解答】解:(3)表格中①对应的数据为:=84.2,由(1)中二班的数据和(2)中二班对应的频数分布直方图可得,表格中②对应的数据是(82+96)÷2=89,由二班的平均数是83.7可得,被墨水遮盖的数据是:83.7×10﹣(99+96+82+96+79+65+96+55+96)=837﹣764=73,则二班60~70对应的频数是1,70~80对应的频数是2,补全的频数分布直方图如图所示;(4)一班完成情况较好,理由:一班的平均数高于二班,说明一班的成绩好于二班;一班的方差小于二班,说明一班的同学成绩波动小,大部分同学都在参加锻炼,故一班的完成情况好.八.列表法与树状图法(共1小题)14.(2021•兴安盟)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字﹣2,0.3,,0.(1)从口袋中随机摸出一个小球,求摸出的小球上的数字是分数的概率(直接写出结果);(2)从口袋中一次随机摸出两个小球,摸出的小球上的数字分别记作x 、y ,请用列表法(或树状图)求点(x ,y )在第四象限的概率.【答案】(1);(2).【解答】解:(1)P (分数)==;(2)列表得;﹣20.30﹣2(0.3,﹣2)(,﹣2)(0,﹣2)0.3(﹣2,0.3)(,0.3)(0,0.3)(﹣2,)(0.3,)(0,)0(﹣2,0)(0.3,0)(,0)共出现12种等可能结果,其中点在第四象限的有2种(0.3,﹣2)、(0.3,),∴P (第四象限)=.。

5.3与一次函数有关的综合题(分类精讲)·数学中考分类精粹

5.3与一次函数有关的综合题(分类精讲)·数学中考分类精粹

ɦ5.3㊀与一次函数有关的综合题㊀能综合运用一次函数以及前面的数㊁式㊁方程㊁不等式知识解决问题.1.(2012 福建漳州)某校为实施国家 营养早餐 工程,食堂用甲㊁乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:原料维生素C 及价格甲种原料乙种原料维生素C (单位/千克)600400原料价格(元/千克)95现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C .设购买甲种原料x 千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式.并说明购买甲种原料多少千克时,总费用最少?2.(2012 湖北荆门)荆门市是著名的 鱼米之乡 .某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%㊁95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?(第2题)3.(2012 四川攀枝花)煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A ㊁B 两厂,通过了解获得A ㊁B 两厂的有关信息如下表(表中运费栏 元/t k m表示:每吨煤炭运送一千米所需的费用):厂别运费(元/t k m )路程(k m )需求量(t)A 0.45200不超过600Ba (a 为常数)150不超过800(1)写出总运费y (元)与运往A 厂的煤炭量x (t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.(可用含a 的代数式表示)4.(2012 黑龙江佳木斯)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲㊁乙两地,用大㊁小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲㊁乙两地的运费如表:㊀车型运往地㊀甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲㊁乙两地的总运费为w 元,求出w 与a 的函数关系式;(写出自变量的取值范围)(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.ɦ5.3㊀与一次函数有关的综合题1.(1)依题意,得600x +400(20-x )ȡ480ˑ20,解得x ȡ8.ʑ㊀至少需要购买甲种原料8千克.(2)根据题意得y =9x +5(20-x ),即y =4x +100,ȵ㊀k =4>0,ʑ㊀y 随x 的增大而增大.ȵ㊀x ȡ8,ʑ㊀当x =8时,y 最小.ʑ㊀购买甲种原料8千克时,总费用最少.2.(1)批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式y =26x (20ɤx ɤ40),24x (x >40).{(2)设该经销商购进乌鱼x 千克,则购进草鱼(75-x )千克,所需进货费用为w 元.由题意得x >40,89%(75-x )+95%x ȡ93%ˑ75.{解得x ȡ50.由题意得w =8(75-x )+24x =16x +600.ȵ㊀16>0,ʑ㊀w 的值随x 的增大而增大.ʑ㊀当x =50时,75-x =25,ω最小=1400(元).故该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.3.(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨.依题意得y =200ˑ0.45x +150ˑa ˑ(1000-x )=90x -150a x +150000a =(90-150a )x +150000a .依题意得x ɤ600,1000-x ɤ800.{解得200ɤx ɤ600.ʑ㊀函数关系式为y =(90-150a )x +150000a (200ɤx ɤ600).(2)当0<a <0.6时,90-150a >0,ʑ㊀当x =200时,y 最小=(90-150a )ˑ200+150000a =120000a +18000.此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨,ʑ㊀当x =600时,y 最小=(90-150a )ˑ600+150000a =60000a +54000.此时,1000-x =1000-600=400.故当0<a <0.6时,运往A 厂200吨,B 厂800吨时,总运费最低,最低运费120000a +18000元;当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费60000a +54000元.4.(1)解法一:设大货车用x 辆,小货车用y 辆,根据题意得x +y =18,16x +10y =228.{解得x =8,y =10.{故大货车用8辆,小货车用10辆.解法二:设大货车用x 辆,则小货车用(18-x )辆,根据题意得16x +10(18-x )=228,解得x =8.ʑ㊀18-x =18-8=10(辆).故大货车用8辆,小货车用10辆.(2)w =720a +800(8-a )+500(9-a )+650[10-(9-a )]=70a +11550,ʑ㊀w =70a +11550(0ɤa ɤ8且为整数).(3)16a +10(9-a )ȡ120,解得a ȡ5,又ȵ㊀0ɤa ɤ8,ʑ㊀5ɤa ɤ8且为整数.ȵ㊀w =70a +11550,k =70>0,w 随a 的增大而增大,ʑ㊀当a =5时,w 最小,最小值为w 最小=70ˑ5+11550=11900(元).故使总运费最少的调配方案是:5辆大货车㊁4辆小货车前往甲地;3辆大货车㊁6辆小货车前往乙地.最少运费为11900元.。

中考数学分类一次函数与二次函数试卷(含答案)

中考数学分类一次函数与二次函数试卷(含答案)

中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数一.点的坐标(共1小题)1.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)二.规律型:点的坐标(共1小题)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)三.坐标确定位置(共1小题)3.(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m,n须满足的条件是.四.坐标与图形性质(共1小题)4.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.五.函数自变量的取值范围(共1小题)5.(2020•菏泽)函数y=√x−2x−5的自变量x的取值范围是()A.x≠5B.x>2且x≠5C.x≥2D.x≥2且x≠5六.函数值(共1小题)6.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.七.函数的图象(共1小题)7.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.八.动点问题的函数图象(共2小题)8.(2020•东营)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13 9.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48九.函数的表示方法(共1小题)10.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…一十.一次函数的性质(共1小题)11.(2019•临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>−bk时,y>0一十一.一次函数图象与系数的关系(共1小题)12.(2020•东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).一十二.一次函数图象上点的坐标特征(共3小题)13.(2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+814.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.15.(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n 个正方形对角线长的和是.一十三.一次函数与一元一次方程(共1小题)16.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y =ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15一十四.一次函数与一元一次不等式(共2小题)17.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.18.(2019•滨州)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.一十五.两条直线相交或平行问题(共2小题)19.(2019•东营)如图,在平面直角坐标系中,函数y=√33x和y=−√3x的图象分别为直线l1,l2,过l1上的点A1(1,√33)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.20.(2020•滨州)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△P AB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.一十六.一次函数的应用(共11小题)21.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢22.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 23.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.24.(2020•东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.25.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A ,B 两种型号的口罩9000只,共获利润5000元,其中A ,B 两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A 型口罩的1.2倍. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B 型口罩的进货量不超过A 型口罩的1.5倍,设购进A 型口罩m 只,这10000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?26.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?27.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.28.(2020•德州)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?29.(2019•临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x 表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.30.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.31.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数参考答案与试题解析一.点的坐标(共1小题)1.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.二.规律型:点的坐标(共1小题)2.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.三.坐标确定位置(共1小题)3.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.四.坐标与图形性质(共1小题)4.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.五.函数自变量的取值范围(共1小题)5.【解答】解:由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.六.函数值(共1小题)6.【解答】解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.七.函数的图象(共1小题)7.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.八.动点问题的函数图象(共2小题)8.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP ⊥AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =√132−122=5.所以AB =2AP =10.故选:C .9.【解答】解:由图2知,AB =BC =10,当BP ⊥AC 时,y 的值最小,即△ABC 中,AC 边上的高为8(即此时BP =8),当y =8时,PC =√BC 2−BP 2=√102−82=6,△ABC 的面积=12×AC ×BP =12×8×12=48, 故选:D .九.函数的表示方法(共1小题)10.【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c ,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴{a +b +c =4a −b +c =0c =3,解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3.当x =3时,代入y =﹣x 2+2x +3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y =﹣x 2+2x +3.一十.一次函数的性质(共1小题)11.【解答】解:∵y =kx +b (k <0,b >0),∴图象经过第一、二、四象限,A 正确;∵k <0,∴y 随x 的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=−b k,当x>−bk时,y<0;D不正确;故选:D.一十一.一次函数图象与系数的关系(共1小题)12.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,{−1=k+b3=−k+b,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.一十二.一次函数图象上点的坐标特征(共3小题)13.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.14.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.15.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=√2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:√2×(2n﹣1),故答案为:√2(2n﹣1),一十三.一次函数与一元一次方程(共1小题)16.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.一十四.一次函数与一元一次不等式(共2小题)17.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x +2≤ax +c 的解为x ≤1;故答案为x ≤1;18.【解答】解:∵正比例函数y =13x 也经过点A ,∴kx +b <13x 的解集为x >3,故答案为:x >3.一十五.两条直线相交或平行问题(共2小题)19.【解答】解:由题意可得,A 1(1,√33),A 2(1,−√3),A 3(﹣3,−√3),A 4(﹣3,3√3),A 5(9,3√3),A 6(9,﹣9√3),…,可得A 2n +1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A 2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.20.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.一十六.一次函数的应用(共11小题)21.【解答】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .22.【解答】解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4,∴y 2=﹣4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160, ∴此刻的时间为9:20.故选:B .23.【解答】解:设当x >120时,l 2对应的函数解析式为y =kx +b ,{120k +b =480160k +b =720,得{k =6b =−240, 即当x >120时,l 2对应的函数解析式为y =6x ﹣240,当x =150时,y =6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m 3),故小雨家去年用水量为150m 3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210.24.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.25.【解答】解:设销售A 型口罩x 只,销售B 型口罩y 只,根据题意得:{x +y =90002000x ×1.2=3000y,解得{x =4000y =5000, 经检验,x =4000,y =5000是原方程组的解,∴每只A 型口罩的销售利润为:20004000=0.5(元),每只B 型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A 型口罩和B 型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W =0.5m +0.6(10000﹣m )=﹣0.1m +6000,10000﹣m ≤1.5m ,解得m ≥4000,∵﹣0.1<0,∴W 随m 的增大而减小,∵m 为正整数,∴当m =4000时,W 取最大值,则﹣0.1×4000+6000=5600,即药店购进A 型口罩4000只、B 型口罩6000只,才能使销售总利润最大,最大利润为5600元.26.【解答】解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍. ∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .27.【解答】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意列方程,得: 6300.9x −6001.2x =10,解这个方程,得x =20,经检验,x =20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A 种树苗每棵的价格为:20×0.9=18(元),B 种树苗每棵的价格为:20×1.2=24(元),设购进A 种树苗t 棵,这批树苗的费用为w 元,则:w =18t +24(5500﹣t )=﹣6t +132000,∵w 是t 的一次函数,k =﹣6<0,∴w 随t 的增大而减小,又∵t ≤3500,∴当t =3500棵时,w 最小,此时,B 种树苗有:5500﹣3500=2000(棵),w =﹣6×3500+132000=111000,答:购进A 种树苗3500棵,B 种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.28.【解答】解:(1)设超市B 型画笔单价为a 元,则A 型画笔单价为(a ﹣2)元. 根据题意得,60a−2=100a ,解得a =5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y={4.5x(1≤x≤20)4x+10(x>20)(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.29.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得{b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.30.【解答】解:(1)由图可得,小王的速度为:30÷3=10km /h ,小李的速度为:(30﹣10×1)÷1=20km /h ,答:小王和小李的速度分别是10km /h 、20km /h ;(2)小李从乙地到甲地用的时间为:30÷20=1.5h ,当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).31.【解答】解:(1)∵0.1元/min =6元/h ,∴由题意可得,y 1={30(0≤x ≤25)6x −120(x >25), y 2={50(0≤x ≤50)6x −250(x >50), y 3=100(x ≥0);(2)作出函数图象如图:结合图象可得:若选择方式A 最省钱,则月通话时间x 的取值范围为:0≤x <853, 若选择方式B 最省钱,则月通话时间x 的取值范围为:853<x <1753, 若选择方式C 最省钱,则月通话时间x 的取值范围为:x >1753. 故答案为:0≤x <853,853<x <1753,x >1753. (3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长, ∴结合图象可得:小张选择的是方式A ,小王选择的是方式B ,将y =80分别代入y 2={50(0≤x ≤50)6x −250(x >50),可得 6x ﹣250=80,解得:x =55,∴小王该月的通话时间为55小时.。

初中一次函数经典题型

初中一次函数经典题型

初中一次函数经典题型
初中一次函数经典题型是在初中数学中常见的一类题目,这类题目通常涉及到一次函数的性质、图像、方程和应用等方面。

一次函数,也称为一元一次方程,是指具有以下形式的函数:y = ax + b,其中a和b是常数,且a ≠ 0。

一次函数的图像是一条直线,具有许多特点和性质。

在初中数学中,关于一次函数的经典题型主要包括以下几种:
1. 确定一次函数的斜率和截距:已知一线性函数的图像以及通过图像上的两点,可以利用斜率的定义求出斜率,并通过斜率和通过的一点求出截距。

2. 根据一次函数的方程绘制函数图像:已知一次函数的方程,可以通过选择合适的x值,计算对应的y值,并将这些点绘制到坐标系上,连接这些点得到函数的图像。

3. 解一次方程:已知一次函数的方程,可以利用解方程的方法求出方程的解,即函数的零点。

4. 判断方程的解的个数:通过一次函数的图像,可以判断方程的解
的个数。

如果函数的图像与x轴有且仅有一个交点,则方程有且仅有一个解;如果函数的图像与x轴平行,则方程无解;如果函数的图像与x轴没有交点,但与x轴相切,则方程有无穷多解。

5. 判断一次函数图像的变化趋势:通过一次函数的斜率可以判断函数图像的变化趋势。

当斜率为正时,函数图像递增;当斜率为负时,函数图像递减;当斜率为零时,函数图像水平。

在学习一次函数的过程中,通过解答这些经典题型,可以加深对一次函数的理解,并提高解题的能力。

掌握这些题型的解题方法,不仅有助于学习数学,还能培养逻辑思维和问题解决能力。

因此,初中一次函数经典题型是数学学习中的重要内容。

全国181套中考数学试题分类汇编16一次函数(正比例函数)的图像和性质

全国181套中考数学试题分类汇编16一次函数(正比例函数)的图像和性质

16:一次函数(正比例函数)的图像和性质一、选择题1.(重庆江津4分)直线1y x =-的图象经过的象限是A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限【答案】D 。

【考点】一次函数的性质。

【分析】由1y x =-可知直线与y 轴交于(0,﹣1)点,且y 随x 的增大而增大,可判断直线经过第一、三、四象限。

故选D 。

2.(黑龙江牡丹江3分)在平面直角坐标系中,点O 为原点,直线y kx b =+交x 轴于点A(-2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为 A .1 B .2 C .-2或4 D .4或-4 【答案】D 。

