高中数学新教材必修第二册专题9.3 统计案例(解析版)

合集下载

数学人教A必修第二册 第九章 9.3统计案例 公司员工的肥胖情况调查分析

数学人教A必修第二册 第九章 9.3统计案例 公司员工的肥胖情况调查分析

3.公司员工肥胖程度整体情况: 从所抽取的样本数据分析得总体的情况如下:大部分员工 的身体质量指标正常,部分男、女员工身体偏瘦,也有一部分员 工偏胖或肥胖.
四、控制体重的建议
(1)限制高热量、高脂肪、高糖、高胆固醇食物的摄入. (2)限制精细主食摄入,多食糙米、全麦、玉米等. (3)限制食盐摄入. (4)保证含蛋白质食物(鱼、瘦肉、豆类及豆制品)的摄入. (5)保证含维生素、矿物质食物的摄入.
.中国成人的 BMI 数
值标准为:BMI <18.5 为偏瘦;18.5≤ BMI < 24 为正常;24 ≤ BMI < 28 为偏胖;BMI ≥ 28 为肥胖.
二、调查目的
1.统计该公司肥胖员工人数,并计算他们占员工总数的比例. 2.找出肥胖形成的原因. 3.了解肥胖对人们健康的不良影响. 4.提出预防和治疗肥胖的方法.
三、调查结果
1.下面对某公司员工的身体肥胖情况做如下分析:
(1)90 名男员工的 BMI 值的
(2)50 名女员工的 BMI 值的
频率分布表统计如下:
频率分布表统计如下:
分组 [16.0,18.5) [18.5,24.0) [24.0,28.0) [28.0,40.0]
频数 11 61 11 7
频率 0.122 0.678 0.122 0.078
9.3 统计案例 公司员工的肥胖情况调查分析
一、调查背景
近年来,随着人民生活水平的日益提高,营养物质的不断丰富,人 们的饮食水平也得到了不断提升,但同时也给人们的健康带来了新 问题——肥胖,肥胖人群有很大的心血管安全隐患.
目前,国际上常用身体质量指数(BMI)来衡量人体胖瘦程度以
及是否健康,其计算公式为:பைடு நூலகம்MI =

高中数学:必修第二册第九章-统计教学教案:变量间的相关关系(习题含答案)

高中数学:必修第二册第九章-统计教学教案:变量间的相关关系(习题含答案)

