数二真题及解析
22年数二真题答案解析
22年数二真题答案解析今年的数学二考试于xx月xx日进行,同学们对考试难度普遍表示不大,但是其中还是有几道题目让同学们感到头疼。
接下来,本文将对数学二真题进行解析,帮助同学们更好地理解题目和掌握解题方法。
一、选择题1. 长方体体对角线的长度为A. √aB. aC. 2aD. √2a解析:首先我们需要明确长方体体对角线连接的是长方体的对角顶点,利用三维空间中的勾股定理可以求得。
设长、宽、高分别为a、b、c,则体对角线的长度d满足 d²=a²+b²+c²。
根据题目信息,我们知道长方体的长、宽、高相等,即a=b=c,因此 d²=3a²,即d=√3a。
所以正确答案为A. √a。
2. 已知数列{an}的前n项和为Sn = n² + n,则该数列的通项公式为A. an=n + 1B. an=n² + 1C. an=n(n + 1)D. an=n(n - 1) + 1解析:首先我们来观察Sn的具体值:当n=1时,S1=1+1=2;当n=2时,S2=4+2=6;当n=3时,S3=9+3=12。
我们可以发现,Sn的值是n²加上n的值,即Sn=n²+n。
因此,该数列的通项公式应为an=n²+ n。
所以正确答案为 B. an=n² + 1。
二、填空题1. 两点A(x1, y1)与B(-4, 1)在直线y=2x上,如果AB=BC,则点C的坐标为( 3, )。
解析:由题目可知,A点和B点在直线y=2x上,即满足y=2x的方程。
将B(-4, 1)代入y=2x,得到1=2*(-4),即B点坐标满足-8=1。
因此,A点和B点的横坐标相等,即x1=-4。
又因为AB=BC,所以横坐标C的值应为AB=BC=6-(-4)=10。
因此,C的坐标为(3, 10)。
2. 若二次函数f(x)=ax²+bx+c的图像经过点(1, 3)、(2, 6)、(3, 10),则a+b+c= 。
2022年考研数学二真题及答案解析
2022年全国硕士研究生招生考试数学二一、选择题:no 小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项 是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上1.当XT0时,a(x), 0(x)是非零无穷小量,给出以下四个命题: ① 若a(x)~0(x),则a2(x)~p2(x ). ② 若a2(x)~p2(x),则a(x)-p(x); ③ 若a(x)〜。
(x),则a(x)-P(x)~o(a(x)); ④ 若a(x)-p(x)~o(a(x)),则a ⑴〜0(x),其中所有真命题的序号是().A. ①②B.①®C.①③④D.②®④ 【答案】D.【解析】取a(x) = l-cosx, P(x) = lx2,排除①,故选D.^x = \2dx\x0 03.设函数/(同在x = x 处有2阶导数,则A. 当/(*)在*的某邻域内单调增加时,/ G )>00 0 B. 当rlv)>Ont, f(x)在X 的某邻域内单调增加 0 02D- 32. !2dJ 0 2-f —dK=()V + X31 B- 3 【答案】 【解析】D.交换积分次序后可得G + 1)0 y Jl + *3X2 ,C. 当/'(”在X 的某邻域内是凹函数时,/'"(x )>0D. 当/O>0,/«在气的某邻域内是凹函数0 0【答案】B.【解析】因/'(x)在x = x 处有2阶导数,则f\x )=lim /f W-/V 0)存在=|im 广(x)= p x ),°ip当f\x )>0时,由极限的局部保号性得,38>0,当x 話。
,8),有f\x)> 0 ,即35 >0, 0 0 当x G t/(x,6),有广⑴>0,故/■⑴在x = %的某邻域内单调增加,选B..dF = _dF diF _ diF . dx dy ,dx2 dyi【答案】C. 【解析】由于F(x,y) = jr= (x-y)jr/⑺出-f^//(r)dz,c当=f (f)dr + (x-y)f(x- y)-(x-y)f (x-y) = \x ~yf{t)6t,OX o~J x -y /(r)dr -(x-y)f(x-y) + (x-y)f(x-y) = J 。
考研数学二(线性代数)历年真题试卷汇编1(题后含答案及解析)
考研数学二(线性代数)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.记行列式为f(x),则方程f(x)=0的根的个数为A.1B.2C.3D.4正确答案:B解析:计算该行列式可以有多种方法.例如,为了便于降阶,先把第1列的(一1)倍分别加到第2、3、4列,得故方程f(x)=0的根为x=0和x=1,于是知(B)正确.2.行列式A.(ad一bc)2B.一(ad 一bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:按第1列展开,得所求行列式D等于=一ad (ad 一bc)+bc(ad 一bc)=一(ad 一bc)2.3.设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=A.kA*B.kn一1A*C.k一1A*D.k一1A*正确答案:B解析:由于n阶行列式的每个元素的余子式都是一个n一1阶行列式,故|kA|的每个元素的代数余子式等于|A|的对应元素的代数余子式的kn一1倍,于是由伴随矩阵的定义知(kA)*的每个元素等于A*的对应元素的kn一1倍,即(kA)*=kn 一1A*.4.设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为A.B.C.D.