【考点】待定系数法,点的坐标与方程的关系。

【分析】根据题意画出图形,注意要分情况讨论,当B 在y 的正半轴和负半轴上时,分别求出B 点坐标,然后再利用待定系数法求出一次函数解析式,得到k 的值:①当B 在y 的正半轴上时,∵△AOB 的面积为8,∴12·OA·OB=8。

∵A(-2,0),∴OA=2,∴OB=8。

∴B(0,8)。

∵直线y kx b =+经过点A (-2,0)和点B (0,8). ∴208k b b -+=⎧⎨=⎩,解得48k b =⎧⎨=⎩。

②当B 在y 的负半轴上时,同①可得4k =-。

故选D 。

3.(广西桂林3分)直线1y kx =-一定经过点A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,﹣1)【答案】D 。

【考点】直线上点的坐标与方程的关系。

【分析】根据点在直线上,点的坐标 满足方程的关系,由一次函数y kx b =+与y 轴的交点为(0,b )进行解答即可:∵直线y kx b =+中b =-1,∴此直线一定与y 轴相较于(0,-1)点, ∴此直线一定过点(0,-1)。

故选D 。

4.(广西百色3分)两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是 A ⎩⎨⎧==32y x B ⎩⎨⎧=-=32y x C ⎩⎨⎧-==23y x D ⎩⎨⎧==23y x【答案】B 。

湖南省衡阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

湖南省衡阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

湖南省衡阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共2小题)1.(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?2.(2021•衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为xcm,单层部分的长度为ycm.经测量,得到表中数据.双层部分长度x(cm)281420单层部分长度y(cm)148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为Lcm,求L的取值范围.二.一次函数综合题(共1小题)3.(2021•衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.三.反比例函数综合题(共1小题)4.(2022•衡阳)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.四.二次函数综合题(共3小题)5.(2023•衡阳)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,连接AC,过B、C两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B ′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.6.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y=图象上的“雁点”坐标;(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.7.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.五.四边形综合题(共2小题)8.(2023•衡阳)[问题探究](1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.[迁移探究](2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.9.(2022•衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD 交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S (平方单位),点P运动时间为t(秒).(1)当点M与点B重合时,求t的值;(2)当t为何值时,△APQ与△BMF全等;(3)求S与t的函数关系式;(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4时,求点E运动路径的长.六.圆周角定理(共1小题)10.(2023•衡阳)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=,sin∠ABD=,求⊙O的半径.七.切线的判定与性质(共1小题)11.(2022•衡阳)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.八.旋转的性质(共1小题)12.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.九.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•衡阳)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度,圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部24米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以4米/秒的速度继续向前匀速飞行.求经过多少秒时,无人机刚好离开圆圆的视线EB.一十.列表法与树状图法(共1小题)14.(2022•衡阳)为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是 人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为 度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.湖南省衡阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共2小题)1.(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?【答案】(1)冰墩墩的进价为72元/个,雪容融的进价为64元/个;(2)冰墩墩购进24个,雪容融购进16个时才能获得最大利润,最大利润是992元.【解答】解:(1)设冰墩墩的进价为x元/个,雪容融的进价为y元/个,由题意可得:,解得,答:冰墩墩的进价为72元/个,雪容融的进价为64元/个;(2)设冰墩墩购进a个,则雪容融购进(40﹣a)个,利润为w元,由题意可得:w=28a+20(40﹣a)=8a+800,∴w随a的增大而增大,∵网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍,∴a≤1.5(40﹣a),解得a≤24,∴当a=24时,w取得最大值,此时w=992,40﹣a=16,答:冰墩墩购进24个,雪容融购进16个时才能获得最大利润,最大利润是992元.2.(2021•衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为xcm,单层部分的长度为ycm.经测量,得到表中数据.双层部分长度x(cm)281420单层部分长度y(cm)148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为Lcm,求L的取值范围.【答案】(1)y=﹣2x+152;(2)22cm;(3)76≤L≤152.【解答】解:(1)由表格数据规律可知y与x的函数关系为一次函数,设y与x的函数关系式为y=kx+b(k≠0),由题知,解得,∴y与x的函数关系式为y=﹣2x+152;(2)根据题意知,解得,∴双层部分的长度为22cm;(3)由题知,当x=0时,y=152,当y=0时,x=76,∴76≤L≤152.二.一次函数综合题(共1小题)3.(2021•衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.【答案】(1)M的坐标是:;(2)四边形MNBP的最大面积为6;(3)存在,直线l的解析式为y=;(4)点N到OA的距离为或.【解答】解:(1)过点A作x轴的垂线,交MN于点E,交OB于点F,由题意得:OQ=2t,OP=3t,PB=6﹣3t,∵O(0,0),A(3,4),B(6,0),∴OF=FB=3,AF=4,OA=AB=,∵MN∥OB,∴∠OQM=∠OFA,∠OMQ=∠AOF,∴△OQM∽△AFO,∴,∴,∴QM=,∴点M的坐标是().(2)∵MN∥OB,∴四边形QEFO是矩形,∴QE=OF,∴ME=OF﹣QM=3﹣,∵OA=AB,∴ME=NE,∴MN=2ME=6﹣3t,∴S四边形MNBP=S△MNP+S△BNP=MN•OQ+•BP•OQ==﹣6t2+12t=﹣6(t﹣1)2+6,∵点P到达点B时,P、Q同时停止,∴0<t<2,∴t=1时,四边形MNBP的最大面积为6,四边形MNBP面积不存在最小值.(3)∵MN=6﹣3t,BP=6﹣3t,∴MN=BP,∵MN∥BP,∴四边形MNBP是平行四边形,∴平分四边形MNBP面积的直线经过四边形的中心,即MB的中点,设中点为H(x,y),∵M(),B(6,0),∴x==,y=.∴x=,化简得:y=,∴直线l的解析式为:y=.(4)①当t=0时,点M和点P均在点O处,∠BPN=∠OAP=0°,此时点N在点B处,∴点N到OA的距离为△OAB边OA上的高,记为h,∵S△OAB=OB•AF=OA•h,∴×6×4=×5h,∴点N到OA的距离为:h=;②当0<t<2时,∵OQ=2t,QM=t,∴OM=t,∵MN∥OB,∴,∴OM=BN=t,∵OA=AB,∴∠AOB=∠PBN,又∵∠OAP=∠BPN,∴△AOP∽△PBN,∴,∴,解得:t1=,t2=0(舍去).∵MN=6﹣3t,AE=AF﹣OQ,ME=3﹣,∴MN=6﹣3×,AE=,ME=,∴AM=.设点N到OA的距离为h,∵S△AMN=MN•AE=AM•h,∴,解得:h=;③当t=2时,不符合题意;综上所述:点N到OA的距离为或.三.反比例函数综合题(共1小题)4.(2022•衡阳)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.【答案】(1)反比例函数关系式为y=,一次函数的关系式为y=x﹣2;(2)M的坐标是(,)或(﹣,﹣).【解答】解:(1)把A(3,1)代入y=得:1=,∴m=3,∴反比例函数关系式为y=;把B(﹣1,n)代入y=得:n==﹣3,∴B(﹣1,﹣3),将A(3,1),B(﹣1,﹣3)代入y=kx+b得:,解得,∴一次函数的关系式为y=x﹣2;答:反比例函数关系式为y=,一次函数的关系式为y=x﹣2;(2)在y=x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),设M(m,),N(n,n﹣2),而O(0,0),∵四边形OCNM是平行四边形,∴CM、ON为对角线,它们的中点重合,,解得或,∴M(,)或(﹣,﹣);四.二次函数综合题(共3小题)5.(2023•衡阳)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,连接AC,过B、C两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B ′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.【答案】(1)a=﹣1.(2)存在,D(,).(3)抛物线上存在点P,使∠PBC+∠ACO=45°,直线BP的解析式为y=﹣x+1或y =﹣3x+9..【解答】解:(1)∵抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0),∴a+2a+3=0,∴a=﹣1.(2)存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.∵y=﹣x2+2x+3,当x=0时,y=3,∴C(0,3),当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴B(3,0),设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+3,∵将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点,∴直线B′C′的解析式为y=﹣x+3﹣m,设D(t,﹣t2+2t+3),过点D作DE∥y轴,交B′C′于点E,作DF⊥B′C′于点F,设直线B′C′交y轴于点G,如图,∴E(t,﹣t+3﹣m),∴DE=﹣t2+2t+3﹣(﹣t+3﹣m)=﹣t2+3t+m,∵OB=OC=3,∠BOC=90°,∴∠BCO=∠CBO=45°,∵B′C′∥BC,∴∠B′GO=∠BCO=45°,∵DE∥y轴,∴∠DEF=∠B′GO=45°,∵∠DFE=90°,∴△DEF是等腰直角三角形,∴DF=DE=(﹣t2+3t+m)=﹣(t﹣)2+(+m),∵﹣<0,∴当t=时,DF取得最大值(+m),此时点D的坐标为(,).(3)存在.当∠PBC在BC的下方时,在y轴正半轴上取点M(0,1),连接BM交抛物线于点P,如图,∵A(﹣1,0),B(3,0),C(0,3),M(0,1),∴OB=OC=3,OM=OA=1,∠BOM=∠COA=90°,∴△BOM≌△COA(SAS),∴∠MBO=∠ACO,∵∠CBO=45°,∴∠CBP+∠MBO=45°,∴∠CBP+∠ACO=45°,设直线BM的解析式为y=k′x+b′,则,解得:,∴直线BM的解析式为y=﹣x+1,联立,得,解得:(舍去),,∴P(﹣,);当∠PBC在BC的上方时,作点M关于直线BC的对称点M′,如图,连接MM′,CM ′,直线BM′交抛物线于P,由对称得:MM′⊥BC,CM′=CM=2,∠BCM′=∠BCM=45°,∴∠MCM′=90°,∴M′(2,3),则直线BM′的解析式为y=﹣3x+9,联立,得:,解得:(舍去),,∴P(2,3);综上所述,抛物线上存在点P,使∠PBC+∠ACO=45°,直线BP的解析式为y=﹣x+1或y=﹣3x+9.6.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y=图象上的“雁点”坐标;(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)“雁点”坐标为(2,2)或(﹣2,﹣2);(2)①0<c<4;②45°;(3)存在,点P的坐标为(,)或(1+,)或(,).【解答】解:(1)由题意得:x=,解得x=±2,当x=±2时,y==±2,故“雁点”坐标为(2,2)或(﹣2,﹣2);(2)①∵“雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y=x,∵抛物线y=ax2+5x+c上有且只有一个“雁点”E,则ax2+5x+c=x,则△=16﹣4ac=0,即ac=4,∵a>1,故0<c<4;∵M、N的存在,则△=25﹣4ac>0,而a>1,则c<,综上所述,c的取值范围为0<c<4;②∵ac=4,则ax2+5x+c=0为ax2+5x+=0,解得x=﹣或﹣,即点M的坐标为(﹣,0),由ax2+5x+c=x,ac=4,解得x=﹣,即点E的坐标为(﹣,﹣),过点E作EH⊥x轴于点H,则HE=,MH=x E﹣x M=﹣﹣(﹣)==HE,故∠EMN的度数为45°;(3)存在点P,使点C恰好为“雁点”,理由:当点C在PB的下方时,由题意知,点C在直线y=x上,故设点C的坐标为(t,t),过点P作x轴的平行线交过点C与y轴的平行线于点M,交过点B与y轴的平行线于点N,设点P的坐标为(m,﹣m2+2m+3),则BN=﹣m2+2m+3,PN=3﹣m,PM=m﹣t,CM=﹣m2+2m+3﹣t,∵∠NPB+∠MPC=90°,∠MCP+∠CPM=90°,∴∠NPB=∠PCM,∵∠CMP=∠PNB=90°,PC=PB,∴△CMP≌△PNB(AAS),∴PM=BN,CM=PN,即m﹣t=|﹣m2+2m+3|,﹣m2+2m+3﹣t=|3﹣m|,解得m=1+或1﹣,当点C在PB的上方时,过点P作PK⊥OB于K,CH⊥KP交KP的延长线于H.同法可证,△CHP≌△PKB,可得CH=PK,HP=BK,t﹣m=﹣m2+2m+3,t﹣(﹣m2+2m+3)=3﹣m,∴m=,n=,∴P(,),故点P的坐标为(,)或(1+,)或(,).7.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2(﹣1<x<2);(2)b的值是2或3;(3)点P的坐标为(1,0)或(,0)或(1+,0).【解答】解:(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).五.四边形综合题(共2小题)8.(2023•衡阳)[问题探究](1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.[迁移探究](2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.【答案】(1)①证明见解析;②不变化,∠DPQ=90°,理由见解析;③AQ=OP,理由见解析;(2)AQ=CP,理由见解析.【解答】(1)①证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA=45°∵CP=CP,∴△DCP≌△BCP,∴PD=PB;②解:∠DPQ的大小不发生变化,∠DPQ=90°;理由:作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,∵四边形ABCD是正方形,∴∠DAC=∠BAC=45°,∠DAB=90°,∴四边形AMPN是矩形,PM=PN,∴∠MPN=90°∵PD=PQ,PM=PN,∴Rt△DPN≌Rt△QPM(HL),∴∠DPN=∠QPM,∴∠QPN+∠QPM=90°∴∠QPN+∠DPN=90°,即∠DPQ=90°;③解:AQ=OP;理由:作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,∵四边形ABCD是正方形,∴∠BAC=45°,∠AOB=90°,∴∠AEP=45°,四边形OPEF是矩形,∴∠PAE=∠PEA=45°,EF=OP,∴PA=PE,∵PD=PB,PD=PQ,∴PQ=PB,作PM⊥AE于点M,则QM=BM,AM=EM,∴AQ=BE,∵∠EFB=90°,∠EBF=45°,∴BE=EF,∴AQ=OP;(2)解:AQ=CP;理由:四边形ABCD是菱形,∠ABC=60°,∴AB=BC,AC⊥BD,DO=BO,∴△ABC是等边三角形,AC垂直平分BD,∴∠BAC=60°,PD=PB,∵PD=PQ,∴PQ=PB,作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,则四边形PEGC是平行四边形,∠GEB=∠BAC=60°,∠AEP=∠ABC=60°,∴EG=PC,△APE,△BEG都是等边三角形,∴BE=EG=PC,作PM⊥AB于点M,则QM=MB,AM=EM,∴QA=BE,∴AQ=CP.9.(2022•衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD 交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S (平方单位),点P运动时间为t(秒).(1)当点M与点B重合时,求t的值;(2)当t为何值时,△APQ与△BMF全等;(3)求S与t的函数关系式;(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4时,求点E运动路径的长.【答案】(1)2;(2)4或;(3);(4).【解答】解:(1)M与B重合时,如图1,∵PQ⊥AB,∴∠PQA=90°,∴PA=AB=2,∴t=2;(2)①当0≤t≤2时,∵AM=2t,∴BM=4﹣2t,∵△APQ≌△BMF,∴AP=BM,∴t=4﹣2t,∴t=;②当2<t≤4时,∵AM=2t,∴BM=2t﹣4,∵△APQ≌△BMF,∴AP=BM,∴t=2t﹣4,∴t=4;综上所述,t的值为4或;(3)①0≤t≤2时,如图2,在Rt△APQ中,PQ=t,∴MQ=t,∴S=t=;②当2<t≤4时,如图3,∵BF=t﹣2,MF=(t﹣2),∴S△BFM=BF•MF=,∴S=S△PQM﹣S△BFM=﹣;∴S=;(4)连接AE,如图4,∵△PQE为等边三角形,∴PE=t,在Rt△APE中,tan∠PAE=,∴∠PAE为定值,∴点E的运动轨迹为直线,∵AP=t,∴AE===t,当t=2时,AE=,当t=4时,AE=2,∴E点运动路径长为2﹣=.六.圆周角定理(共1小题)10.(2023•衡阳)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=,sin∠ABD=,求⊙O的半径.【答案】(1)见解析;(2)5.【解答】(1)证明:∵D是弧AC的中点,∴,∵AB⊥DH,且AB是⊙O的直径,∴,∴,∴∠ADH=∠CAD,∴AF=DF.(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠B=90°,∵∠DAE+∠ADE=90°,∴∠ADE=∠B,∴sin∠ADE=,∴tan∠ADE=,设AE=x,则DE=2x,∵DF=AF=,∴EF=2x﹣,∵AE2+EF2=AF2,∴x=2,∴AD==2,∴AB=,∴AB=10,∴⊙O的半径为5.七.切线的判定与性质(共1小题)11.(2022•衡阳)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.【答案】(1)直线BE与⊙O相切,理由见解答;(2)DE的长为6.【解答】解:(1)直线BE与⊙O相切,理由:连接OD,∵CD与⊙O相切于点D,∴∠ODE=90°,∵AD∥OE,∴∠ADO=∠DOE,∠DAO=∠EOB,∵OD=OA,∴∠ADO=∠DAO,∴∠DOE=∠EOB,∵OD=OB,OE=OE,∴△DOE≌△BOE(SAS),∴∠OBE=∠ODE=90°,∵OB是⊙O的半径,∴直线BE与⊙O相切;(2)解法一:设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴AB=2r=6,∴BC=AC+AB=2+6=8,由(1)得:△DOE≌△BOE,∴DE=BE,在Rt△BCE中,BC2+BE2=CE2,∴82+BE2=(4+DE)2,∴64+DE2=(4+DE)2,∴DE=6;解法二:设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴OA=3,∵AD∥OE,∴=,∴=,∴DE=6,∴DE的长为6.八.旋转的性质(共1小题)12.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.【答案】(1)四边形AFHE是正方形,理由详见解析过程;(2)17.【解答】解:(1)四边形AFHE是正方形,理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF,∴Rt△ABE≌Rt△ADF,∴∠AEB=∠AFD=90°,∴∠AFH=90°,在四边形AFHE中,∠FAE=90°,∠AEB=90°,∠AFH=90°,∴四边形AFHE是矩形,又∵AE=AF,∴矩形AFHE是正方形;(2)设AE=x.则由(1)以及题意可知:AE=EH=FH=AF=x,BH=7,BC=AB=13,在Rt△AEB中,AB2=AE2+BE2,即132=x2+(x+7)2,解得:x=5(负值舍去),∴BE=BH+EH=5+7=12,∴DF=BE=12,又∵DH=DF+FH,∴DH=12+5=17.九.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•衡阳)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度,圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部24米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以4米/秒的速度继续向前匀速飞行.求经过多少秒时,无人机刚好离开圆圆的视线EB.【答案】(1)教学楼AB的高度为25.6米;(2)经过12秒时,无人机刚好离开了小明的视线.【解答】解:(1)过点B作BM⊥CD于点M,则∠DBM=∠BDN=30°,在Rt△BDM中,BM=AC=24米,∠DBM=30°,∴DM=BM•tan∠DBM=24×=24(米),∴AB=CM=CD﹣DM=49.6﹣24=25.6(米).答:教学楼AB的高度为25.6米;(2)延长EB交DN于点G,则∠DGE=∠MBE,在Rt△EMB中,BM=AC=24米,EM=CM﹣CE=24米,∴tan∠MBE===,∴∠MBE=30°=∠DGE,∵∠EDG=90°,∴∠DEG=90°=30°=60°,在Rt△EDG中,ED=CE﹣CE=48米,∴DG=ED•tan60°=48(米),∴48÷4=12(秒),∴经过12秒时,无人机刚好离开了小明的视线.一十.列表法与树状图法(共1小题)14.(2022•衡阳)为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是 120 人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为 90 度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.【答案】(1)120,补全统计图详见解答;(2)90;(3)300;(4).【解答】解:(1)调查学生总数为36÷30%=120(人),选择“E.数学园地设计”的有120﹣30﹣30﹣36﹣6=18(人),故答案为:120,补全统计图如下:(2)360°×=90°,故答案为:90;(3)1200×=300(人),答:参加成果展示活动的1200名学生中,最喜爱“测量”项目的学生大约有300人;(4)在A,B,C,D,E五项活动中随机选取两项,所有可能出现的结果如下:共有20种可能出现的结果,其中恰好选中B,E这两项活动的有2种,所以恰好选中B,E这两项活动的概率为=.。