高中数学:第二册第九章:变量间的相关关系一、基础知识梳理1.变量之间的相关关系当自变量取值一定时,因变量的取值带有一定的_________,则这两个变量之间的关系叫相关关系.由于相关关系的不确定性,在寻找变量之间相关关系的过程中,统计发挥着非常重要的作用.我们可以通过收集大量的数据,在对数据进行统计分析的基础上,发现其中的规律,对它们的关系作出判断. 注意:相关关系与函数关系是不同的,相关关系是一种非确定的关系,函数关系是一种确定的关系,而且函数关系是一种因果关系,但相关关系不一定是因果关系,也可能是伴随关系. 2.散点图将样本中的n 个数据点(,)(1,2,,)i i x y i n =⋅⋅⋅描在平面直角坐标系中,所得图形叫做散点图.根据散点图中点的分布可以直观地判断两个变量之间的关系.(1)如果散点图中的点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为_________,如图(1)所示;(2)如果散点图中的点散布在从左上角到右下角的区域内,对于两个变量的这种相关关系,我们将它称为_________,如图(2)所示.3.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在_________附近,我们就称这两个变量之间具有_________,这条直线叫做回归直线.回归直线对应的方程叫做回归直线方程(简称回归方程).(2)设已经得到两个具有线性相关关系的变量的一组数据1122(,),(,),,(,)n n x y x y x y ⋅⋅⋅,直线方程y bx a =+,其中,a b 是待定参数.经数学上的推导,,a b 的值由下列公式给出:1122211()()()nni i i ii i nni i i i x x y y x y nx yb x x x nxa y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑.其中,回归直线的斜率为b ,截距为a ,即回归方程为y bx a =+.上述求回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做_________. (3)利用回归方程,我们可以进行预测并对总体进行估计. 4.相关关系的强与弱若相应于变量x 的取值i x ,变量y 的观测值为(1)i y i n ≤≤,则变量x与y 的相关系数()()niix x y y r --=∑,即ni ix y nx yr -=∑,通常用r 来衡量x 与y 之间的线性关系的强弱.r 的范围为11r -≤≤,r 为正时,x 与y 正相关;r 为负时,x 与y 负相关.||r 越接近于1,x 与y 的相关程度越大;||r 越接近于0,二者的相关程度越小.当||1r =时,所以数据点都在一条直线上.习题参考答案: 1.随机性2.(1)正相关 (2)负相关3.(1)一条直线 线性相关关系 (2)最小二乘法二、重点知识梳理b 的公式或混淆b 的位置1.回归方程的求解(1)求回归方程的步骤:列表→计算相关量的值→代入公式计算a ,b 的值→写出回归方程. (2)回归直线一定经过样本点的中心.【例1】假设关于某设备的使用年限x (年)和所支出的年平均维修费用y (万元)(即维修费用之和除以使用年限),有如下的统计资料:使用年限x 2 3 4 5 6 维修费用y2.23.85.56.57.0(1)画出散点图;(2)从散点图中发现使用年限与所支出的年平均维修费用之间关系的一般规律; (3)求回归方程;(4)估计使用年限为10年时所支出的年平均维修费用是多少? 【答案】答案详见解析.【解析】(1)画出散点图如图所示:(2)由上图可知,各点散布在从左下角到右上角的区域里,因此,使用年限与所支出的年平均维修费用之间成正相关,即使用年限越长,所支出的年平均维修费用越多.(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此,两变量呈线性相关关系. 由题表数据可得552114,5,112.3,90i ii i i x y x yx ======∑∑,由公式可得2112.3545 1.23,5 1.ˆ2340.089054ˆba y bx -⨯⨯===-=-⨯=-⨯, 即回归方程是 1.230.08y x =+.(4)由(3)知,当10x =时, 1.23100.0812.38y =⨯+=. 故估计使用年限为10年时所支出的年平均维修费用是12.38万元.2.回归直线的理解及其应用在回归方程y bx a =+中,b 是回归直线的斜率,它代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数.对于具有线性相关关系的两个变量,在求出回归方程后,就可以对总体的数据进行估计或者由已知数据的趋势去预测未知数据的值.【例2】根据如下样本数据得到的回归方程为y bx a =+,若 5.4a =,则x 每增加1个单位,y 就A .增加0.9个单位B .减少0.9个单位C .增加1个单位D .减少1个单位【答案】B【解析】(5,0.9)在回归直线上,∴0.95 5.4b =+,解得0.9b =-,故回归方程为0.9 5.4y x =-+,则x 每增加1个单位,y 就减少0.9个单位,故选B .【例3】中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计如下表:(1)求y 关于x 的线性回归方程y bx a =+;(2)旅游部门统计在每届水上狂欢节期间,每位外地游客可为本市增加100元左右的旅游收入,利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客可为本市增加的旅游收入达多少?参考公式:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.3.弄错回归方程中a ,b 的位置【例4】某班5名学生的数学和物理成绩如下表:(1)画出散点图.(2)求物理成绩y 对数学成绩x 的线性回归方程. 【答案】答案详见解析. 【错解】(1)散点图如图所示:(2)计算得1(8876736663)73.25x =⨯++++=,1(7865716461)67.85y =⨯++++=, 518878766573716664636125054i ii x y=⨯+⨯+⨯+⨯+⨯==∑,52222221887673666327174ii x==++++=∑,所以5152221525054573.267.80.6ˆ2527174573.25i ii i i x y x ybx x==--⨯⨯==≈-⨯-∑∑,67.80.625ˆˆ73.222.05a y bx =-=-⨯=. 所以y 对x 的线性回归方程是22.0502ˆ.65yx =+. 【错因分析】错解中回归方程记忆错误,应为y bx a =+. 【正解】(1)散点图如图所示:(2)计算得1(8876736663)73.25x =⨯++++=, 1(7865716461)67.85y =⨯++++=,518878766573716664636125054i ii x y=⨯+⨯+⨯+⨯+⨯==∑,52222221887673666327174i i x ==++++=∑, 所以5152221525054573.267.80.6ˆ2527174573.25i ii i i x yxybx x==--⨯⨯==≈-⨯-∑∑,67.80.625ˆˆ73.222.05a y bx =-=-⨯=. 所以y 对x 的线性回归方程是0.62520ˆ 2.5yx =+.三、习题强化训练1.下列两个变量之间的关系不具有线性关系的是 A .小麦产量与施肥值 B .球的体积与表面积 C .蛋鸭产蛋个数与饲养天数D .甘蔗的含糖量与生长期的日照天数 2.下列命题正确的是①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究. A .①③④ B .②③④C .③④⑤D .②④⑤3.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关4.下列变量是线性相关的是 A .人的体重与视力 B .圆心角的大小与所对的圆弧长 C .收入水平与购买能力D .人的年龄与体重5.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A .y ^=1.5x +2 B .y ^=-1.5x +2 C .y ^=1.5x -2D .y ^=-1.5x -26.下列关系中,属于相关关系的是________ ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.7.若施肥量x (kg )与水稻产量y (kg )的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.8.正常情况下,年龄在18岁到38岁的人,体重y (kg )对身高x (cm )的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.9.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x 3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程y ^=0.7x +0.35,那么表中t 的值为________. 10.下列两个变量之间的关系是相关关系的是____________.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长; ③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.11.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同12.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本的中心点(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 13.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^A .不能小于0B .不能大于0C .不能等于0D .只能小于014.某考察团对全国10大城市职工人均工资x 与居民人均消费y 进行统计调查,y 与x 具有线性相关关系,线性回归方程ˆy=0.66x +1.562(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比约为____________.15.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x , (1)若两艘船的吨位相差1 000,求船员平均相差的人数. (2)估计吨位最大的船和最小的船的船员人数.16.某工厂对某种产品的产量与成本的资料分析后有如下数据:(1)画出散点图;(2)求成本y 与产量x 之间的线性回归方程; (3)预计产量为8千件时的成本.17.某城市理论预测2014年到2018年人口总数y (单位:十万)与年份(用2014+x 表示)的关系如表所示:年份中的x 0 1 2 3 4 人口总数y5781119(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归方程y ∧=bx +a ; (3)据此估计2019年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)参考公式:线性回归方程为y bx a =+,其中()()()1122211n ni i i i i i n n i i i i x x y y x y nxy b x x x nx====---==--∑∑∑∑.习题参考答案:6.【答案】②④ 7.【答案】650 8.【答案】69.96 9.【答案】310.【答案】④14.【答案】83%15.【答案】(1)船员平均相差6人;(2)吨位最大和最小的船的船员数分别为29人和10人. 16.【答案】(1)详见解析;(2)y ^=1.1x +4.6;(3)产量为8千件时,成本约为13.4万元. 17.【答案】(1)详见解析;(2)y =3.2x +3.6;(3)估计2019年该城市人口总数约为196万.。