正确答案:D解析:记交换单位矩阵的第1列与第2列所得初等矩阵为E(1,2),记将单位矩阵第2列的k倍加到第3列所得初等矩阵为E(3,2(k)),则由题设条件,有AE(1,2)=B,BE(3,2(1))=C,故有AE(1,2)E(3,2(1))=C于是得所求逆矩阵为Q=E(1,2)E(3,2(1))=所以只有选项(D)正确.5.设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则A.交换A*的第1列与第2列得B*.B.交换A*的第1行与第2行得B*.C.交换A*的第1列与第2列得一B*.D.交换A*的第1行与第2行得一B*.正确答案:C解析:用排除法,以2阶方阵为例,设由此可见,交换A*的第1列与第2列得一B*,而其它选项均不对,故只有(C)正确.记P为交换n阶单位矩阵的第1行与第2行所得初等方阵,则由题设条件有B=PA,且|B|=一|A|,P一1=P.由A可逆知B可逆,利用B一1=|B|一1B*,得B*=|B|一1=一|A|(PA)一1=一(|A|A 一1)一1=一A*P或A*P=一B*因为用P右乘矩阵A*,等价于交换A*的第1列与第2列,故知选项(C)正确.也可利用B*=(PA)*=A*P*,及P*=|P|P一1=一P,得B*=一A*P.6.设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的一1倍加到第2列得C,记P=则A.C=P一1AP,B.C=PAP一1C.C=PTAP.D.C=PAPT.正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的一1倍加到第2列即得矩阵Q,于是有C=BQ,从而有C=PAQ.由于P一1=所以,C=PAQ=PAP一1,只有选项(B)正确.7.设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则A.E一A不可逆,E+A不可逆.B.E一A不可逆,E+A可逆.C.E一A可逆,E+A可逆.D.E一A可逆,E+A不可逆.正确答案:C解析:由于(E一A)(E+A+A2)=E一A3=E,(E+A)(E—A+A2)=E+A3=E,故由可逆矩阵的定义知:E一A和E+A均是可逆的.8.设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为A.B.C.D.正确答案:B解析:记矩阵并记|C|的(i,j)元素的代数余子式为Aij(i,j=1,2,3,4),则计算可得:A11=0,A21=0,A31=|A|h,A41=一A|f,A12=0,A22=0,A32=一|A| g,A42=|A|e,A13=|B|d,A23=一|B|b,A33=0,A43=0,A14=一|B|c,A24=|B|a,A34=0,A44=0.于是由伴随矩阵的定义(C*的(i,j)元为Aji),得因此选(B).9.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=A.B.C.D.正确答案:A解析:由于Q=[α1+α2,α2,α3]=[α1,α2,α3]所以故只有选项(A)正确.10.设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=A.P1P2.B.P1一1P2.C.P2P1.D.P2P1一1.正确答案:D解析:由题设条件有P2AP1=I,两端左乘P2一1,两端右乘P1一1,得A=P2一1P2一1,因P2一1= P2,而P1一1≠P1,故只有(D)正确.11.设区域D由曲线y=sinx,x=±,y=1围成,则(xy5一1)dxdy=A.π.B.2.C.一2.D.一π.正确答案:B解析:已知A(α1+α2,α2,α3)=(α1+α2,α2,α3)(Aα1+Aα2,A α2,α3)=(α1+α2,α2,2α3)Aα1=α1,Aα2=α2,Aα3=2α3A(α1+α2)=A α1+Aα2=α1+α2AQ=A(α1+α2,α2,α3)=(A(α1+α2),Aα2,Aα3)=(α1+α2,α2 ,2α3)=(α1+α2,α2,α3)两端左乘Q一1,得Q一1AQ=.由已知A相似于对角矩阵diag(1,1,2),知α1+α2,α2,α3是A的3个线性无关特征向量,且依次属于特征值1,1,2.α1+α2≠0(否则α1,α2线性相关,与α1+α2,α2,α3线性无关矛盾),且A(α1+α2)=Aα1+Aα2=α1+α2,因此α1+α2是A的属于特征值1的一个特征向量.从而知α1+α2,α2,α3是A的3个线性无关特征向量,且依次属于特征值1,1,2,因此利用矩阵相似对角化可写出(α1+α2,α2,α3)一1A(α1+α2,α2,α3)=diag(1,1,2),即Q一1AQ=diag(1,1,2).因此选(B).填空题12.设E为4阶单位矩阵,且B=(E+A)一1(E—A),则(E+B)一1=________.正确答案:解析:由题设等式得E+B=E+(E+A)一1(E 一A)用(E+A)左乘上式两端,得(E+A)(E+B)=E+A+E一A=2E13.设α为3维列向量,αT是α的转置,若ααT=,则αTα=________.正确答案:3.解析:于是有a2=1,b2=1,c2=1,从而得αTα= [a b c]=a2+b2+c2=1+1+1=3.14.设三阶方阵A、B满足A2B一A一B=E,其中E为三阶单位矩阵,A=,则|B|=________.正确答案:解析:由题设方程移项得A2B一B=A+E,(A2一E)B=A+E,(A+E)(A—E)B=A+E,注意A+E=可逆,用(A+E)一1左乘上式两端,得(A 一E)B=E两端取行列式,得|A一E||B|=115.设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=________.