2021年中考真题分类19.2一次函数的图象和性质精选试题含解析答案

2021年中考真题分类19.2一次函数的图象和性质精选试题含解析答案

2021年中考真题分类19.2一次函数一.选择题(共14小题)1.(2021•赤峰)点P(a,b)在函数y=4x+3的图象上,则代数式8a﹣2b+1的值等于()A.5B.﹣5C.7D.﹣6 2.(2021•营口)已知一次函数y=kx﹣k过点(﹣1,4),则下列结论正确的是()A.y随x增大而增大B.k=2C.直线过点(1,0)D.与坐标轴围成的三角形面积为23.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=44.(2021•贺州)直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b =0的解为()A.x=0B.x=1C.x=2D.x=3 5.(2021•柳州)若一次函数y=kx+b的图象如图所示,则下列说法正确的是()A.k>0B.b=2C.y随x的增大而增大D.x=3时,y=06.(2021•福建)如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A .x >﹣2B .x >﹣1C .x >0D .x >17.(2021•陕西)在平面直角坐标系中,若将一次函数y =2x +m ﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m 的值为( ) A .﹣5B .5C .﹣6D .68.(2021•长沙)下列函数图象中,表示直线y =2x +1的是( )A .B .C .D .9.(2021•苏州)已知点A (√2,m ),B (32,n )在一次函数y =2x +1的图象上,则m 与n 的大小关系是( ) A .m >nB .m =nC .m <nD .无法确定10.(2021•白银)将直线y =5x 向下平移2个单位长度,所得直线的表达式为( ) A .y =5x ﹣2B .y =5x +2C .y =5(x +2)D .y =5(x ﹣2)11.(2021•扬州)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√212.(2021•乐山)如图,已知直线l 1:y =﹣2x +4与坐标轴分别交于A 、B 两点,那么过原点O 且将△AOB 的面积平分的直线l 2的解析式为( )A .y =12xB .y =xC .y =32xD .y =2x13.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤2514.(2021•广西)函数y =2x +1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限二.填空题(共11小题)15.(2021•毕节市)将直线y =﹣3x 向下平移2个单位长度,平移后直线的解析式为 .16.(2021•桂林)如图,与图中直线y =﹣x +1关于x 轴对称的直线的函数表达式是 .17.(2021•毕节市)如图,在平面直角坐标系中,点N 1(1,1)在直线l :y =x 上,过点N 1作N 1M 1⊥l ,交x 轴于点M 1;过点M 1作M 1N 2⊥x 轴,交直线于N 2;过点N 2作N 2M 2⊥l ,交x 轴于点M 2;过点M 2作M 2N 3⊥x 轴,交直线l 于点N 3;…,按此作法进行下去,则点M 2021的坐标为 .18.(2021•黄石)将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣3),则m 的值为.19.(2021•贺州)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为.20.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式.21.(2021•天津)将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为.22.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是.23.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为(结果用含正整数n的代数式表示).24.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.25.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为.三.解答题(共3小题)26.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=1 2x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.27.(2021•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y=4−x2x2+1的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=4−x2x2+1…−2126−1217−1203240…(2)请根据这个函数的图象,写出该函数的―条性质;(3)已知函数y=−32x+3的图象如图所示.根据函数图象,直接写出不等式−32x+3>4−x2x2+1的解集.(近似值保留一位小数,误差不超过0.2)28.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=−8xx2+4的图象,并探究其性质.列表如下:x…﹣4﹣3﹣2﹣101234…y (8)52413a850b﹣2−2413−85…(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数y=−8xx2+4的图象,判断下列关于该函数性质的命题:①当﹣2≤x≤2时,函数图象关于直线y=x对称;②x=2时,函数有最小值,最小值为﹣2;③﹣1<x<1时,函数y的值随x的增大而减小.其中正确的是.(请写出所有正确命题的番号)(3)结合图象,请直接写出不等式8xx2+4>x的解集.2021年中考真题分类19.2一次函数参考答案与试题解析一.选择题(共14小题)1.(2021•赤峰)点P (a ,b )在函数y =4x +3的图象上,则代数式8a ﹣2b +1的值等于( ) A .5B .﹣5C .7D .﹣6解:∵点P (a ,b )在一次函数y =4x +3的图象上, ∴b =4a +3,∴8a ﹣2b +1=8a ﹣2(4a +3)+1=﹣5, 即代数式8a ﹣2b +1的值等于﹣5. 故选:B .2.(2021•营口)已知一次函数y =kx ﹣k 过点(﹣1,4),则下列结论正确的是( ) A .y 随x 增大而增大B .k =2C .直线过点(1,0)D .与坐标轴围成的三角形面积为2解:把点(﹣1,4)代入一次函数y =kx ﹣k ,得, 4=﹣k ﹣k , 解得k =﹣2, ∴y =﹣2x +2,A 、k =﹣2<0,y 随x 增大而减小,选项A 不符合题意;B 、k =﹣2,选项B 不符合题意;C 、当y =0时,﹣2x +2=0,解得:x =1,∴一次函数y =﹣2x +2的图象与x 轴的交点为(1,0),选项C 符合题意;D 、当x =0时,y =﹣2×0+2=2,与坐标轴围成的三角形面积为12×1×2=1,选项D不符合题意. 故选:C .3.(2021•呼和浩特)在平面直角坐标系中,点A (3,0),B (0,4).以AB 为一边在第一象限作正方形ABCD ,则对角线BD 所在直线的解析式为( ) A .y =−17x +4B .y =−14x +4C .y =−12x +4D .y =4解:过D 点作DH ⊥x 轴于H ,如图, ∵点A (3,0),B (0,4). ∴OA =3,OB =4, ∵四边形ABCD 为正方形, ∴AB =AD ,∠BAD =90°,∵∠OBA +∠OAB =90°,∠ABO +∠DAH =90°, ∴∠ABO =∠DAH , 在△ABO 和△DAH 中, {∠AOB =∠DHA ∠ABO =∠DAH AB =DA, ∴△ABO ≌△DAH (AAS ), ∴AH =OB =4,DH =OA =3, ∴D (7,3),设直线BD 的解析式为y =kx +b ,把D (7,3),B (0,4)代入得{7k +b =3b =4,解得{k =−17b =4, ∴直线BD 的解析式为y =−17x +4. 故选:A .4.(2021•贺州)直线y =ax +b (a ≠0)过点A (0,1),B (2,0),则关于x 的方程ax +b =0的解为( ) A .x =0B .x =1C .x =2D .x =3解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标, ∵直线y =ax +b 过B (2,0),∴方程ax+b=0的解是x=2,故选:C.5.(2021•柳州)若一次函数y=kx+b的图象如图所示,则下列说法正确的是()A.k>0B.b=2C.y随x的增大而增大D.x=3时,y=0解:观察一次函数图象发现,图象过第一、二、四象限,∴k<0,A错误;∴函数值y随x的增大而减小,C错误;∵图象与y轴的交点为(0,2)∴b=2,B正确;∵图象与x轴的交点为(4,0)∴x=4时,y=0,D错误.故选:B.6.(2021•福建)如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>0D.x>1解:把(﹣1,0)代入y=kx+b得﹣k+b=0,解b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,而k>0,所以x﹣1+1>0,解得x>0.故选:C.方法二:一次函数y=kx+b(k>0)的图象向右平移1个单位得y=k(x﹣1)+b,∵一次函数y=kx+b(k>0)的图象过点(﹣1,0),∴一次函数y=k(x﹣1)+b(k>0)的图象过点(0,0),,由图象可知,当x>0时,k(x﹣1)+b>0,∴不等式k(x﹣1)+b>0的解集是x>0,故选:C.7.(2021•陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.8.(2021•长沙)下列函数图象中,表示直线y=2x+1的是()A.B.C.D.解:∵k=2>0,b=1>0,∴直线经过一、二、三象限.故选:B.9.(2021•苏州)已知点A (√2,m ),B (32,n )在一次函数y =2x +1的图象上,则m 与n的大小关系是( ) A .m >nB .m =nC .m <nD .无法确定解:∵点A (√2,m ),B (32,n )在一次函数y =2x +1的图象上, ∴m =2√2+1,n =2×32+1=3+1=4, ∵2√2+1<4, ∴m <n , 故选:C .10.(2021•白银)将直线y =5x 向下平移2个单位长度,所得直线的表达式为( ) A .y =5x ﹣2B .y =5x +2C .y =5(x +2)D .y =5(x ﹣2)解:将直线y =5x 向下平移2个单位长度,所得的函数解析式为y =5x ﹣2. 故选:A .11.(2021•扬州)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√2解:∵一次函数y =x +√2的图像与x 轴、y 轴分别交于点A 、B , 令x =0,则y =√2,令y =0,则x =−√2, 则A (−√2,0),B (0,√2),则△OAB 为等腰直角三角形,∠ABO =45°, ∴AB =√(√2)2+(√2)2=2, 过点C 作CD ⊥AB ,垂足为D ,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC=√AD2+CD2=√2x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD=√BC2−CD2=√3x,又BD=AB+AD=2+x,∴2+x=√3x,解得:x=√3+1,∴AC=√2x=√2(√3+1)=√6+√2,故选:A.12.(2021•乐山)如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将△AOB的面积平分的直线l2的解析式为()A.y=12x B.y=x C.y=32x D.y=2x解:如图,当y=0,﹣2x+4=0,解得x=2,则A(2,0);当x=0,y=﹣2x+4=4,则B(0,4),∴AB的中点坐标为(1,2),∵直线l2把△AOB面积平分∴直线l 2过AB 的中点, 设直线l 2的解析式为y =kx , 把(1,2)代入得2=k ,解得k =2, ∴l 2的解析式为y =2x , 故选:D .13.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤25解:∵点P (a ,b )在直线y =﹣3x ﹣4上, ∴﹣3a ﹣4=b , 又2a ﹣5b ≤0,∴2a ﹣5(﹣3a ﹣4)≤0, 解得a ≤−2017<0,当a =−2017时,得b =−817, ∴b ≥−817, ∵2a ﹣5b ≤0, ∴2a ≤5b , ∴ba≤25.故选:D .14.(2021•广西)函数y =2x +1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限解:∵k =2>0,图象过一三象限,b =1>0,图象过第二象限, ∴直线y =2x +1经过一、二、三象限,不经过第四象限.故选:D.二.填空题(共11小题)15.(2021•毕节市)将直线y=﹣3x向下平移2个单位长度,平移后直线的解析式为y =﹣3x﹣2.解:由题意得:平移后的解析式为:y=﹣3x﹣2.故答案为:y=﹣3x﹣2.16.(2021•桂林)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是y=x ﹣1.解:∵关于x轴对称的点横坐标不变纵坐标互为相反数,∴直线y=﹣x+1关于x轴对称的直线的函数表达式是﹣y=﹣x+1,即y=x﹣1.故答案为y=x﹣1.17.(2021•毕节市)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为(22021,0).解:如图1,过N1作N1E⊥x轴于E,过N1作N1F⊥y轴于F,∵N1(1,1),∴N1E=N1F=1,∴∠N1OM1=45°,∴∠N1OM=∠N1M1O=45°,∴△N1OM1是等腰直角三角形,∴N1E=OE=EM1=1,∴OM1=2,∴M1(2,0),同理,△M2ON2是等腰直角三角形,∴OM2=2OM1=4,∴M2(4,0),同理,OM3=2OM2=22OM1=23,∴M3(23,0),∴OM4=2OM3=24,∴M4(24,0),依次类推,故M2021(22021,0),故答案为:(22021,0).18.(2021•黄石)将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣3),则m 的值为3.解:将直线y=﹣x+1向左平移m(m>0)个单位后所得直线为:y=﹣(x+m)+1.将点(1,﹣3)代入,得﹣3=﹣1+1﹣m.解得m=3.故答案是:3.19.(2021•贺州)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为(﹣2√2,4﹣2√2).解:∵一次函数y =x +4与坐标轴交于A 、B 两点, y =x +4中,令x =0,则y =4;令y =0,则x =﹣4, ∴AO =BO =4,∴△AOB 是等腰直角三角形, ∴∠ABO =45°,过P 作PD ⊥OC 于D ,则△BDP 是等腰直角三角形, ∵∠PBC =∠CPO =∠OAP =45°, ∴∠PCB +∠BPC =135°=∠OP A +∠BPC , ∴∠PCB =∠OP A , 在△PCB 和△OP A 中, {∠PBC =∠OAP ∠PCB =∠OPA OP =PC, ∴△PCB ≌△OP A (AAS ), ∴AO =BP =4,∴Rt △BDP 中,BD =PD =√2=2√2, ∴OD =OB ﹣BD =4﹣2√2, ∵PD =BD =2√2, ∴P (﹣2√2,4﹣2√2), 故答案为(﹣2√2,4﹣2√2).20.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式y=﹣2x.解:∵函数y=kx经过二、四象限,∴k<0.若函数y=kx经过(﹣1,1),则1=﹣k,即k=﹣1,故函数y=kx经过二、四象限,且函数不经过(﹣1,1)时,k<0且k≠﹣1,∴函数解析式为y=﹣2x,故答案为y=﹣2x.21.(2021•天津)将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为y=﹣6x﹣2.解:将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为y=﹣6x﹣2,故答案为:y=﹣6x﹣2.22.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是a<−32.解:∵一次函数y=(2a+3)x+2的值随x值的增大而减少,∴2a+3<0,解得a<−3 2.故答案为:a<−3 2.23.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A nB n B n+1∁n的边长为√52×(32)n﹣1(结果用含正整数n的代数式表示).解:设直线y =12x 与x 轴夹角为α,过B 1作B 1H ⊥x 轴于H ,如图:∵点B 1的横坐标为2,点B 1在直线l :y =12x 上,令x =2得y =1, ∴OH =2,B 1H =1,OB 1=√OH 2+B 1H 2=√5, ∴tan α=B 1H OH =12, Rt △A 1B 1O 中,A 1B 1=OB 1•tan α=√52,即第1个正方形边长是√52,∴OB 2=OB 1+B 1B 2=√5+√52=√52×3, Rt △A 2B 2O 中,A 2B 2=OB 2•tan α=√52×3×12=√52×32,即第2个正方形边长是√52×32, ∴OB 3=OB 2+B 2B 3=√52×3+√52×32=√52×92, Rt △A 3B 3O 中,A 3B 3=OB 3•tan α=√52×92×12=√52×94,即第3个正方形边长是√52×94=√52×(32)2, ∴OB 4=OB 3+B 3B 4=√52×92+√52×94=√52×274,Rt △A 4B 4O 中,A 4B 4=OB 4•tan α==√52×274×12=√52×278,即第4个正方形边长是√52×278=√52×(32)3, ......观察规律可知:第n 个正方形边长是√52×(32)n ﹣1, 故答案为:√52×(32)n ﹣1. 24.(2021•成都)在正比例函数y =kx 中,y 的值随着x 值的增大而增大,则点P (3,k )在第 一 象限.解:∵在正比例函数y =kx 中,y 的值随着x 值的增大而增大, ∴k >0,∴点P (3,k )在第一象限. 故答案为:一.25.(2021•自贡)当自变量﹣1≤x ≤3时,函数y =|x ﹣k |(k 为常数)的最小值为k +3,则满足条件的k 的值为 ﹣2 .解:当x ≥k 时,函数y =|x ﹣k |=x ﹣k ,此时y 随x 的增大而增大, 而﹣1≤x ≤3时,函数的最小值为k +3, ∴x =﹣1时取得最小值,即有﹣1﹣k =k +3, 解得k =﹣2,(此时﹣1≤x ≤3,x ≥k 成立),当x <k 时,函数y =|x ﹣k |=﹣x +k ,此时y 随x 的增大而减小, 而﹣1≤x ≤3时,函数的最小值为k +3, ∴x =3时取得最小值,即有﹣3+k =k +3, 此时无解, 故答案为:﹣2. 三.解答题(共3小题)26.(2021•北京)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =12x 的图象向下平移1个单位长度得到. (1)求这个一次函数的解析式;(2)当x >﹣2时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.解:(1)函数y =12x 的图象向下平移1个单位长度得到y =12x ﹣1,∵一次函数y =kx +b (k ≠0)的图象由函数y =12x 的图象向下平移1个单位长度得到, ∴这个一次函数的表达式为y =12x ﹣1.(2)把x =﹣2代入y =12x ﹣1,求得y =﹣2,∴函数y =mx (m ≠0)与一次函数y =12x ﹣1的交点为(﹣2,﹣2), 把点(﹣2,﹣2)代入y =mx ,求得m =1,∵当x >﹣2时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =12x ﹣1的值, ∴12≤m ≤1.27.(2021•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y =4−x 2x 2+1的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 01 2 34 5 …y =4−x 2x 2+1… −2126−1217−120 32432−12−1217 −2126… (2)请根据这个函数的图象,写出该函数的―条性质;(3)已知函数y =−32x +3的图象如图所示.根据函数图象,直接写出不等式−32x +3>4−x 2x 2+1的解集.(近似值保留一位小数,误差不超过0.2)解:(1)把下表补充完整如下:x…﹣5﹣4﹣3﹣2﹣1012345…y=4−x2x2+1…−2126−1217−120324320−12−12172126…函数y=4−x2x2+1的图象如图所示:(2)①该函数图象是轴对称图形,对称轴是y轴;②该函数在自变量的取值范围内,有最大值,当x=0时,函数取得最大值4;③当x<0时,y随x的增大而增大:当x>0时,y随x的增大而减(以上三条性质写出一条即可);(3)由图象可知,不等式−32x+3>4−x2x2+1的解集为x<﹣0.3或1<x<2.28.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=−8xx2+4的图象,并探究其性质.列表如下:x…﹣4﹣3﹣2﹣101234…y (8)52413a850b﹣2−2413−85…(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数y=−8xx2+4的图象,判断下列关于该函数性质的命题:①当﹣2≤x≤2时,函数图象关于直线y=x对称;②x=2时,函数有最小值,最小值为﹣2;③﹣1<x<1时,函数y的值随x的增大而减小.其中正确的是②③.(请写出所有正确命题的番号)(3)结合图象,请直接写出不等式8xx2+4>x的解集x<﹣2或0<x<2.解:(1)把x=﹣2代入y=−8xx2+4得,y=−−164+4=2,把x=1代入y=−8xx2+4得,y=−81+4=−85,∴a=2,b=−8 5,函数y=−8xx2+4的图象如图所示:(2)观察函数y=−8xx2+4的图象,①当﹣2≤x≤2时,函数图象原点对称;错误;②x=2时,函数有最小值,最小值为﹣2;正确;③﹣1<x<1时,函数y的值随x的增大而减小,正确.故答案为②③;(3)由图象可知,函数y=−8xx2+4与直线y=﹣x的交点为(﹣2,2)、(0,0)、(2,﹣2)∴不等式8xx2+4>x的解集为x<﹣2或0<x<2.。