2020-2021学年新教材高中数学 第9章 统计章末综合提升学案(含解析)新人教A版必修第二册

2020-2021学年新教材高中数学 第9章 统计章末综合提升学案(含解析)新人教A版必修第二册

9.3 统计案例公司员工的肥胖情况调查分析(略)[巩固层·知识整合][提升层·题型探究]随机抽样方法的应用【例1】某县共有5个乡镇,人口3万人,其人口比例为3∶ 2∶ 5∶ 2∶ 3,从3万人中抽取一个容量为300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用比例分配分层随机抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.[跟进训练]1.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层随机抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为( ) A.193 B.192C.191 D.190B[1 000×n200+1 200+1 000=80,求得n=192.]频率分布直方图及应用【例2】某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109),3株;[109,111), 9株;[111,113),13株;[113,115),16株;[115,117),26株;[117,119),20株;[119,121),7株;[121,123),4株;[123,125],2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?[解]分组频数频率累积频率[107,109)30.030.03[109,111)90.090.12[111,113)130.130.25[113,115)160.160.41[115,117)260.260.67[117,119)200.200.87[119,121)70.070.94[121,123)40.040.98[123,125]20.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.在本例中由得到的频率分布直方图估计树苗的高度(cm)的平均数.[解] 由频率分布直方图可得树苗的高度(cm)的平均数的估计值为0.03×108+0.09×110+0.13×112+0.16×114+0.26×116+0.20×118+0.07×120+0.04×122+0.02×124=115.46(cm)用样本估计总体分布的方法1用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.2借助图表,可以把抽样获得的庞杂数据变得直观,凸显其中的规律,便于信息的提取和交流.数据的集中趋势和离散程度的估计【例3】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84;乙:92 95 80 75 83 80 90 85.(1)求甲成绩的80%分位数;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.[解] (1)把甲的成绩按照从小到大的顺序排列可得:78 79 81 82 84 88 93 95因为一共有8个数据,所以8×80%=6.4,不是整数,所以甲成绩的80%分位数是第7个数据93.(2)x -甲=18(78+79+81+82+84+88+93+95)=85,x -乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.用样本的数字特征估计总体的方法为了从整体上更好地把握总体的规律,我们还可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体相应的数字特征作出估计.众数就是样本数据中出现次数最多的那个值;中位数就是把样本数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,处于中间位置的数,如果数据的个数是偶数,中间两个的数据的平均数;平均数就是所有样本数据的平均值,用x -表示;标准差是反映样本数据离散程度大小的最常用统计量,其计算公式是s =1n[x 1-x-2+x 2-x-2+…+x n -x-2].[跟进训练]2.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )分数 54321人数20 10 30 30 10A .3B .2105C .3D .85B [∵x -=100+40+90+60+10100=3,∴s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]=1100(20×22+10×12+30×12+10×22)=160100=85⇒s =2105.] [培优层·素养升华]【典例】为了保护学生视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须更换前使用的天数如下:天数[150,180)[180,210)[210,240)[240,270)[270,300)[300,330)[330,360)[360,390] 灯管数111182025167 2(1)试估计这种日光灯的平均使用寿命;(2)若定期更换,可选择多长时间统一更换比较合适?[解] (1)各组组中值分别为165,195,225,255,285,315,345,375,由此可算得平均数约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天).故估计这种日光灯的平均使用寿命约为268天.(2)方差为1100×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60.故标准差为 2 128.60≈46.故标准差约为46,268-46=222(天),268+46=314(天),所以这100只日光灯的使用寿命大部分落在222~314天之间,故可在第222天到第314天内统一更换较合适.平均数和标准差是工业生产中监测产品质量的重要指标,当样本的平均数或标准差超过了规定界限时,说明这批产品的质量可能距生产要求有较大的偏离,应该进行检查,找出原因,从而及时解决问题,本题主要考查了数据分析的核心素养.[素养提升练]从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数62638228(1)根据上表作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[解] (1)产品质量指标的频率分布直方图如图.(2)质量指标值的样本平均数为80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(80-100)2×0.06+(90-100)2×0.26+(100-100)2×0.38+(110-100)2×0.22+(120-100)2×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.。