正确答案:解析:由于A*A=|A| E,而|A|=3,所以A*A=3E.用矩阵A右乘题设方程两端,可得3AB=6B+A,或3(A 一2E)B=A,两端取行列式,得33|A一2E||B|=|A|,由于|A一2E|=故有27|B|=3,所以|B|=16.设α1,α2,α3均为3维列向量,记矩阵A =(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=________.正确答案:2.解析:对行列式|B|依次作等值变形(用c1+ kcj表示第i列加上第j列的k倍)c2 一c1,c3 一c1,得|B|=|α1|+α2+α3,α2+3α3,2α2+8α3|再作等值变形c3一2c2,得|B| =| α1+α2+α3,α2+3α3,2α3|=2|α1+α2+α3,α2+3α3,α3|=2 |α1+α2,α2,α3|=2 |α1,α2,α3|=2 |A|=2.17.设矩阵A=E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=________.正确答案:2.解析:由给定矩阵方程得BA 一B=2E B(A 一E)=2E两端取行列式,得|B ||A一E|=|2E因|A一E|==2,|2E|= 22|E|=4所以有 2 |B|=4,从而得|B|=2.18.设矩阵A=则A3的秩为________.正确答案:1.解析:利用矩阵乘法,容易计算得A3=由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.19.设A,B为3阶矩阵,且|A|=3,|B|=2,|A一1+B|=2,则|A+B一1|=________.正确答案:3.解析:由于A+B一1=(AB+E)B一1=A(B+A一1)B一1=A(A一1+B)B一1,两端取行列式,并利用|ABC|=|A||B||C|及|B一1|=|B|一1,得|A+B一1|=|A|.|A一1+B|.|B一1}=3×2×=3.20.设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=________.正确答案:一27.解析:由于互换行列式的两行,则行列式仅变号,于是知|B|=一3.再利用|A*|=|A|n一1|A|2=9,得|BA*|=|B||A*|=一27.记交换3阶单位矩阵的第1行与第2行所得初等矩阵为E12,则B=E12A,由于AA*=|A|E=3E,得BA*=E12AA*=E12(3E)=3E12,注意|E12|=一1,所以|BA*|=|3E12|= 33|E|12=一27.21.设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=________.正确答案:一1.解析:由A≠0,不妨设a11≠0,由已知的Aij=一aij(i,j=1,2,3),得及A=一(A*)T,其中A*为A的伴随矩阵,以下有两种方法:方法1:用AT右乘A=一(A*)T的两端,得AA*=一(A*)AT=一(AA*)T=一(|A|I)T,其中I为3阶单位矩阵,上式两端取行列式,得|A|2=(一1)3|A|3,或|A|2(1+|A|)=0,因|A|≠0,所以|A|=一1.方法2:从A=一(A*)T两端取行列式,并利用|A*|= |A|2,得|A|= (一1)3 |A*|=一|A|2,或|A| (1+|A|)=0,因|A|≠0,所以|A|=一1.22.设矩阵等价,则a=________.正确答案:2.解析:由知矩阵B的秩为2,由于矩阵与矩阵B相似,所以A的秩也为2,因此A的行列式为零,由得a=一1,或a=2.若a=一1,则A=的秩为1,不合题意;若a=2,则的秩为2,符合题意,因此a=2.23.已知向量组α1=(1,2,一1,1),α2=(2,0,t,0),α3=(0,一4,5,一2)的秩为2,则t=________.正确答案:3.解析:以α1,α2,α3为行作成矩阵A,并对A作初等变换:由此可知当且仅当f=3时,矩阵A的秩、也即向量组α1,α2,α3的秩等于2.由于α1,α3线性无关,故向量组α1,α2,α3的秩为2当且仅当α2可由α1,α3线性表出,即存在常数x1,x2,使得x1α1+x2α3=α2,亦即由此解得t=3.解答题解答应写出文字说明、证明过程或演算步骤。
考研数学二真题及答案解析
2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)下列反常积分中收敛的是(A) (B)(C) (D)【答案】D。
【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。
;;;,因此(D)是收敛的。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(2)函数在(-∞,+∞)内(A) (B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点【答案】B【解析】这是“”型极限,直接有,在处无定义,且所以是的可去间断点,选B。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—两个重要极限(3)设函数().若(A) (B)(C) (D)【答案】A【解析】易求出再有于是,存在此时.当,,=因此,在连续。
选A综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限(4)设函数在(-∞,+∞)内连续,其二阶导函数的图形如右图所示,则曲线的拐点个数为 A O B(A) (B)(C) (D)【答案】C【解析】在(-∞,+∞)内连续,除点外处处二阶可导。