2023学年人教中考数学重难点题型分类必刷题 专题18 一次函数的应用题重难点题型分类(含详解)

2023学年人教中考数学重难点题型分类必刷题 专题18 一次函数的应用题重难点题型分类(含详解)

专题18 一次函数的应用题重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含一次函数这一章的常考中档应用题,所选题目源自各名校期中、期末试题中的典型考题,具体包含五类题型:常规的一次函数最大利润问题、含参数的一次函数最大利润问题、一次函数的最少费用问题、分段函数的应用题、货物调运问题。

适合于培训机构的老师给学生作专题复习时使用或者学生考前刷题时使用。

题型一:常规的一次函数最大利润问题1.(青竹湖)在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?2.(一中)夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.3.(青竹湖)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的辆数不少于甲型号汽车辆数的3倍,设再次购进甲型据销售情况汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?4.(长培)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.5.(南雅)近段时间共享单车风靡全国,从而刺激了自行车生产厂家,某厂家准备生产A、B两种型号的共享单车,已知生产6辆A型单车与5辆B型单车的成本相同,生产3辆A型单车与2辆B型单车共需1080元.(1)求生产一辆A型车和生产一辆B型单车的成本各为多少元?(2)由于共享单车公司需求量加大,生产厂家需要再生产A、B两种型号的单车共10000辆,恰逢原料商对基本原料的价格进行调整,调整后,A型单车每辆成本价比原来降低10%,B型单车每辆的成本价不变,如果厂家准备投入的总成本不超过216万元,那么至少要生产多少辆A型单车?(3)在(2)的条件下,该生产厂家发现,销售过程中每辆A型单车可获利100元,每辆B型单车可获利120元,求全部销售完这批单车获得的利润z与A型单车辆数m之间的函数关系式,并求获利最大的方案及最大利润.题型二:含参数的一次函数最大利润问题6.(长沙中考)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.7.(雅礼)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调()0100m m <<元,且限定商店最多购进A 型电脑70台.若商店保持同种电脑的售价不变,请你以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.8.(雅礼)通程电器商城购3台空调、2台彩电需花费2.32万元.购2台空调、4台彩电需花费2.48万元.(1)计算每台空调与彩电的进价分别是多少元?(2)已知一次性购进空调、彩电共30台,购进资金不超过12.8万元,购进空调不少于10台,写出符合要求的进货方案.(3)在(2)的情况下,原每台空调的售价为6100元,每台彩电的售价为3900元,根据市场需要,商城行“庆五一优惠活动”,每台空调让利a 元()0350a <<设商城计划购进空调x 台,空调和彩电全部销售完商城获得的利润为y 元,试写出y 与x 的函数关系式,选择哪种进货方案,商城获利最大?9.(青竹湖)红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于4800元,且不超过4900元,问该超市有几种进货方案?(3)在(2)的条件下,该超市如果对甲种袋装食品每袋优惠()18a a <<元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?题型三:一次函数的费用最值问题10.(麓山国际)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A 、B 两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B 型风扇进价共100元,3台A 型风扇和2台B 型风扇进价共62元.(1)求A 型风扇、B 型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A 型风扇销售情况比B 型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案费用最低?最低费用为多少?11.(中雅)为发展农村经济,修建一批沼气池.某村共264户村民,计划修建A型、B型沼气池共20个,两种沼气池每个的修建费用、修建用地、可供使用户数情况如表:设修建A型沼气池x个;修建两种沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)已知政府只批给该村沼气池修建用地708m2,求既不超过政府批给该村沼气池修建用地,又要使该村每户村民都用上沼气的修建方案有哪几种?(3)若选择(2)中费用最少的修建方案,村里得32万元政府补助款,不足部分由村民集资,全村村民共应自筹资金多少元?12.(长郡)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.题型四:分段函数的应用题13.(麓山)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数。

一次函数中考试题

一次函数中考试题

一次函数中考试题### 一次函数中考试题一、选择题1. 函数\( y = -2x + 3 \)的斜率是:- A. 2- B. -2- C. 3- D. -32. 如果直线\( y = kx + b \)通过点(1, 2)和(2, 4),那么\( k \)的值是:- A. 1- B. 2- C. 3- D. 43. 直线\( y = 5x - 7 \)与x轴的交点坐标是:- A. (1, 0)- B. (7/5, 0)- C. (0, -7)- D. (-1, 0)二、填空题1. 已知一次函数\( y = ax + b \)的图象经过点(-1, 4),且与y轴的交点为(0, 2),求\( a \)和\( b \)的值。