新教材人教版高中数学必修第二册 9-3 统计案例 公司员工的肥胖情况调查分析(基础练习题)解析版

新教材人教版高中数学必修第二册 9-3 统计案例 公司员工的肥胖情况调查分析(基础练习题)解析版

第九章 统计9.3 统计案例 公司员工的肥胖情况调查分析(基础练)一、单选题(共5小题,满分25分,每小题5分)1.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用21,x x 表示,方差分别为 2221,s s 表示,则( )A.21x x >, 2221s s > B.21x x >, 2221s s < C.21x x <, 2221s s < D.21x x <, 2221s s >【答案】 B【解析】85988871=++++=x , 2.751077661=++++=x ,故 21x x > .s 21;s22, 故s s 2221< , 故选:B.2.已知数据x 1,x 2,x 3,…,x n 是上海普通职工n(n ≥3,n ∈N *)个人的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,则在这n +1个数据中,下列说法不正确的是( ) A .年收入平均数大大增大 B .中位数可能不变 C .方差变大 D .方差可能不变【答案】D【解析】插入大的极端值,平均数增加,中位数可能不变,方差也因为加入此数据更加分散而变大.故选:D3.一组数据的方差为2s ,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数分别为( ) A .212s ,12x B .22s ,2x C .24s ,2x D .2s ,x【答案】C【解析】设该组数据为123,,,,n x x x x ,将这组数据中的每一个数都乘以2,则有1232,22,,2,n x x x x ⋯,平均数为2x .又()()()2222121n s x x x x x x n ⎡⎤=⨯-+-++-⎢⎥⎣⎦,则新数据的方差为()()()22221212222224n x x x x x x s n ⎡⎤⨯-+-++-=⎣⎦, 故选:C.4.如图是某公司2020年1月到10月的销售额(单位:万元)的折线图,销售额在35万元以下为亏损,超过35万元为盈利,则下列说法错误的是( )A .这10个月中销售额最低的是1月份B .从1月到6月销售额逐渐增加C .这10个月中有3个月是亏损的D .这10个月销售额的中位数是43万元 【答案】B【解析】根据折线图知,这10个月中销售额最低的是1月份,为30万元,所以A 正确; 从1月到6月销售额是先增加后减少,再增加,所以B 错误;1月,3月和4月的销售额低于35万元,其它月份都高于35万元,所以C 正确; 这10个月的销售额从小到大排列为30,32,34,40,41,45,48,60,78,80万元, 其中位数是()14145432⨯+=万元,所以D 正确. 故选:B 5.某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )A.73.3,75,72 B.73.3,80,73C.70,70,76 D.70,75,75【答案】A【解析】由频率分布直方图知,小于70的有24人,大于80的有18人,则在[70,80]之间18人,所以中位数为70103+≈73.3;众数就是分布图里最高的小矩形底边的中点,即[70,80]的中点横坐标,是75;平均数为45×0.05+55×0.15+65×0.20+75×0.30+85×0.25+95×0.05=72.故选: A.二、多选题(共3小题,满分15分,每小题5分,少选得3分,多选不得分)6.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的化学成绩领先年级平均分最多.B.甲有2个科目的成绩低于年级平均分.C.甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果. 【答案】A【解析】根据雷达图,可知物理成绩领先年级平均分最多,即A 错误; 甲的政治、历史两个科目的成绩低于年级平均分,即B 正确; 甲的成绩最好的前两个科目是化学和地理,即C 正确;对甲而言,物理成绩比年级平均分高,历史成绩比年级平均分低,而化学、生物、地理、政治中优势最明显的两科为化学和地理,故物理、化学、地理的成绩是比较理想的一种选科结果,即D 正确. 故选:A.7.某地区城乡居民储蓄存款年底余额(单位:亿元)变化情况如图所示,下列判断一定正确的是( )A .该地区城乡居民储蓄存款年底余额总数逐年上升B .到2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额C .城镇居民存款年底余额逐年下降D .2017年城乡居民存款年底余额增长率大约为225% 【答案】AD【解析】由条形图可知,余额总数逐年上升,故A 项正确;由城乡储蓄构成百分比可知,2019年农村居民存款年底总余额占36.1%,城镇居民存款年底总余额占63.9%,没有超过,故B 项错误;城镇居民存款年底余额所占的比重逐年下降,但城镇居民存款年底余额2014年,2017年,2019年分别为6.8198(亿元),155.085(亿元),973.197(亿元),总体不是逐年下降的,故C 项错误,2017年城乡居民存款年底余额增长率大约为21165225%65-≈,故D 项正确.故选:AD. 8.如图是某公司2018年1月至12月空调销售任务及完成情况的统计图,如10月份销售任务是400台,完成率为90%,下列叙述正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年总销售量为4870台D .2018年月销售量最大的是6月份 【答案】ABC【解析】由题图可知选项A 正确; 2018年月销售任务的平均值为10020033003400500700800100045060012++⨯+⨯++++=<,故选项B 正确;2018年总销售量为1000.82001300(0.5 1.50.6)400(1.20.90.9)500 1.17000.8⨯+⨯+⨯+++⨯+++⨯+⨯800110000.74870+⨯+⨯=,故选项C 正确;2018年月销售量最大的是5月份,为800台,故选项D 不正确. 故选:ABC 三、填空题(共3小题,满分15分,每小题5分,一题两空,第一空2分)9.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为_________ 【答案】0.7【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7. 故答案为:0.710.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 . 【答案】10【解析】设样本数据为:12345,,,,x x x x x ()1234557x x x x x ∴++++÷=()()222157754s x x ⎡⎤=-++-÷=⎣⎦()()22151********,35x x x x x x x ∴-++-=++++=若样本数据中的最大值为11,不妨设511x =,由于样本数据互不相同,与()()22157720x x -++-=这是不可能成立的,若样本数据为4,6,7,8,10,代入验证知两式均成立,此时样本数据中的最大值为 10, 故答案为:1011.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:实施项目 种植业 养殖业 工厂就业 服务业 参加用户比脱贫率那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的______倍 【答案】 【解析】设贫困户总数为a,脱贫率,所以 .故 2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的 倍. 故答案为:四、解答题:(本题共3小题,共45分。

2020-2021学年高中新教材人教A版数学必修第二册 9.3 统计分析案例 公司员工 课件

2020-2021学年高中新教材人教A版数学必修第二册 9.3 统计分析案例 公司员工 课件
N1 i∑=k1fi(Yi--Y )2. ______________.
5.样本方差与样本标准差 如果一个样本中个体的变量值分别为 y1,y2,…yn,样本平均数为-y , 则称 s2=n1∑ i=n1 (yi--y )2 为样本方差,s= s2为样本标准差. ■名师点拨 (1)若 x1,x2,x3,…,xn 的平均数为-x ,方差为 s2 那 么 ax1+b,ax2+b,ax3+b,…,axn+b 的平均数为-x ′=a-x +b; 方差 s′2=a2s2. (2)标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的 离散程度越大;标准差越小,数据的离散程度越小.显然,在刻画 数据的分散程度上,方差和标准差是一样的.但在解决实际问题中, 一般多采用标准差.
下列说法中正确的个数为( )
①数据的极差越小,样本数据分布越集中、稳定;
②数据的平均数越小,样本数据分布越集中、稳定;
③数据的标准差越小,样本数据分布越集中、稳定;
④数据的方差越小,样本数据分布越集中、稳定.
A.1
B.2
C.3
D.4
解析:选 C.由数据的极差、标准差、方差的定义可知,它们都可以
影响样本数据的分布和稳定性,而数据的平均数则与之无关,故②
4.总体方差与总体标准差 如果总体中所有个体的变量值分别为 Y1,Y2,…,YN,总体平均数
为,则称 S2=__N1_i∑_=N_1(_Y_i_-__-Y__)2_为总体方差,S=___S_2___为总体标准 差.与总体均值类似,总体方差也可以写成加权的形式.如果总体 的 N 个变量值中,不同的值共有 k(k≤N)个,不妨记为 Y1,Y2,…, Yk,其中 Yi 出现的频数为 fi(i=1,2,…,k),则总体方差为 S2=