2. 直线\( y = 3x + 1 \)与直线\( y = -2x - 3 \)的交点坐标为______。

三、解答题1. 已知直线\( y = 2x + 5 \),请根据直线的斜率和截距,说明直线的增减性。

2. 直线\( y = -x + 3 \)与x轴的交点坐标为(3, 0),求直线与y轴的交点坐标。

四、应用题1. 某工厂生产的产品,每件产品的成本为\( 50元 \),销售价格为\( 100元 \)。

若该工厂每月生产\( x \)件产品,则每月的总利润\( y \)元可以表示为\( y = 50x \)。

试求当工厂每月生产100件产品时的利润。

2. 某市的公交车票价为\( 1.5元 \),如果乘坐超过\( 10 \)站,每增加1站,票价增加\( 0.5元 \)。

设乘客乘坐的站数为\( n \),票价为\( p \)元,试写出票价与站数的关系式,并计算乘坐15站的票价。

五、探究题1. 已知直线\( y = -3x + 6 \)与直线\( y = 4x - 1 \)平行,求直线\( y = 4x - 1 \)的截距。

2. 直线\( y = kx + b \)经过点(2, 5),且与直线\( y = -3x + 6 \)垂直,求\( k \)和\( b \)的值。

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 (200﹣x) 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 (200﹣y) 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.【答案】(1)(200﹣x),(200﹣y);(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张;(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.【解答】解:(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒(200﹣x)个;∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材(200﹣y)张;故答案为:(200﹣x),(200﹣y);(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm 的木板;设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;故,解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张;(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为150×5+8×50=1150(元);∵两种木盒的销售单价均不能低于7元,不超过18元,∴,解得:7≤a≤18,设利润为w元,则w=100a+100(20﹣a)﹣1150,整理得:w=850+50a,∵50>0,∴w随a的增大而增大,故当a=18时,有最大值,最大值为850+50×18=1750(元),则此时B种木盒的销售单价定为20﹣×18=11(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP 翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣3x;(2)(6,6);(3)存在,P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).【解答】解:(1)∵对称轴为直线x=,∴﹣=,∴b=﹣a①,将点A(3,﹣3)代入y=ax2+bx,∴9a+3b=﹣3②,联立①②可得,a=,b=﹣3,∴函数的解析式为y=x2﹣3x;(2)设B(m,m2﹣3m),如图1,过A点作EF⊥y轴交于E点,过B点作BF⊥EF交于F点,∴△OAB的面积=•m(m2﹣3m+3+3)﹣3×3﹣(m﹣3)(m2﹣3m+3)=18,解得m=6或m=﹣3(舍),∴B(6,6);(3)存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形,理由如下:∵A(3,﹣3),B(6,6),∴C(,),设直线OB的解析式为y=kx,∴6k=6,解得k=1,∴直线OB的解析式为y=x,设P(t,t),如图2,当BP为平行四边形的对角线时,BC∥A1P,BC=A1P,∵AC=BC,∴AC=A1P,由对称性可知AC=A1C,AP=A1P,∴AP=AC,∴=,解得t=,∴P点坐标为(,)或(﹣,﹣);如图3,当BC为平行四边形的对角线时,BP∥A1C,BP=A1C,由对称性可知,AC=A1C,∴BP=AC,∴=,解得t=+6或t=﹣+6,∴P(+6,+6)或(﹣+6,﹣+6);综上所述:P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.【答案】(1)y=x2﹣x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,BC=4,∴点C的坐标为(2,﹣4),∴将点C坐标代入解析式得2a(2﹣10)=﹣4,解得:a=,∴抛物线的函数表达式为y=x2﹣x;(2)由抛物线的对称性得AE=OB=t,∴AB=10﹣2t,当x=t时,点C的纵坐标为t2﹣t,∴矩形ABCD的周长=2(AB+BC)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ,∵t=2,∴B(2,0),∴A(8,0),∵BC=4.∴C(2,﹣4),∵直线GH平分矩形ABCD的面积,∴直线GH过点P,由平移的性质可知,四边形OCHG是平行四边形,∴PQ=CH,∵四边形ABCD是矩形,∴点P是AC的中点,∴P(5,﹣2),∴PQ=OA,∵OA=8,CH=PQ=OA=4,∴抛物线向右平移的距离是4个单位4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的表达式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线AM的解析式为y=kx+d,则,解得:,∴直线AM的解析式为y=2x+2,当x=0时,y=2,∴D(0,2),作点D关于x轴的对称点D′(0,﹣2),连接D′M,D′H,如图,则DH=D′H,∴MH+DH=MH+D′H≥D′M,即MH+DH的最小值为D′M,∵D′M==,∴MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形.由(2)得:D(0,2),M(1,4),∵点P是抛物线上一动点,∴设P(m,﹣m2+2m+3),∵抛物线y=﹣x2+2x+3的对称轴为直线x=1,∴设Q(1,n),当DM、PQ为对角线时,DM、PQ的中点重合,∴,解得:,∴Q(1,3);当DP、MQ为对角线时,DP、MQ的中点重合,∴,解得:,∴Q(1,1);当DQ、PM为对角线时,DQ、PM的中点重合,∴,解得:,∴Q(1,5);综上所述,对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.【答案】(1)C(0,2),D(5,2);(2);(3)①(1,6),(4,6),(5,2);②a=0.5.【解答】解:(1)在y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,∴C(0,2),∵抛物线解析式为y=﹣ax2+5ax+2(a>0),∴抛物线对称轴为直线,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D(5,2);(2)当时,抛物线解析式为,当y=0时,,解得x=﹣1或x=6,∴A(﹣1,0),如图,设DP上与点M关于直线AD对称的点为N(m,n),由轴对称的性质可得:AN=AM,DN=DM,,∴3m+n=12,∴n=12﹣3m∴m2+2m+1+144﹣72m+9m2=25,∴m2﹣7m+12=0,解得m=3或m=4(舍去),∴n=12﹣3m=3,∴N(3,3),设直线DP的解析式为y=kx+b1,∴,解得,∴直线DP的解析式为,联立,解得或,∴P(,);(3)①当a=1时,抛物线解析式为y=﹣x2+5x+2,E(1,2),F(5,2),∴EH=EF=FG=4,∴H(1,6),G(5,6),当x=1时,y=﹣12+5×1+2=6,∴抛物线y=﹣x2+5x+2 恰好经过H(1,6);∵抛物线对称轴为直线,由对称性可知抛物线经过(4,6),∴点(4,6)为抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F(5,2);综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);②如图,当抛物线与GH、GF分别交于T、D时,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴点T的纵坐标为2+2.5=4.5,∴,∴a2+1.5a﹣1=0,解得a=﹣2(舍去)或a=0.5;如图,当抛物线与GH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴,解得a=0.4(舍去,因为此时点F在点D下方)如图,当抛物线与EH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴﹣a()2+5a•+2=a+1+2.5,解得或(舍去);当时,y=﹣ax2+5ax+2=6.25a+2,当时,6.25a+2>6+a﹣,∴不符合题意;综上所述,a=0.5.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.【答案】(1)y=;(2)Q(3,﹣9)或(,9)或(,9);(3)当m=时,△PDE的面积最大值为:.【解答】解:(1)设抛物线的表达式为:y=a(x+3)(x﹣6),∴﹣9=a•3×(﹣6),∴a=,∴y=(x+3)(x﹣6)=;(2)如图1,抛物线的对称轴为:直线x==,由对称性可得Q1(3,﹣9),当y=9时,=9,∴x=,∴Q2(,9),Q3(,9),综上所述:Q(3,﹣9)或(,9)或(,9);(3)设△PED的面积为S,由题意得:AP=m+3,BP=6﹣m,OB=6,OC=9,AB=9.∴BC==3,∵sin∠PBD=,∴,∴PD=,∵PE∥BC,∴△APE∽△ABC,∠EPD=∠PDB=90°,∴,∴,∴PE=,∴S=PE•PD=(m+3)(6﹣m)=﹣,∴当m=时,S最大=,∴当m=时,△PDE的面积最大值为:.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.【答案】(1)结论:AB=(+1)BD.理由见解析部分;(2)(3)证明见解析部分.【解答】(1)解:结论:AB=(+1)BD.理由:在BC上取一点T,使得BT=BD,连接DT,AT.设AB=AC=a,则BC=a.∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵BD⊥AB,∴∠ABD=90°,∴∠DBT=45°,∵BD=BT,∴∠BDT=∠BTD=67.5°,∵BC=AB+BD=AC+BD=BT+AC,∴CT=CA=a,∴BD=BT=BC﹣CT=a﹣a,∴==+1,∴AB=(+1)BD;(2)证明:如图2中,在△BCD和△ECF中,,∴△BCD≌△ECF(SAS),∴∠CBD=∠E=45°,BD=EF,∴BD∥EF,∵BD⊥AB,∴EF⊥AB;(3)证明:延长CH交EF的延长线于点J.∵∠ACE=180°﹣∠ACB=135°,CH平分∠ACE,∴∠ACH=∠ECH=67.5°,∵∠ACB=∠E=45°,∴AC∥EJ,∴∠J=∠ACH=∠ECJ=67.5°,∴CE=EJ=CB,∵BC=BD+AB,EJ=EF+FJ,∴FJ=AB=AC,∵∠AHC=∠FHJ,∠ACH=∠J,∴△ACH≌△FJH(AAS),∴AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 等腰直角三角形 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.【答案】(1)等腰直角三角形;(2)探究一:;探究二:DH的最大值为+1,最小值为﹣1.【解答】解:(1)在Rt△ABC中,AC=,在Rt△CFG中,CF=,∵AB=GF,BC=CG,∴AC=CF,∴△ACF是等腰三角形,∵AB=GF,∠FGC=∠ABC=90°.BC=CG,∴△ABC≌△FGC(SAS),∴∠ACG=∠GFC,∵∠GCF+∠GFC=90°,∴∠ACG+∠GCF=90°,∴∠ACF=90°,∴△ACF是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:∵CD=GF,∠FMG=∠DMC,∠G=∠CDF=90°,∴△CDM≌△FGM(AAS),∴CM=MF,∵AC=CF,CD⊥AF,∴AD=DF,∵AB=CD=2,AD=DF=4,∴DM=4﹣CM,在Rt△CDM中,CM2=CD2+DM2,∴CM2=22+(4﹣CM)2,解得CM=,∴MF=,∴△CMF的面积=2×=;探究二:连接DE,取DE的中点P,连接HP,取AD、BC的中点为M、N,连接MN,MH,NH,∵H是AE的中点,∴MH∥DE,且MH=DE,∵CD=CE,∴CP⊥DE,DP=PE,∵MH∥DP,且MH=DP,∴四边形MHPD是平行四边形,∴MD=HP,MD∥HP,∵AD∥BC,MD=CN,∴HP∥CN,HP=CN,∴四边形HNCP是平行四边形,∴NH∥CP,∴∠MHN=90°,∴H点在以MN为直径的圆上,设MN的中点为T,∴DT==,∴DH的最大值为+1,最小值为﹣1.方法二:设AC的中点为T,连接HT,∵HT是△ACE的中位线,∴HT=CE=1,∴H在以T为圆心,1为半径的圆上,∵DT==,∴DH的最大值为+1,最小值为﹣1.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.【答案】(1)证明见解析;(2)证明见解析;(3)直角三角形,理由见解析.【解答】(1)证明:∵P是BD的中点,N是DC的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN=BC,PM=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM;(2)证明:由(1)知,PN是△BDC的中位线,PM是△ABD的中位线,∴PN∥BC,PM∥AD,∴∠PNM=∠F,∠PMN=∠AEM,∵∠PNM=∠PMN,∴∠AEM=∠F;(3)解:△CGD是直角三角形,理由如下:如图③,取BD的中点P,连接PM、PN,∵N是CD的中点,M是AB的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN ∥BC ,PN =BC ,PM ∥AD ,PM =AD ,∵AD =BC∴PM =PN ,∴∠PNM =∠PMN ,∵PM ∥AD ,∴∠PMN =∠ANM =60°,∴∠PNM =∠PMN =60°,∵PN ∥BC ,∴∠CGN =∠PNM =60°,又∵∠CNG =∠ANM =60°,∴△CGN 是等边三角形.∴CN =GN ,又∵CN =DN ,∴DN =GN ,∴∠NDG =∠NGD =CNG =30°,∴∠CGD =∠CGN +∠NGD =90°,∴△CGD 是直角三角形.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB 为⊙O 的直径,点C 是的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若BE =3,AB =4,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)证明见解答.(2)BC的长为2.(3)阴影部分的面积为.【解答】(1)证明:如图,连接OC,∵点C是的中点,∴,∴∠ABC=∠EBC,∵OB=OC,∴∠ABC=∠OCB,∴∠EBC=∠OCB,∴OC∥BE,∵BE⊥CE,∴半径OC⊥CE,∴CE是⊙O的切线.(2)解:如图,连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠EBC,∴△ACB∽△CEB,∴,∴,∴.答:BC的长为2.(3)解:如图,连接OD、CD,∵AB=4,∴OC=OB=2,在Rt△BCE中,,∴,∴∠CBE=30°,∴∠COD=60°,∴∠AOC=60°,∵OC=OD,∴△COD是等边三角形,∴∠CDO=60°,∴∠CDO=∠AOC,∴CD∥AB,∴S△COD=S△CBD,∴.答:阴影部分的面积为.11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【答案】(1)证明见解析;(2)证明见解析,(3).【解答】(1)证明:由旋转的性质可得AE=AD,∠DAE=α,∴∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,又∵AB=AC,∴△ABE≌△ACD(SAS),∴∠AEB=∠ADC,∵∠ADC+∠ADB=180°,∴∠AEB+∠ADB=180°,∴A、B、D、E四点共圆;(2)证明:如图所示,连接OA,OD,∵AB=AC,AD=CD,∴∠ABC=∠ACB=∠DAC,∵⊙O是四边形AEBD的外接圆,∴∠AOD=2∠ABC,∴∠AOD=2∠ABC=2∠DAC,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴2∠DAC+2∠OAD=180°,∴∠DAC+∠OAD=90°,即∠OAC=90°,∴OA⊥AC,又∵OA是⊙O的半径,∴AC是⊙O的切线;(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵点M是边BC的中点,∴,AM⊥BC,∴,,在Rt△BGF中,,∴FM=BM﹣BF=3﹣2=1,∵⊙P是四边形AEBD的外接圆,∴点P一定在AB的垂直平分线上,∴点P在直线GF上,∴当MP⊥GF时,PM有最小值,∴∠PFM=∠BFG=90°﹣∠ABC=60°,在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,∴圆心P与点M距离的最小值为.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF ⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.【答案】(1)证明过程见解答;(2)MN=BM+DN,理由见解答.【解答】(1)证明:∵CF⊥OE,OC是半径,∴CF是圆O的切线,∵BE是圆O的切线,∴BF=CF,∵EF=2BF,∴EF=2CF,sin E==,∴∠E=30°,∠EOB=60°,∵CD=CB,∴=,∴OC⊥BD,∵AB是直径,∴∠ADB=90°=∠EBO,∵∠E+∠EBD=90°,∠ABD+∠EBD=90°,∴∠E=∠ABD=30°,∴AD=BO=AB,∴△ABD≌△OEB(AAS);(2)解:MN=BM+DN,理由如下:延长ND至H使得DH=BM,连接CH,BD,如图2所示,∵∠CBM+∠NDC=180°,∠HDC+∠NDC=180°,∴∠HDC=∠MBC,∵CD=CB,DH=BM,∴△HDC≌△MBC(SAS),∴∠BCM=∠DCH,CM=CH,由(1)可得∠ABD=30°,∵AB是直径,∴∠ADB=90°,∴∠DCB=180°﹣∠A=120°,∵∠MCN=60°,∴∠BCM+∠NCD=120°﹣∠NCM=120°﹣60°=60°,∴∠DCH+∠NCD=∠NCH=60°,∴∠NCH=∠NCM,∵NC=NC,∴△CNH≌△CNM(SAS),∴NH=MN,∴MN=DN+DH=DN+BM,∴MN=BM+DN.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.【答案】(1)60°;(2)证明过程详见解答;(3)证明过程详见解答.【解答】(1)解:∵△ABC、△CDE是两个等腰直角三角形,∴∠ACB=∠ABC=45°,∠CED=∠CDE=45°,∴∠CFE=180°﹣∠ACB﹣∠CED=90°,∴EF=DF=DE,∵BH=DH,EH⊥BD,∴BE=DE,∴EF=BE,∴cos∠BED=,∴∠BED=60°;(2)证明:由(1)得:∠CFE=90°,∴CF⊥DE,∴∠BFD=∠EFG=∠BHE=90°,∵∠BGH=∠EGF,∴∠DBF=∠FEG,∴△EFG∽△BFD;(3)证明:如图,作BQ∥AC,交EH的延长线于点Q,∴△BGQ∽△CGE,∴,∠Q=∠CEH,∠QBE=∠AEB,∴,设∠DBF=DEH=α,由(1)知:BC是DE的垂直平分线,∴BE=BD,∴∠EBF=∠DBF=α,∴∠AEB=∠ACB+∠EBF=45°+α,∠CEH=∠CED+∠FEG=45°+α,∴∠AEB=∠CEH,∴∠Q=∠QBE,∴BE=EQ,∴=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.【答案】(1)证明见解析;(2)证明见解析;(3)3.【解答】(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°,∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H;(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG,∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11,∵CF+CG=FG,∴CF=FG﹣CG=11﹣8=3,即CF的长为3.。

“一次函数”中考试题分类汇编(含答案)

“一次函数”中考试题分类汇编(含答案)