高中数学新教材同步必修第二册 第9章课件 统计

高中数学新教材同步必修第二册 第9章课件 统计
解析 选项A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符, 故错误; 选项B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误; 选项C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.
12345
3.下列抽样试验中,适合用抽签法的是 A.从某厂生产的3 000件产品中抽取600件进行质量检验
12345
2.下列抽样方法是简单随机抽样的是 A.从平面直角坐标系中抽取5个点作为样本 B.某饮料公司从仓库中的1 000箱饮料中一次性抽取20箱进行质量检查 C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动
√D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号, 对编号随机抽取)
随机抽样.( × )
4.从高一(1)班抽取10人,若这10人的平均视力为4.8,则该班所有学生的平均
视力一定是4.8.( × )
2 题型探究
PART TWO
一、简单随机抽样的理解
例1 (1)(多选)下列4个抽样中,为简单随机抽样的是 A.从无数个个体中抽取50个个体作为样本 B.仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查
12345
4.一个总体中含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的 1
样本,则指定的某个个体被抽到的可能性为__2_0__.
解析 因为是简单随机抽样,
故每个个体被抽到的机会相等,
所以指定的某个个体被抽到的可能性为
1 20
.
12345
5.从一个篮球训练营中抽取10名学员进行投篮比赛,每人投10次,统计出该10名学员 投篮投中的次数,4个投中5次,3个投中6次,2个投中7次,1个投中8次.试估计该训练 营投篮投中的比例为__0_._6__. 解析 10 名学员投中的平均次数为4×5+3×6+ 102×7+1×8=6, 所以投中的比例约为160=0.6.

人教A版高中同步学案数学必修第二册精品课件 第九章 统计 本章 总结提升 (3)

人教A版高中同步学案数学必修第二册精品课件 第九章 统计 本章 总结提升 (3)

由甲、乙平均数相等,乙的方差较小,知选乙参加比赛比较合适.
规律方法
样本的数字特征可分为两大类:一类是反映样本数据集中趋势
的,包括平均数、众数、中位数;另一类是反映样本数据离散程度的,包括
样本方差及标准差.通常,在实际问题中,仅靠平均数不能完全反映问题,还
要研究方差.方差描述了数据相对平均数的离散程度,在平均数相同的情况
方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k∶6∶4.
已知高一年级共抽取了200人,则高三年级抽取的人数为
.
答案 (1)分层随机抽样,简单随机抽样
(2)400
解析 (1)由于甲、乙、丙三个地区有明显差异,所以在完成①时,需用分层
随机抽样.在甲地区有10个特大型超市代理销售该品牌的白酒,没有显著差
人数
5
8
区间界限 [142,146) [146,150)
人数
20
11
[130,134)
10
[150,154)
6
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计身高低于134 cm的人数占总人数的百分比.
[134,138)
22
[154,158]
5
[138,142)
33
解 (1)样本的频率分布表:
异,所以完成②宜采用简单随机抽样.

(2)由条件有+6+4
4
×1
2+6+4
200=400.
=
200
,解得
1 200
k=2,所以高三年级抽取的人数为
专题二
用样本的频率分布估计总体分布
【例2】 如下表所示给出了某校500名12岁男孩中用随机抽样得出的120

新教材人教版高中数学必修第二册 9-2-3总体集中趋势的估计 教学课件

新教材人教版高中数学必修第二册 9-2-3总体集中趋势的估计 教学课件
不是任何一个样本数据的改变都会引起中位数的改变.因此, 与中位数比较,平均数反映出样本数据中的更多信息,对样 本中的极端值更加敏感。
第五页,共二十二页。
平均数和中位数都描述了数据的集中趋势它们 的大小关系和数据分布的形态有关
(1)平均数和中位数应该大体上差不多; (2)平均数大于中位数;(右边”拖尾”) (3)平均数小于中位数.(左边”拖尾”)
(2)中位数的估计
根据中位数的意义,在样本中,有50%的个体小于或等于中位 数,也有50%的个体大于或等于中位数.因此,在频率分布直方
图中,中位数左边和ቤተ መጻሕፍቲ ባይዱ边的直方图的面积相等.
0.077 3 0.231, (0.077 0.107) 3 0.552
因此中位数落在区间
内。
设中位数是 ,由
这个结果与根据原 始数据求得的中位 数6.6相差不大.
即100户居民的月均用水量的平均数为 8.79t.
由中位数的定义,可得 6.4 6.8 6.6,
2
即100户居民的月均用水量的中位数是6.6t.
第四页,共二十二页。
思考:小明用统计软件计算了100 户居民月用水量的平
均数和中位数,但录入数据时把一个数据7.7录成了77.
请计算录入数据的平均数和中位数,并与真实的样本平均
解:为了更直观地观察数据的特征,我们用条形图表示表中 的数据(如下图).可以发现,选择校服规格为“165”的女生的频 数最高,所以用众数165作为该校高一年级女生校服的规格比较
合适.
由于全国各地的高一年级女生的身高 存在一定的差异,所以用一个学校的 数据估计全国高一年级女生的校服规 格不合理.
第七页,共二十二页。
1 2200
管理人员 250 6 1500
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.3 统计案例【例1】(2019·山东高考模拟(文))甲、乙两人参加一个射击的中奖游戏比赛,在相同条件下各打靶50次,统计每次打靶所得环数,得下列频数分布表.比赛中规定所得环数为1,2,3,4时获奖一元,所得环数为5,6,7时获奖二元,所得环数为8,9时获奖三元,所得环数为10时获奖四元,没命中则无奖.(1)根据上表,在答题卡给定的坐标系内画出甲射击50次获奖金额(单位:元)的条形图;(2)估计甲射击1次所获奖至少为三元的概率;(3)要从甲、乙两人中选拔一人参加射击比赛,请你根据甲、乙两人所获奖金额的平均数和方差作出选择.【答案】(1)见解析;(2) 1225; (3)派甲参赛比较好.【解析】(1)依题意知甲50次获奖金额(单位:元)的频数分布为其获奖金额的条形图如下图所示(2)甲射击一次所获奖金至少为三元,即打靶所得环数至少为8,因为甲所得环数至少 为8的有166224++=(次)所以估计甲射击一次所获奖金至少为三元的概率为24125025=. (3)甲50次获奖金的平均数为15(1122532242)502⨯⨯+⨯+⨯+⨯=, 乙50次获奖金的平均数为15(1322132442)502⨯+⨯+⨯+⨯=, 甲50次获奖金额的方差为2222155551122532242502222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+-⨯+-⨯+-⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦137********=⨯=. 乙50次获奖金额的方差为2222155551322132442502222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦145950220=⨯=. 甲、乙的平均数相等.甲的方差小,故派甲参赛比较好. 【点睛】本题主要考查条形图的应用,古典概型概率公式的应用以及平均数与方差的实际意义,属于中档题. 样本数据的算术平均数12n 1(++...+)x x xx n =,样本方差2222121[()()...()]n s x x x x x x n=-+-++-,标准差s =【举一反三】1.(2020·四川高三期末(文))某次高三年级模拟考试中,数学试卷有一道满分10分的选做题,学生可以从A ,B 两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,作为下一步教学的参考依据,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001~900.(1)若采用系统抽样法抽样,从编号为001~090的成绩中用简单随机抽样确定的成绩编号为025,求样本中所有成绩编号之和;(2)若采用分层抽样,按照学生选择A 题目或B 题目,将成绩分为两层.已知该校高三学生有540人选做A 题目,有360人选做B 题目,选取的样本中,A 题目的成绩平均数为5,方差为2,B 题目的成绩平均数为5.5,方差为0.25.(i )用样本估计该校这900名考生选做题得分的平均数与方差;(ii )本选做题阅卷分值都为整数,且选取的样本中,A 题目成绩的中位数和B 题目成绩的中位数都是5.5.从样本中随机选取两个大于样本平均值的数据做进一步调查,求取到的两个成绩来自不同题目的概率. 【答案】(1)4300;(2) (i )平均数为5.2,方差为1.36.(ii )35【解析】(1)由题易知,若按照系统抽样的方法,抽出的编号可以组成以25为首项,以90为公差的等差数列,故样本编号之和即为该数列的前10项之和, 所以1010910259043002S ⨯=⨯+⨯=. (2)(i )由题易知,若按照分层抽样的方法,抽出的样本中A 题目的成绩有6个,按分值降序分别记为1x ,2x ,…,6x ;B 题目的成绩有4个,按分值降序分别记为1y ,2y ,3y ,4y .记样本的平均数为x ,样本的方差为2s .由题意可知,()()126123410x x x y y y y x ++⋅⋅⋅+++++=56 5.545.210⨯+⨯==()()()()22225.250.2520.250.2i i i i x x x x -=--=--⨯-+⎡⎤⎣⎦,1,2,,6i =⋅⋅⋅ ()()()()22225.2 5.50.3 5.520.3 5.50.3i i i i y y y y -=-+=-+⨯-+⎡⎤⎣⎦,1,2,,4i =⋅⋅⋅()()()()()22222126142 5.2 5.2 5.2 5.2 5.210x x x y y s -+-+⋅⋅⋅+-+-+⋅⋅⋅+-=222600.260.25400.3413.6 1.361010⨯-+⨯+⨯++⨯===所以,估计该校900名考生选做题得分的平均数为5.2,方差为1.36.(ii )本选做题阅卷分值都为整数,且选取的样本中,A 题目成绩的中位数和B 题目成绩的中位数都是5.5,易知样本中A 题目的成绩大于样本平均值的成绩有3个,分别为1x ,2x ,3x ,B 题目的成绩大于样本平均值的成绩有2个,分别为1y ,2y .从样本中随机选取两个大于样本平均值的数据共有种10方法,为:()12,x x ,()13,x x ,()23,x x ,()12,y y ,()11,x y ,()21,x y ,()31,x y ,()12,x y ,()22,x y ,()32,x y ,其中取到的两个成绩来自不同题目的取法共有6种,为:()11,x y ,()21,x y ,()31,x y ,()12,x y ,()22,x y ,()32,x y ,记“从样本中随机选取两个大于样本平均值的数据,取到的两个成绩来自不同题目”为事件A , 所以()63105P A ==. 2.(2019·河北高二期中)(2014·长春模拟)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:(1)画出茎叶图.(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、方差,并判断选谁参加比赛更合适? 【答案】【解析】(1)画茎叶图如图所示,中间数为数据的十位数.(2)由茎叶图把甲、乙两名选手的6次成绩按从小到大的顺序依次排列为甲:27,30,31,35,37,38; 乙:28,29,33,34,36,38.