一次函数要点一:函数的概念及自变量取值范围确实定 一、选择题1、〔2021·包头中考〕函数y =x 的取值范围是〔 〕A .2x >-B .2x -≥C .2x ≠-D .2x -≤2、(2021·成都中考)在函数131y x =-中,自变量x 的取值范围是〔 〕 A .13x < B . 13x ≠- C . 13x ≠ D . 13x >3、〔2021·广州中考〕以下函数中,自变量x 的取值范围是x ≥3的是〔 〕A .31-=x y B .31-=x y C .3-=x y D .3-=x y4、〔2021·兰州中考〕函数312-+-=x x y 中,自变量x 的取值范围是〔 〕 A .x ≤2 B .x =3 C .x <2且x ≠3 D .x ≤2且x ≠3 5、〔2021·孝感中考〕以下曲线中,表示y 不是x 的函数是〔 〕6、〔2021·潍坊中考〕某蓄水池的横断面示意图如以下图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是〔 〕二、填空题7、〔2021·威海中考〕在函数x y -=3中,自变量x 的取值范围是 . 8.〔2021·哈尔滨中考〕函数y =22x x -+的自变量x 的取值范围是 .9、〔2021·桂林中考〕在函数y =x 的取值范围是 . 10、〔2021·牡丹江中考〕函数y =中,自变量x 的取值范围是 . A .B .D .11、〔2021·大兴安岭中考〕函数1-=x xy 中,自变量x 的取值范围是 . 12、(2021·上海中考)函数1()1f x x=-,那么(3)f = . 13、〔2021·广安中考〕如图,当输入5x =时,输出的y = . 三、解答题14、〔2021·杭州中考〕如图,水以恒速〔即单位时间内注入水的体积相同〕注入下面四种底面积相同的容器中。

广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长FA,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是 ,所在圆的圆心坐标是 ;(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a= ,b= ,n= ;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?【答案】(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.【解答】解:(1)当0≤x≤5时,设y1与x之间的函数解析式为y1=kx(k≠0),把(5,75)代入解析式得:5k=75,解得k=15,∴y1=15x;当x>5时,设y1与x之间的函数解析式为y1=mx+n(m≠0),把(5,75)和(10,120)代入解析式得,解得,∴y1=9x+30,综上所述,y1与x之间的函数解析式为y1=;(2)在甲商店购买:9x+30=600,解得x=63,∴在甲商店600元可以购买63千克水果;在乙商店购买:10x=600,解得x=60,∴在乙商店600元可以购买60千克,∵63>60,∴在甲商店购买更多一些.二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.【答案】(1)1;(2)①m=﹣;②假设存在,E(﹣,﹣),或(,﹣).【解答】解:(1)把m=﹣2代入y=﹣(x<0)得n=﹣=1;故n的值为1;(2)①在y=(x﹣m)(x﹣n)中,令y=0,则(x﹣m)(x﹣n)=0,解得x=m或x=n,∴M(m,0),N(n,0),∵点P(m,n)在函数y=﹣(x<0)的图象上,∴mn=﹣2,令x=,得y=(x﹣m)(x﹣n)=﹣(m﹣n)2=﹣2﹣(m+n)2≤﹣2,即当m+n=0,且mn=﹣2,则m2=2,解得:m=﹣(正值已舍去),即m=﹣时,点E到达最高处;②假设存在,理由:对于y=(x﹣m)(x﹣n),当x=0时,y=mn=﹣2,即点G(0,﹣2),由①得M(m,0),N(n,0),G(0,﹣2),E(,﹣(m﹣n)2),对称轴为直线x=,由点M(m,0)、G(0,﹣2)的坐标知,tan∠OMG==,作MG的中垂线交MG于点T,交y轴于点S,交x轴于点K,则点T(m,﹣1),则tan∠MKT=﹣m,则直线TS的表达式为:y=﹣m(x﹣m)﹣1.当x=时,y=﹣m(x﹣m)﹣1=﹣,则点C的坐标为:(,﹣).由垂径定理知,点C在FG的中垂线上,则FG=2(y C﹣y G)=2×(﹣+2)=3.∵四边形FGEC为平行四边形,则CE=FG=3=y C﹣y E=﹣﹣y E,解得:y E=﹣,即﹣(m﹣n)2=﹣,且mn=﹣2,则m+n=,∴E(﹣,﹣),或(,﹣).三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.【答案】(1)y=﹣x+7;(2)①m<10且m≠0;②(﹣2,9)或(2,5).【解答】解:(1)将点(0,7)和点(1,6)代入y=kx+b,∴,解得,∴y=﹣x+7;(2)①∵点P(m,n)在直线l上,∴n=﹣m+7,设抛物线的解析式为y=a(x﹣m)2+7﹣m,∵抛物线经过点(0,﹣3),∴am2+7﹣m=﹣3,∴a=,∵抛物线开口向下,∴a<0,∴a=<0,∴m<10且m≠0;②∵抛物线的对称轴为直线x=m,∴Q点与Q'关于x=m对称,∴Q点的横坐标为m+,联立方程组,整理得ax2+(1﹣2ma)x+am2﹣m=0,∵P点和Q点是直线l与抛物线G的交点,∴m+m+=2m﹣,∴a=﹣2,∴y=﹣2(x﹣m)2+7﹣m,∴﹣2m2+7﹣m=﹣3,解得m=2或m=﹣,当m=2时,y=﹣2(x﹣2)2+5,此时抛物线的对称轴为直线x=2,图象在≤x≤上的最高点坐标为(2,5);当m=﹣时,y=﹣2(x+)2+,此时抛物线的对称轴为直线x=﹣,图象在﹣2≤x≤﹣1上的最高点坐标为(﹣2,9);综上所述:G在≤x≤+1的图象的最高点的坐标为(﹣2,9)或(2,5).4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【答案】(1)点(2,4)不在抛物线上;(2)(2,5);(3)x顶点<﹣或x顶点>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时该抛物线解析式为y=x2﹣4x+9,顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.【答案】证明见解析.【解答】证明:∵B是AD的中点,∴AB=BD,∵BC∥DE,∴∠ABC=∠D,在△ABC和△BDE中,,∴△ABC≌△BDE(SAS),∴∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长FA,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.【答案】(1)见解析;(2)①22.5°;②;.【解答】(1)证明:由轴对称的性质得到BF=BC,∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=15°,∴∠CBE=75°,∵BC关于BE对称的线段为BF,∴∠FBE=∠CBE=75°,∴∠ABF=∠FBE﹣∠ABE=60°,∴△ABF是等边三角形;(2)解:①能,∵边BC关于BE对称的线段为BF,∴BC=BF,∵四边形ABCD是正方形,∴BC=AB,∴BF=BC=BA,∵E是边AD上一动点,∴BA<BE<BG,∴点B不可能是等腰三角形BGF的顶点,若点F是等腰三角形BGF的顶点,则有∠FGB=∠FBG=∠CBG,此时E与D重合,不合题意,∴只剩下GF=GB了,连接CG交AD于H,∵BC=BF,∠CBG=∠FBG,BG=BG,∴△CBG≌△FBG(SAS),∴FG=CG,∴BG=CG,∴△BGF为等腰三角形,∵BA=BC=BF,∴∠BFA=∠BAF,∵△CBG≌△FBG,∴∠BFG=∠BCG,∵AD∥BC,∴∠AHG=∠BCG,∴∠BAF+∠HAG=∠AHG+∠HAG=180°﹣∠BAD=90°,∴∠FGC=180°﹣∠HAG﹣∠AHG=90°,∴∠BGF=∠BGC==45°,∵GB=GC,∴∠GBC=∠GCB=(180°﹣∠BGC)=67.5°,∴∠ABE=∠ABC﹣∠GBC=90°﹣67.5°=22.5°;②由①知,△CBG≌△FBG,要求△BGF面积的最大值,即求△BGC面积的最大值,在△GBC中,底边BC是定值,即求高的最大值即可,如图2,过G作GP⊥BC于P,连接AC,取AC的中点M,连接GM,作MN⊥BC于N,设AB=2x,则AC=2x,由①知∠AGC=90°,M是AC的中点,∴GM==x,MN==x,∴PG≤GM+MN=()x,当G,M,N三点共线时,取等号,∴△BGF面积的最大值==(1)×=;如图3,设PG与AD交于Q,则四边形ABPQ是矩形,∴AQ=PB=x,PQ=AB=2x,∴QM=MP=x,GM=x,∴,∵QE+AE=AQ=x,∴,∴=2()x=2(×()=.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.【答案】(1)6(2)①7;②是,最小值为12.【解答】解:(1)过点D作DH⊥AB交BA的延长线于H,如图:∵四边形ABCD是菱形,∴AD=AB=6,∵∠BAD=120°,∴∠DAH=60°,在Rt△ADH中,DH=AD•sin∠DAH=6×=3,AH=AD•cos∠DAH=6×=3,∴BD===6;(2)①设CE⊥AB交AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:菱形ABCD中,∵AB=BC=CD=AD=6,AD∥BC,∠BAD=120°,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣∠BAD=60°,在Rt△BCM中,BM=BC•cos∠ABC=6×=3,∵BD是菱形ABCD的对角线,∴∠DBA=ABC=30°,在Rt△BEM中,ME=BM•tan∠DBM=3×=,BE===2,∵BE=DF,∴DF=2,∴AF=AD﹣DF=4,在Rt△AFN中,∠FAN=180°﹣∠BAD=60°,∴FN=AF•sin∠FAN=4×=2,AN=AF•cos∠FAN=4×=2,∴MN=AB+AN﹣BM=6+2﹣3=5,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=3+(+2)×5﹣2×2=+﹣2=7;②当四边形ABEF的面积取最小值时,CE+CF的值是最小,理由:设DF=x,则BE=DF=x,过点C作CH⊥AB于点H,过点F作FG⊥CH 于点G,过点E作EY⊥CH于点Y,作EM⊥AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:∴EY∥FG∥AB,FN∥CH,∴四边形EMHY、FNHG是矩形,∴FN=GH,FG=NH,EY=MH,EM=YH,由①可知:ME=BE=x,BM=BE=x,AN=AF=(AD﹣DF)=3﹣x,FN=AF=,CH=BC=3,BH=BC=3,∴AM=AB﹣BM=6﹣x,AH=AB﹣BH=3,YH=ME=x,GH=FN=,EY=MH=BM﹣BH=x﹣3,∴CY=CH﹣YH=3﹣x,FG=NH=AN+AH=6﹣,CG=CH﹣GH=3﹣=x,∴MN=AB+AN﹣BM=6+3﹣x﹣x=9﹣2x,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=x×x+(x+)•(9﹣2x)﹣(3﹣x)•=x2﹣x+9=(x﹣3)2+,∵>0,∴当x=3时,四边形ABEF的面积取得最小值,方法一:CE+CF=+•=+=+×=+×=+,∵(x﹣3)2≥0,当且仅当x=3时,(x﹣3)2=0,∴CE+CF=+≥12,当且仅当x=3时,CE+CF=12,即当x=3时,CE+CF的最小值为12,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.方法二:如图:将△BCD绕点B逆时针旋转60°至△BAG,连接CG,在Rt△BCG中,CG=2BC=12,∵==,∠CDF=∠GBE=60°,∴△BEG∽△DFC,∴==,即GE=CF,∴CE+CF=CE+GE≥CG=12,即当且仅当点C、E、G三点共线时,CE+CF的值最小,此时点E为菱形对角线的交点,BD中点,BE=3,DF=3,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.解法二:如图,在BD上截取DM,使得DM=2,在DA上取点F,连接DF,使得△DFM∽△BEC.则有CE=FM,作点M关于AD的对称点M′,∴CE+CF=FM+CF=(CF+FM)=(CF+FM′),∴C,F,M′共线时,最小,此时DF=3,可得CE+CF的值也最小,最小值为12.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【答案】见试题解答内容【解答】解:(1)证明:连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB=CD,∵四边形ABCD是菱形,∴EF∥CD,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=FA=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BH=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF2=CH2+FH2,即(2+2m)2=()2+(3+m)2,整理得:3m2+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)G点轨迹为线段AG,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴,,∴,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=,DN=.cos60°=,AN=1,在Rt△AHM中,HM=DN=,AM=AN+NM=AN+DH=2,tan∠HAM=,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG2=()2+()2=,∴AG=.∴G点路径长度为.解法二:如图,连接AG,延长AG交CD于点W.∵CD∥BF,∴=,=,∴=,∵AF=AE,∴DW=CW,∴点G在AW上运动.下面的解法同上.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是 (5,2) ,所在圆的圆心坐标是 (5,0) ;(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)【答案】(1)(5,2)、(5,0);(2)见解答;(3)2π+10.【解答】解:(1)如下图,由平移的性质知,点D(5,2),所在圆的圆心坐标是(5,0),故答案为:(5,2)、(5,0);(2)在图中画出,并连接AC,BD,见下图;(3)和长度相等,均为×2πr=×2=π,而BD=AC=5,则封闭图形的周长=++2BD=2π+10.10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.【答案】(1)A(﹣8,0),B(0,4);(2)S=2x+16(﹣8<x<0);(3)4.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠POQ=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小时,则OP最小,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【答案】(1)作图见解析部分.(2)证明见解析部分.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAD=45°,∴∠BAE=∠EAF=∠FAD=15°,∵∠ABC=∠AFC=90°,AE=EC,∴BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EFA=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EFA=30°,∴∠BEF=60°,∴△BEF是等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.【答案】(1)作法、证明见解答;(2)①证明见解答;②cos∠DCE的值是.【解答】解:(1)如图1,作法:1.以点D为圆心,BC长为半径作弧,2.以点A为圆心,AC长为半径作弧,交前弧于点E,3.连接DE、AE,△ADE就是所求的图形.证明:∵四边形ABCD是菱形,∴AD=AB,∵DE=BC,AE=AC,∴△ADE≌△ABC(SSS),∴△ADE就是△ABC绕点A逆时针旋转得到图形.(2)①如图2,由旋转得AB=AD,AC=AE,∠BAC=∠DAE,∴=,∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴△ABD∽△ACE.②如图2,延长AD交CE于点F,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵∠BAC=∠DAE,∴∠DAE=∠DAC,∵AE=AC,∴AD⊥CE,∴∠CFD=90°,设CF=m,CD=AD=x,∵=tan∠DAC=tan∠BAC=,∴AF=3CF=3m,∴DF=3m﹣x,∵CF2+DF2=CD2,∴m2+(3m﹣x)2=x2,∴解关于x的方程得x=m,∴CD=m,∴cos∠DCE===,∴cos∠DCE的值是.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.【答案】(1)详见解答;(2)点O到AC的距离为4,sin∠ACD=.【解答】解:(1)分别以A、C为圆心,大于AC为半径画弧,在AC的两侧分别相交于P、Q两点,画直线PQ交劣弧于点D,交AC于点E,即作线段AC的垂直平分线,由垂径定理可知,直线PQ一定过点O;(2)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,且AC=8,BC=6.∴AB==10,∵OD⊥AC,∴AE=CE=AC=4,又∵OA=OB,∴OE是△ABC的中位线,∴OE=BC=3,由于PQ过圆心O,且PQ⊥AC,即点O到AC的距离为3,连接OC,在Rt△CDE中,∵DE=OD﹣CE=5﹣3=2,CE=4,∴CD===2∴sin∠ACD===.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.【答案】(1)BC的长为8m;(2)旗杆AB的高度约为12.8m.【解答】解:(1)∵BC=5CD,CD=1.6m,∴BC=5×1.6=8(m),∴BC的长为8m;(2)若选择条件①:由题意得:=,∴=,∴AB=12.8,∴旗杆AB的高度为12.8m;若选择条件②:过点D作DF⊥AB,垂足为F,则DC=BF=1.6m,DF=BC=8m,在Rt△ADF中,∠ADF=54.46°,∴AF=DF•tan54.46°≈8×1.4=11.2(m),∴AB=AF+BF=11.2+1.6=12.8(m),∴旗杆AB的高度约为12.8m.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a= 14 ,b= 0.15 ,n= 40 ;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.【答案】见试题解答内容【解答】解:(1)由题意可知,n=4÷0.1=40,∴a=40×0.35=14,b=6÷40=0.15,故答案为:14;0.15;40;(2)补全频数分布直方图如下:(3)480×=180(名),答:估计该校九年级学生平均每天体育运动时间不低于120min的学生人数为180名.。