所以x ̅甲=16×(27+30+31+35+37+38)=33,x ̅乙=16×(28+29+33+34+36+38)=33.s 甲2=16×[(-6)2+(-3)2+(-2)2+22+42+52]=473,s 乙2=16×[(-5)2+(-4)2+0+12+32+52]=383.因为x ̅甲=x ̅乙,s 甲2>s 乙2.所以乙的成绩更稳定,故乙参加比赛更合适.1.(2019·安徽省舒城中学高二月考(文))有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A 、B 两个班各被随机抽取5名学生接受问卷调查,A 班5名学生得分为:5、8、9、9、9,B 班5名学生得分为:6、7、8、9、10.(1)请你判断A 、B 两个班中哪个班的问卷得分要稳定一些,并说明你的理由;(2)求如果把B 班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率. 【答案】(1)B 班的问卷得分要稳定,见解析;(2)2()5P M = 【解析】(1)B 班的问卷得分要稳定一些,理由如下:589996789108,855A B x x ++++++++====222222(58)(88)(98)(98)(98) 2.45AS -+-+-+-+-∴==222222(68)(78)(88)(98)(108)25BS -+-+-+-+-==,22,A B A B x x S S =>,B ∴班的问卷得分要稳定;(2)记“样本平均数与总体平均数之差的绝对值不小于1”为事件M所有的基本事件分别为:(6,7)、(6,8)、(6,9)、(6,10)、(7,8)、(7,9)、(7,10)、(8,9)、(8,10)、(9,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)共10个.事件M 包含的基本事件分别为:(6,7),(6,8),(8,10),(9,10),共4个 由于事件M 符合古典概型,则42()105P M == 2.(2019·兰州市第二十七中学高一期末)某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分): 甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.【答案】(1)=83.2x 甲,=84x 乙;(2)22=26.36=13.2S S 甲乙,,=5.13S 甲,=3.63S 乙;(3)乙班的总体学习情况比甲班好 【解析】(1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84. (2)2S 甲=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79-83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36,2S 甲=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2,则s 甲 5. 13,s 乙≈3. 63.(3)由于x x <乙甲,则甲班比乙班平均水平低.由于S S >甲乙,则甲班没有乙班稳定. 所以乙班的总体学习情况比甲班好3.(2019·平遥县第二中学高一月考)某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.(1)求,m n 的值;(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差2S 甲和2S 乙,并由此比较两班学生的加工水平的稳定性.【答案】(1)8,9m n ==;(2)22=16.8=16.4S S 甲乙,,乙班学生加工水平比甲班稳定.【解析】(1)甲班学生在4个小时内加工的合格零件数的平均数为21, 即()11618212220215x m =+++++=甲,解得m =8. 乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数,即()11014232425215x n =+++++≥乙,又0n 9≤≤,解得n =9. (2)甲班的方差为()()()()()22222211621182121212221282116.85S ⎡⎤=-+-+-+-+-=⎣⎦甲,由(1)可得21x =乙, ∴乙班的方差为()()()()()22222211421192123212421252116.45S ⎡⎤=-+-+-+-+-=⎣⎦乙. ∵方差22S S 甲乙>,∴两班加工的合格零件数的平均数相同,乙班更稳定些.4.(2019·安徽高二期中(文))大城市往往人口密集,城市绿化在健康人民群众肺方面发挥着非常重要的作用,历史留给我们城市里的大山拥有品种繁多的绿色植物更是无价之宝.改革开放以来,有的地方领导片面追求政绩,对森林资源野蛮开发受到严肃查处事件时有发生.2019年的春节后,广西某市林业管理部门在“绿水青山就是金山银山”理论的不断指引下,积极从外地引进甲、乙两种树苗,并对甲、乙两种树苗各抽测了10株树苗的高度(单位:厘米),数据如下面的茎叶图:(1)据茎叶图求甲、乙两种树苗的平均高度;(2)据茎叶图,运用统计学知识分析比较甲、乙两种树苗高度整齐情况.【答案】(1)27(厘米),30(厘米);(2)甲种树苗长的比较整齐,乙种树苗长的参差不齐【解析】(1)甲种树苗的平均高度为192120292325373132332710+++++++++=(厘米).乙种树苗的平均高度为101410272630474644463010+++++++++=(厘米). (2)甲种树苗的方差为:()164364941641001625363810+++++++++=,乙种树苗的方差为:()1400256400169160289256196256223.810+++++++++=,故甲种树苗长的比较整齐,乙种树苗长的参差不齐.5.(2019·福建厦门外国语学校高二期中)某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组. (1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74 ,请问哪位同学的实验更稳定?并说明理由. 【答案】(1) 男、女同学的人数分别为3人,1人;(2) 12;(3) 第二位同学的实验更稳定,理由见解析 【解析】(1)设有x 名男同学,则45604x=,∴3x =,∴男、女同学的人数分别为3人,1人 (2)把3名男同学和1名女同学记为123,,,a a a b ,则选取两名同学的基本事件有12(,)a a ,13(,)a a ,1(,)a b ,21(,)a a ,23(,)a a ,2(,)a b ,31(,)a a ,32(,)a a ,3(,)a b ,1(,)b a ,2(,)b a ,3(,)b a 共12种,其中恰有一名女同学的有6种,∴选出的两名同学中恰有一名女同学的概率为61122P == (3)16870717274715x ++++==,26970707274715x ++++== 2222221(6871)(7071)(7171)(7271)(7471)45s -+-+-+-+-==,2222222(6971)(7071)(7071)(7271)(7471) 3.25s -+-+-+-+-==因2212s s >,所以第二位同学的实验更稳定.6.(2019·陕西高一期末)为选派一名学生参加全市实践活动技能竟赛,A 、B 两位同学在学校的学习基地现场进行加工直径为20mm 的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm )A 、B 两位同学各加工的10个零件直径的平均数与方差列于下表;根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s 2B ,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由. 【答案】(Ⅰ)0.008,B 的成绩好些(Ⅱ)派A 去参赛较合适 【解析】(Ⅰ)由题意,根据表中的数据,利用方差的计算公式,可得S 2B 22221[5(2020)3(19.920)1(120)1(20.220)]0.00810=⨯-+⨯-+⨯-+⨯-= ∴S 2A >S 2B ,∴在平均数相同的情况下,B 的波动较小, ∴B 的成绩好些.(Ⅱ)从图中折线趋势可知:尽管A 的成绩前面起伏大,但后来逐渐稳定,误差小,预测A 的潜力大, ∴派A 去参赛较合适.7.(2019·沙雅县第二中学高二期末)某车间20名工人年龄数据如表所示: (1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.【答案】(1)众数为30,极差为21;(2)见解析;(3)方差,12.6 【解析】(1)这20名工人年龄的众数为30,极差为401921-=; (2)茎叶图如下:(3)年龄的平均数为19283293305314323403020+⨯+⨯+⨯+⨯+⨯+=,故这20名工人年龄的方差为()()()222222211132315041321020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦ ()1112112341210025212.62020=+++++=⨯=. 8.(2020·北京高一期末)根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.(Ⅰ)求图中a的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率;(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)【答案】(Ⅰ)0.06;(Ⅱ)38;(Ⅲ)甲【解析】(I)由题意1(0.190.450.290.01)0.06a=-+++=;(II)记事件A为甲中射击一次中靶环数大于7,则()0.450.290.010.75P A=++=,甲射击2次,恰有1次中靶数大于7的概率为:()()()()()() P P AA P AA P A P A P A P A =+=+3 0.750.250.250.758 =⨯+⨯=;(III)甲稳定.9.(2019·永济市涑北中学校高一月考)甲、乙两名技工在相同的条件下生产某种零件,连续6天中,他们日加工的合格零件数的统计数据的茎叶图,如图所示(1)写出甲、乙的中位数和众数;(2)计算甲、乙的平均数与方差,并依此说明甲、乙两名技工哪名更为优秀.【答案】(1)见解析(2)甲更为优秀.【解析】解:(1)甲的中位数为2020202+=,众数为20;乙的中位数为192019.52+=,众数为23.(2)181920202122206x+++++==甲,()()()()()()2222222182019202020202021202220563S -+-+-+-+-+-==甲, 171819202323206x +++++==乙,()()()()()()22222221720182019202020232023201663S -+-+-+-+-+-==乙,由于x x =甲乙,且22S S <甲乙,所以甲更为优秀.10.(2019·四川高三期中(文))根据幼儿身心发展的特征,幼儿园通常着重在健康、科学、社会、语言、艺术五大领域对幼儿展开全方位的教育和培养.经调查发现,一个幼儿除了在幼儿园进行五大领域的系统学习之外,还会报一些课外兴趣班.而家长朋友们对于是否额外报这些课外兴趣班的态度也是不一样的.某调查机构对某幼儿园的100名幼儿家长就孩子是否报课外兴趣班的赞同程度进行调查统计,得到家长对幼儿报课外兴趣班赞同度y 的频数分布表:(1)分别计算对幼儿报兴趣班的赞同度不低于60%的家长比例和对幼儿报兴趣班的赞同度低于20%的家长比例;(2)求家长对幼儿报兴趣班的赞同度的平均数与方差的估计值.(同一组中的数据用该组区间的中点值代替)【答案】(1)0.72,0.02; (2)0.70,0.0496.【解析】(1)根据家长对幼儿报课外兴趣班赞同度y 的频数分布表, 对幼儿报兴趣班的赞同度不低于60%的家长比例为28440.72100+==; 对幼儿报兴趣班的赞同度低于20%的家长比例为20.02100=. (2)由题意,家长对幼儿报兴趣班的赞同度的平均数为()10.1020.30120.50140.70280.9044100y =⨯+⨯+⨯+⨯+⨯0.70=, 其方差为()()()22222210.6020.40120.20140280.2044100s ⎡⎤=-⨯+-⨯+-⨯+⨯+⨯⎣⎦0.0496=,所以家长对幼儿报兴趣班的赞同度的平均数与方差的估计值分别为0.70和0.0496.11.(2020·江西高二月考(理))某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人5次数学考试的成绩,统计结果如下表:(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由. (2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰.方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被润汰. 已知学生甲、乙都只会5道备选题中的3道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.【答案】(1)见解析;(2)选方案二【解析】(1)解法一:甲的平均成绩为180********835x ++++==;乙的平均成绩为29076759282835x ++++==, 甲的成绩方差()25211150.85i i s x x==-=∑;乙的成绩方差为()25221148.85i i s x x==-=∑;由于12x x =,2212s s >,乙的成绩较稳定,派乙参赛比较合适,故选乙合适. 解法二、派甲参赛比较合适,理由如下:从统计的角度看,甲获得85以上(含85分)的概率135P =,乙获得85分以上(含85分)的概率225P = 因为12P P >故派甲参赛比较合适,(2)5道备选题中学生乙会的3道分别记为a ,b ,c ,不会的2道分别记为E ,F .方案一:学生乙从5道备选题中任意抽出1道的结果有:a ,b ,c ,E ,F 共5种,抽中会的备选题的结果有a ,b ,c ,共3种. 所以学生乙可参加复赛的概率135P =. 方案二:学生甲从5道备选题中任意抽出3道的结果有(),,a b c ,(),,a b E ,(),,a b F ,(),,a c E ,(),,a c F ,(),,a E F ,(),,b c E ,(),,b c F ,(),,b E F ,(),,c E F ,共10种,抽中至少2道会的备选题的结果有:(),,a b c ,(),,a b E ,(),,a b F ,(),,a c E ,(),,a c F ,(),,b c E ,(),,b c F 共7种,所以学生乙可参加复赛的概率2710P =因为12P P <,所以学生乙选方案二进入复赛的可能性更大.12.(2020·陕西高二期末(文))某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况如下:甲:15,17,14,23,22,24,32; 乙:12,13,11,23,27,31,30 .(1)求甲、乙两名运动员得分的中位数.(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定? 【答案】(1) 甲中位数是22,乙中位数是23;(2)21x =甲,21x =乙,22367S =甲,24667S =乙,甲运动员的成绩更稳定.【解析】(1)将甲运动员得分的数据由大到小排列:32,24,23,22,17,15,14. 将乙运动员得分的数据由大到小排列:31,30,27,23,13,12,11.∴甲运动员得分的中位数是22,乙运动员得分的中位数是23.(2)1(15171423222432)217x ==甲++++++, 1(12131123273130)217x ==乙++++++, 22221236[(2115)(2117)(2132)]77S =⋯=甲-+-++-,22221466[(2112)(2113)(2130)]77S =⋯=乙-+-+-,∴22S S <甲乙,∴甲运动员的成绩更稳定.13.(2019·广东执信中学高二期中(理))某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:(1)写出频率分布直方图中a 的值,并做出甲种酸奶日销售量的频率分布直方图;(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为2212,s s 。

相关文档
最新文档