一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(中考常考点分类)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.31一次函数(中考常考点分类专题)(基础练)一、单选题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值1.(2023秋·全国·八年级专题练习)下列图像中,不能表示y 是x 的函数的是()A .B .C .D .2.(2022秋·广东深圳·八年级校联考开学考试)一支签字笔的单价为2.5元,小涵同学拿了100元钱去购买了()40x x ≤支该型号的签字笔,写出所剩余的钱y 与x 间的关系式是()A . 2.5y x=B .100 2.5y x=-C . 2.5100y x =-D .100 2.5y x=+【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式3.(2023秋·全国·八年级专题练习)若函数()124a y a x -=-+是一次函数,则a 的值为()A .2-B .2±C .2D .04.(2020·江苏泰州·统考中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于()A .5B .3C .3-D .1-【考点3】正比例函数➼➻正比例函数的图象与性质5.(2023秋·安徽蚌埠·八年级统考阶段练习)关于正比例函数14y x =-,下列结论不正确的是()A .图象经过原点B .y 随x 的增大而减小C .点12,2⎛⎫⎪⎝⎭在函数14y x =-的图象上D .图象经过二、四象限6.(2023春·重庆九龙坡·八年级重庆实验外国语学校统考阶段练习)已知正比例函数(21)y m x =+的图象上两点()11,A x y ,()22,B x y ,当12x x <时,有12y y >,那么m 的取值范围是()A .12m >-B .12m <-C .1m >-D .1m <-【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象7.(2022春·贵州安顺·八年级统考期末)已知一次函数22022y x m =-++的图象一定不经过的象限是()A .第四象限B .第三象限C .第二象限D .第一象限8.(2022秋·陕西榆林·八年级校考期中)已知一次函数()34y a x a =+++的图象如图所示,那么a 的取值范围是()A .3a >-B .3a <-C .43a -<<-D .a<0【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点9.(2022秋·陕西西安·八年级校考期中)如图,在同一平面直角坐标系中,一次函数()11110y k x b k =+≠与()22220y k x b k =+≠的图象分别为直线1l 和直线2l ,下列结论正确的是()A .120k k > B .120k k ->C .120b b +<D .12·0b b >10.(2023秋·安徽合肥·八年级校考阶段练习)已知一次函数4y ax =-与2y bx =+图象在x 轴上相交于同一点,则ba的值是()A .4B .2-C .12D .12-【考点6】一次函数图象和性质➼➻一次函数图象平移问题11.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)将直线22y x =-+平移后,所得到的直线为23y x =--,则原直线()A .向上平移5个单位B .向下平移5个单位C .向左平移5个单位D .向右平移5个单位12.(2022春·陕西渭南·八年级统考期末)如图,A 为x 轴负半轴上一点,过点A 作AB x ⊥轴,与直线y x =交于点B ,将ABO 沿直线y x =向上平移'A'B'O △,若点A 的坐标为(3,0)-,则点B'的坐标是()A .()1,1B .()2,2C .()3,3D .()5,5【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小13.(2023秋·黑龙江齐齐哈尔·九年级克东县第三中学校考开学考试)对于函数 1y x =-+,下列结论正确的是()A .它的图象必经过点(1,0)-B .它的图象经过第一、二、三象限C .当1x >时,0y <D .y 的值随x 值的增大而增大14.(2023春·山东聊城·八年级统考期末)已知11 A x y (,),22 Bx y (,)为直线23y x =-上不相同的两个点,以下判断正确的是()A .()()12120x x y y -->B .()()12120x x y y --<C .()()12120x x y y --≥D .()()12120x x y y --≤【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解15.(2023春·天津·八年级统考期末)已知方程0ax b +=的解为x =-32,则一次函数y ax b =+的图象与x 轴交点的坐标为()A .()3,0B .(-23,0)C .()2,0-D .(-32,0)16.(2023春·河南洛阳·八年级偃师市实验中学校考期末)一次函数y kx b =+的图象与x 轴交于点()30A -,,则关于x 的方程0kx b -+=的解为()A .3x =B .3x =-C .0x =D .2x =【考点9】一次函数图象和性质➼➻规律问题★★最值问题17.(2019·福建厦门·校考二模)关于x 的一次函数1(2)(1)(01)=-+-<<y x k x k k,当2≤x≤3时,y 的最大值是()A .2-+kkB .12-k kC .kD .-k18.(2023春·八年级课时练习)正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点7B 的坐标是()A .(31,16)B .(63,32)C .(64,32)D .(127,64)二、填空题【考点1】函数的概念★★自变量的取值范围★★函数解析式★★函数值19.(2023·辽宁辽阳·辽阳市第一中学校联考一模)函数1y x=+x 的取值范围是.20.(2023秋·上海杨浦·八年级统考期末)已知()6=f x x,那么f=.【考点2】一次函数➼➻定义★★参数★★自变量与函数值★★列一次函数解析式21.(2022秋·浙江·八年级期末)一次函数y =10-2x 的比例系数是.22.(2023秋·全国·八年级专题练习)如图,点(0,4)A ,(2,4)B ,点P 在直线112y x =+上,当PA PB =时,点P 的坐标是.【考点3】正比例函数➼➻正比例函数的图象与性质23.(2023春·贵州黔西·八年级校考阶段练习)如图,正比例函数11223344y k x y k xy k x y k x ====,,,在同一平面直角坐标系中的图象如图所示.则比例系数1k ,2k ,3k ,4k 从小到大排列并用“<”连接为.24.(2022秋·上海·八年级校考期中)已知正比例函数()0y kx k =≠的图象经过一、三象限,且经过点()2,21P k k ++,则k =.【考点4】一次函数图象和性质➼➻判断位置★★求参数★★画一次函数图象25.(2023春·黑龙江鹤岗·八年级统考期末)直线y kx b =+经过一、二、四象限,则直线y bx k =-+不经过第象限.26.(2020春·湖北武汉·八年级校考阶段练习)在同一平面直角坐标系中,函数y =|3x -1|+2的图象记为l 1,y =x -7的图象记为l 2,把l 1、l 2组成的图形记为图形M .若直线y =kx -5与图形M 有且只有一个公共点,则k 应满足的条件是【考点5】一次函数图象和性质➼➻一次函数图象与坐标轴交点27.(2022秋·四川达州·八年级校考阶段练习)函数42y x =-与x ,y 轴交点坐标分别为.28.(2023秋·山西运城·八年级统考期中)如图,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴负半轴于点C ,则点C 坐标为.【考点6】一次函数图象和性质➼➻一次函数图象平移问题29.(2022春·贵州安顺·八年级统考期末)直接写出一个与直线21y x =+平行的一次函数的解析式:.30.(2020春·福建福州·九年级校考开学考试)将直线4y x =-向右平移3个单位后,所得直线的表达式是.【考点7】一次函数图象和性质➼➻一次函数的增减性➼➻求参数★★比较大小31.(2023春·河南新乡·八年级校考期末)请写出一个过点()11,A y -和点()25,B y 且函数值满足12y y >的一次函数解析式:.32.(2023秋·重庆沙坪坝·八年级重庆八中校考阶段练习)已知一次函数1y ax b =+,2y cx d =+(a ,b ,c ,d 均为常数,且0a c ⋅≠)在平面直角坐标系中的图象如图所示,比较a ,b ,c ,d 的大小关系用“<”连接【考点8】一次函数图象和性质➼➻直线与坐标轴交点➼➻求方程的解33.(2023春·广东汕尾·八年级统考期末)已知一次函数y kx b =+的图象与x 轴相交于点()2,0A ,与y 轴相交于点()0,3B ,则关于x 的方程0kx b +=的解是.34.(2023春·八年级课时练习)已知直线24y x =+与两坐标轴分别交于A ,B 两点,线段AB 的长为.【考点9】一次函数图象和性质➼➻规律问题★★最值问题35.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)对于函数123y x =+和21y x =-+,3122y x =-,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,则y 的最大值等于.36.(2023春·四川广安·八年级广安中学校考阶段练习)如图,在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C …、正方形1n n n n A B C C -,使得点123,,A A A …在直线l 上,点123,,C C C …在y 轴正半轴上,则点2020B 的坐标是.参考答案1.D【分析】根据函数的概念,对于自变量x 的每一个值,y 都有唯一的值和它对应,判断即可.解:A 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故A 不符合题意;B 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故B 不符合题意;C 、对于自变量x 的每一个值,y 都有唯一的值和它对应,所以能表示y 是x 的函数,故C 不符合题意;D 、对于自变量x 的每一个值,y 不是有唯一的值和它对应,所以不能表示y 是x 的函数,故D 符合题意;故选:D .【点拨】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.2.B【分析】用100减去买签字笔花的钱,即可表示出剩余的钱.解:由题知,因为签字笔每支2.5元,且小涵买了x 支,所以用取2.5x 元.故余下()100 2.5x -元.所以剩余的钱y 与x 之间的关系式是100 2.5y x =-.故选:B .【点拨】本题考查函数关系式,准确表示出剩余的钱数是解题的关键.3.A【分析】根据一次函数y kx b =+的定义可知,k 、b 为常数,0k ≠,自变量的次数为1,即可求解.解:()124a y a x-=-+ 是关于x 的一次函数,11a ∴-=,且20a -≠,2a ∴=,且2a ≠,2a ∴=±且2a ≠,2a ∴=-.故选:A .【点拨】本题考查了一次函数的定义,熟练掌握一次函数的定义和性质是解题的关键.4.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.C【分析】根据正比例函数的图象和性质,逐项判断即可求解.解:A 、图象经过原点,故本选项正确,不符合题意;B 、因为104-<,所以y 随x 的增大而减小,故本选项正确,不符合题意;C 、当2x =时,1112422y =-⨯=-≠,则点12,2⎛⎫⎪⎝⎭不在函数14y x =-的图象上,故本选项错误,符合题意;D 、因为104-<,所以图象经过二、四象限,故本选项正确,不符合题意;故选:C【点拨】本题主要考查了正比例函数的图象和性质,熟练掌握正比例函数的图象和性质是解题的关键.6.B【分析】根据一次函数的性质即可求出当12x x <时,12y y >时,列出不等式,进而求出m 的取值范围.解:∵正比例函数图象上两点11(,)A x y ,22(,)B x y ,当12x x <时,有12y y >,∴210m +<,∴12m <-.故选:B .【点拨】本题考查的是一次函数的性质.解答此题要熟知一次函数y kx b =+:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.7.B【分析】根据一次函数的性质,由0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,即可得出;解:根据一次函数的性质,10-<,220220m +>,故0k <,0b >,函数y kx b =+的图象经过第一、二、四象限,不经过第三象限.故选:B ;【点拨】本题考查了一次函数的性质.一次函数y kx b =+的图象经过的象限由k 、b 的值共同决定,有六种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限,y 的值随x 的值增大而减小;⑤当0k >,0b =时,函数y kx b =+的图象经过第一、三象限;⑥当0k <,0b =时,函数y kx b =+的图象经过第二、四象限.8.A【分析】根据一次函数图象经过一、二、三象限得出3040a a +>⎧⎨+>⎩,求出结果即可.解:∵一次函数图象经过一、二、三象限,∴3040a a +>⎧⎨+>⎩,解得:3a >-,故A 正确.故选:A .【点拨】本题主要考查了一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质,一次函数()0y kx b k =+≠,当0k >直线经过一、三象限,当0k <直线经过二、四象限,当0b >直线与y 轴正半轴有交点,0b <直线与y 轴负半轴有交点.9.B【分析】根据图示,可得110,0k b >>,220,0k b <<,根据不等式的性质即可求解.解:根据图示,可知一次函数()11110y k x b k =+≠中,110,0k b >>;一次函数()22220y k x b k =+≠中,220,0k b <<,∴A 、12·0k k <,故原选项错误,不符合题意;B 、∵120,0k k ><,∴120k k ->,故原选项正确,符合题意;C 、∵120,0b b ><,且12b b >,∴120b b +>,故原选项错误,不符合题意;D 、∵120,0b b ><,∴120b b < ,故原选项错误,不符合题意;故选:B .【点拨】本题主要考查一次函数图象的性质,掌握一次函数图象的性质,不等式的性质是解题的关键.10.B【分析】由一次函数4y ax =-与2y bx =+的图象在x 轴上相交于同一点,即两个图象与x 轴的交点是同一个点.可用a 、b 分别表示出这个交点的横坐标,然后联立两式,可求出ba的值.解:在4y ax =-中,令0y =,得:4x a=;在2y bx =+中,令0y =,得:2=-x b;由于两个一次函数交于x 轴的同一点,因此42a b=-,则ab =422=--.故选:B .【点拨】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.11.B【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解:∵将直线22y x =-+平移后,得到直线23y x =--,设向上平移了a 个单位,∴2223x a x -++=--,解得:5a =-,所以沿y 轴向上平移了5-个单位,即向下平移5个单位,故选:B .【点拨】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12.B【分析】求得B 的坐标,根据题意,将△ABO 向右平移5个单位,向上平移5个单位得到△A ′B ′O ′,从而得到B ′的坐标为(-3+5,-3+5),即B ′(2,2).解:∵点A 的坐标为(-3,0),AB ⊥x 轴,与直线y =x 交于点B ,∴B (-3,-3),将△ABO 沿直线y =x 向上平移A ′B ′O ′,实质上是将△ABO 向右平移5个单位,向上平移5个单位,∴B ′的坐标为(-3+5,-3+5),即B ′(2,2),故选:B .【点拨】本题主要考查了一次函数的图象与几何变换,点的平移问题,能根据题意得出平移的实质是本题的关键.13.C【分析】根据一次函数的性质及一次函数图象上点的坐标特点对各选项进行逐一分析即可.解:A 、把=1x -代入函数 1y x =-+得,() 1120y =--+=≠,故点(1,0)-不在此函数图象上,故本选项错误,不符合题意;B 、函数 1y x =-+中,10k =-<,10b =>,则该函数图象经过第一、二、四象限,故本选项错误,不符合题意;C 、当1x >时,110-+=,则0y <,故本选项正确,符合题意;D 、函数 1y x =-+中,10k =-<,则该函数图象y 值随着x 值增大而减小,故本选项错误,不符合题意.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,掌握一次函数的性质是解题的关键.14.A【分析】将两个点代入直线方程整理判断即可.解:将A 、B 两点坐标分别代入直线方程,得1123y x =-,2223y x =-,则()12122y y x x -=-.()()()212121220x x y y x x --=-≥.∵A 、B 两点不相同,∴120x x -≠,∴()()12120x x y y -->.故选:A .【点拨】本题主要考查一次函数图象上点的坐标,比较简单,分别代入计算整理即可.15.D【分析】关于x 的一元一次方程0ax b +=的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y ax b =+的图象与x 轴交点的坐标.解:方程0ax b +=的解为x =32-,则一次函数y ax b =+的图象与x 轴交点的坐标为(-32,0),故选:D .【点拨】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为0ax b +=(a ,b 为常数,0)a ≠的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y ax b =+确定它与x 轴的交点的横坐标的值.16.A【分析】先根据一次函数y kx b =+的图象与x 轴交于点()30A -,,求出3b k =,然后解方程即可.解: 一次函数y kx b =+的图象与x 轴交于点()30A -,,30k b ∴-+=,3b k ∴=,0kx b -+= ,33b k x k k∴===.故选:A .【点拨】本题主要考查了一次函数与一元一次方程之间的关系,正确求出3b k =是解题的关键.17.B【分析】根据题目中的函数解析式和k 的取值范围,可以判断该函数一次项系数的正负,然后利用一次函数的性质即可解答本题.解:y=()()121x k x k-+-=12x k kx k k -+-=(1k -k )x 2k -+k ,∵0<k <1,∴1k k->0,∴该函数y 随x 的增大而增大,∴当2≤x≤3时,x=3时y 取得最大值,此时y=()()13213k k -+-=12-k k,故选:B .【点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.18.D【分析】先求出1B ,2B ,3B ,4B 的坐标,探究规律后即可解决问题.解:∵1111111OC OA B C A B ====,∴()11,1B ,∵2A 在直线1y x =+上,∴()21,2A ,∴12222C C B C ==,∴()23,2B ,同理可得()37,4B ,()415,8B …所以()121,2n n n B --,所以7B 的坐标为()127,64;故选:D .【点拨】此题考查一次函数图象上点的坐标特征,规律型:点的坐标,解题关键在于根据题意找到规律.19.1x ≥【分析】根据二次根式的被开方数是非负数、分式分母不为0列出不等式组,解不等式组得到答案.解:由题意得:0x ≠且10x -≥,解得:1x ≥,故答案为: 1.x ≥【点拨】本题考查的是函数自变量的取值范围的确定,熟记二次根式的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】将x ()6=f x x ,进行求解即可.解:f ==故答案为:【点拨】本题考查求函数值,分母有理化.正确的计算是解题的关键.21.2-【分析】先化为标准形式,再根据一次函数的定义解答.解:一次函数变形为:102210y x x =-=-+,故其比例系数k 是2-.故答案为:2-.【点拨】本题考查了一次函数的定义,解题的关键是掌握一次函数的定义:一般地,形如(0y kx b k =+≠,k 、b 是常数)的函数,叫做一次函数.22.3(1,)2【分析】设点P 的坐标为1(,1)2m m +,利用两点间的距离结合PA PB =,即可得出关于m 的一元一次方程,解之即可得出结论.解: 点P 在直线112y x =+上,∴设点P 的坐标为1(,1)2m m +.PA PB = ,222211(0)(14)(2)(14)22m m m m ∴-++-=-++-,即440m -=,解得:1m =,∴点P 的坐标为3(1,)2.故答案为:3(1,)2.【点拨】本题考查了一次函数图象上点的坐标特征、两点间的距离以及解一元一次方程,利用一次函数图象上点的坐标特征及两点间的距离,找出关于m 的方程是解题的关键.23.2143k k k k <<<【分析】首先根据直线经过的象限判断k 的符号,再根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个系数的大小.解:由直线经过的象限,知:12340000k k k k <>,,,,∵根据直线越陡,k 越大,∴21k k >,34k k >,∴2143k k k k <<<,故答案为:2143k k k k <<<.【点拨】本题考查正比例函数图象与性质,掌握正比例函数的性质是解题的关键.24.1【分析】先根据正比例函数的性质求出k 的取值范围,再把P 点坐标代入求解即可.解:∵正比例函数()0y kx k =≠的图象经过一、三象限,∴0k >.把()2,21P k k ++代入()0y kx k =≠,得()221k k k +=+,解得1k =或1k =-(舍去).故答案为:1.【点拨】本题考查了正比例函数图象与系数的关系:对于y kx =(k 为常数,0k ≠),当0k >时,y kx =的图象经过一、三象限,y 随x 的增大而增大;当0k <时,y kx =的图象经过二、四象限,y 随x 的增大而减小.25.一【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.解:由直线y kx b =+的图象经过第一、二、四象限,∴0k <,0b >,∴0k <,0b -<,∴直线y bx k =-+经过第二、三、四象限,∴直线y bx k =-+不经过第一象限,故答案为:一.【点拨】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y kx b =+所在的位置与k 、b 的符号有直接的关系.0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.26.-3≤k≤3且k≠1.【分析】根据图像即可求得k 的取值范围.解:根据题意当x≥13时,y =3x -1+2=3x+1;当x <13时,y =1-3x +2=3-3x ,由此画出图形M ,直线y =kx -5过定点(0,-5),交点在l 2上,如图可得:-3≤k≤3且k≠1,故答案为:-3≤k≤3且k≠1.【点拨】本题考查了一次函数图像上点的坐标特征,画出图像是本题关键.27.()2,0,()0,4【分析】根据坐标轴上点的坐标特点:横轴上的点,纵坐标为零;纵轴上的点,横坐标为零进行计算即可.解:∵当0x =时,4y =,∴与y 轴交点坐标为()0,4,∵当0y =时,2x =,∴与x 轴交点坐标为()2,0,故答案为:()2,0,()0,4.【点拨】此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.28.()2-/()2,0-【分析】先根据坐标轴上点的坐标特征得到()2,0A ,()0,4B ,再利用勾股定理计算出AB =根据圆的半径相等得到AC AB ==解:当0y =时,240x -+=,解得2x =,则()2,0A ;当0x =时,244y x =-+=,则()0,4B ,所以AB ===因为以点A 为圆心,AB 为半径画弧,交x 轴于点C ,所以AC AB ==所以2OC AC AO =-=.即可得点C 坐标为()2C -.故答案为:()2-.【点拨】本题主要考查了一次函数与坐标轴的交点坐标,勾股定理,正确求出一次函数与坐标轴的交点坐标是解题的关键.29.21y x =-(答案不唯一)【分析】根据平行得出一次函数的解析式2k =,1b ≠即可;解:设一次函数的解析式是y kx b =+,与直线21y x =+平行,2k ∴=,1b ≠,∴符合条件的一次函数的解析式可以是21y x =-,故答案为:21(y x =-答案不唯一;【点拨】本题考查了两直线相交或平行问题的应用,关键是根据题意求出2k =,1b ≠.30.7y x =-【分析】直接根据“左加右减,上加下减”的原则进行解答即可.解:将直线4y x =-向右平移3个单位后,所得直线的表达式是()34y x =--,即7y x =-.故答案为:7y x =-.【点拨】本题考查的是一次函数的图象的平移,熟知函数图象平移的法则“左加右减,上加下减”是解答此题的关键.31.21y x =-+【分析】根据题意可知所求的一次函数中,函数值随自变量的增大而减小,即所得函数中,自变量的系数为负,据此作答即可.解:一次函数过点()11,A y -和点()25,B y ,∵15-<,且12y y >,∴一次函数的函数值随自变量的增大而减小,∴一次函数中,自变量的系数为负,故答案为:21y x =-+(答案不唯一).【点拨】本题主要考查了一次函数的图象与性质,判断出一次函数的函数值随自变量的增大而减小,是解答本题的关键.32.d b a c<<<【分析】首先根据函数图像可知0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,即可求解.解:由图象可得,0a >,0b <,0c >,0d <,由图象可以得到函数1y ax b =+与y 轴的交点在函数2y cx d =+与y 轴的交点的上方,故b d >,由图象可以发现函数1y ax b =+的图象的倾斜度比函数2y cx d =+的图象的倾斜度缓,故a c <,由上可得,d b a c <<<,故答案为:d b a c <<<.【点拨】本题主要考查了一次函数图像的性质,解题的关键在于能够熟练掌握相关知识进行求解.33.2x =【分析】根据一次函数与一元一次方程的关系,一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,即可得出答案.解:∵一次函数y kx b =+的图象与x 轴相交于点()2,0A ,∴方程0kx b +=的解是2x =.故答案是2x =.【点拨】本题主要考查了图象法解一元一次方程,熟练掌握一次函数y kx b =+图象与x 轴交点的横坐标是方程0kx b +=的解,利用数形结合的思想解决问题是解题的关键.34.【分析】根据表达式求出A 、B 两点坐标,再利用勾股定理求出AB 的长即可.解:把x =0代入y =2x +4得:y =4,∴直线与y 轴交点坐标为(0,4),把y =0代入y =2x +4得:0=2x +4,x =-2,∴直线与x 轴交点坐标为(-2,0),∴AB =故答案为:【点拨】本题考查一次函数及勾股定理,利用表达式求出点的坐标,再把坐标转化成线段长是解题的关键.35.1-【分析】利用两直线相交,分别求出三条直线两两相交的交点,观察函数图像,利用一次函数的性质解答.解:直线123y x =+和直线21y x =-+的交点21,33⎛⎫- ⎪⎝⎭,直线123y x =+和直线3122y x =-的交点1011,33骣琪--琪桫,直线21y x =-+和直线3122y x =-的交点()2,1-,结合图像,对于实数范围内x 的任意取值,y 总取y 1、y 2、y 3中的最小值,所以,当2x =时,y 有最大值,最大值为1-,故答案为:1-.【点拨】本题考查一次函数的性质,掌握一次函数的图像性质是解题的关键,学会运用数形结合的思想解答更容易方便,这里注意求两条一次函数图像的交点即为联立两个一次函数解析式,求解出来的x 与y 即为交点坐标的横纵坐标.36.20192020(2,21)-【分析】根据题意,直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,可算出点,A B 的规律,由此即可求解.解:直线:1l y x =-与x 轴交于点1A ,当0y =时,1x =,∴1(1,0)A ,∴1(1,1)B ,同理可得,2(2,1)A ,3(4,3)A ,4(8,7)A ,5(16,15)A ,┈2(2,3)B ,3(4,7)B ,4(8,15)B ,5(16,31)B ,┈∴1(2,21)n n n B --(n 为正正数),∴2020120202020(2,21)B --,即201920202020(2,21)B -,故答案为:20192020(2,21)-.【点拨】本题主要考查一次函数图像的几何变换规律,掌握一次函数图像的性质,点的规律是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数
要点一:函数的概念及自变量取值范围的确定一、选择题1、函数2y
x 中,自变量x 的取值范围是(

A .2x
B .
2
x ≥C .
2
x D .
2
x ≤2在函数
131y x 中,自变量x 的取值范围是()
A .
13
x
B .
13
x
C .
13
x
D .
13
x
3、下列函数中,自变量
x 的取值范围是x ≥3的是(

A .31x y
B .3
1x
y
C .3
x y D .3
x y 4、函数3
12x x
y
中,自变量x 的取值范围是(

A .x ≤2
B .x =3
C .x <2且x ≠3
D .x ≤2且x ≠3
5、下列曲线中,表示
y 不是x 的函数是(

6、某蓄水池的横断面示意图如下图,分深水区和浅水区,如果这个注满水的蓄水池以固定
的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是


h
t
O A .
h
t O B .
h
t O
C .
h
t
O
D .
h
二、填空题7、在函数x y 3中,自变量x 的取值范围是.8.函数y =22
x x
的自变量x 的取值范围是
.
9、在函数21y
x 中,自变量x 的取值范围是.
10、函数12
y
x 中,自变量x 的取值范围是

11、函数1
x x y
中,自变量x 的取值范围是

12、已知函数
1()
1f x x
,那么(3)
f .
13、如图,当输入
5x
时,输出的y

要点二、一次函数图象、性质及解析式一、选择题
1、若正比例函数的图像经过点(-
1,2),则这个图像必经过点(

A .(1,2)
B .(-1,-2)
C .(2,-1)
D .(1,-2)
2、P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数
y= -x 图象上的两点,则下列判断正确的是
(
)
A .y 1>y 2
B .y 1<y 2
C .当x 1<x 2时,y 1>y 2
D .当x 1<x 2时,y 1<y 2
3、一次函数
23y x 的图象不经过(
)A .第一象限B .第二象限
C .第三象限
D .第四象限
4、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为(
).
5、已知函数y kx b 的图象如图,则2y kx b 的图象可能是()
因函数y kx b 的图象过(1,0)
,则2y kx b 的图象一定过(1,0).并且比例系数
的绝对值越大其图象越陡峭.
二、填空题6、将直线
y = 2 x
─ 4 向上平移5个单位后,所得直线的表达式是______________.
7、已知一次函数
21y
x ,则y 随x 的增大而_________(填“增大”或“减小”).
8、一次函数的图象过点(
0,2),且函数y 的值随自变量x 的增大而增大,请写出一个符合
条件的函数解析式:_
_.
9、一次函数
3y x b 的图象过坐标原点,则
b 的值为

10、一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示

0≤x ≤1时,y 关于x 的函数解析式为y = 60 x ,那么当1≤x ≤2时,y 关于x 的函数解析式
为_____________.
11、如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的
解析式为

O
12
160
x/小时
y/千米
12、已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是.
13、已知一次函数的图象过点
35,与49,,则该函数的图象与y 轴交点的坐标为
__________ _.
要点三、一次函数的应用一、选择题
1、由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量
V(万米3
)与干
旱的时间t(天)的关系如图所示,则下列说法正确的是
( ).
/天
t /万米3
V 20040060080010001200O
5040
30
20
10
A .干旱开始后,蓄水量每天减少20万米 3
B .干旱开始后,蓄水量每天增加20万米
3
C .干旱开始时,蓄水量为
200万米
3
D .干旱第50天时,蓄水量为 1 200万米3
.
2.小高从家门口骑车去单位上班,先走平路到达点
A ,再走上坡路到达点
B ,最后走下坡
路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()
A .12分钟
B .15分钟
C .25分钟
D .27分钟
二、填空题
3、我市某出租车公司收费标准如图所示,
如果小明只有
19元钱,那么他乘此出租车最远能
到达
公里处.
4、如图,l 1反映了某公司的销售收入与销量的关系,
l 2 反映了该公司产品的销售成本与销
量的关系,当该公司赢利(收入大于成本)时,销售量必须
____________.
要点四、一次函数与方程、不等式的关系一、选择题1、坐标平面上,点
P(2,3)在直线L 上,其中直线L 的方程式为2x by=7,求b (
).
A. 1
B. 3
C.
2
1 D.
3
12、如图,直线
(0)y kx b k
与x 轴交于点(30),,关于x 的不等式0kx b 的解集是


A .3
x B .
3
x C .
x D .
x 3、直线
11:l y k x b 与直线22:l y k x c 在同一平面直角坐标系中的图象如图所示,则
关于x 的不等式
12k x b k x c 的解集为(
).
A.x >1
B.x <1
C.x >-2
D.x <-2
4、如图,直线
y kx b 经过点(12)A ,和点(20)B ,,
直线2y
x 过点A ,则不等式20x kx b 的解集为(

A .
2
x B .
21
x C .
20
x D .
10
x 5、如图,直线
l 1和l 2的交点坐标为(

A.(4,-2)
B. (2,-4)
C. (-4,2)
D. (3,-1)
O
y
x
2
2
l 1
l 2
6、下列图象中,以方程
22
0y x 的解为坐标的点组成的图象是(
)二、填空题7、已知一次函数
y kx b 的图象如图,当
0x 时,y 的取值范围是

8、如图,已知函数
y x b 和3y ax 的图象交点为P ,
则不等式
3x b ax 的解集为

y x
O
2
A .
1 1
2 112
y x
O
2
B .1 1
2 112
y x
O
2
C .1 1
2 112
y x
O
2
D .
1 1
2 112
O
x
y 1 P
y=x+b
y=ax+3
y
x
O 1
-2 图2。

相关文档
最新文档