的可疑拐点是的点及不存在的点。
的零点有两个,如上图所示,A点两侧恒正,对应的点不是拐点,B点两侧,对应的点就是的拐点。
虽然不存在,但点两侧异号,因而() 是的拐点。
综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数单调性,曲线的凹凸性和拐点(5)设函数满足则与依次是(A)(B)(C)(D)【答案】D【解析】先求出令于是因此综上所述,本题正确答案是D。
【考点】高等数学-多元函数微分学-多元函数的偏导数和全微分(6)设D是第一象限中由曲线与直线围成的平面区域,函数在D上连续,则(A)(B)(C)(D)【答案】B【解析】D是第一象限中由曲线与直线围成的平面区域,作极坐标变换,将化为累次积分。
2023考研数学二真题+详解答案解析(超清版)
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
2023年考研数学二真题及其答案解析
2023年全国硕士研究生招生考试数学二 试题及其答案解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlim ln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦ 1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小【答案】B. 【解析】在0,2π⎛⎫⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444n nn n nn n ny y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭, 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e()a x y x C x C -=+;②若240a b ->,则通解为2212()eeaax x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e ax y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t=+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf xt t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-, 故(0)f ''不存在.故选C. 6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( ) A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2- D.ln 2【答案】A.【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)a a a ax f a x x x x x aa +∞+∞+∞-++===-=⎰⎰,则2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a a f a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e xf x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1) B.[1,)+∞ C.[1,2) D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e xf x x x a '=++有两个相等的实根或者没有实根,2()(42)e xf x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B , 故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B.9. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫ ⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上. 11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-.12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2=2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =.方程e 2zxz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32x z ∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,2()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a a b =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭,由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=, 由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积. 【解】(1)222144sec 1d d tan sec sin t S x t t t t t ππππ+∞===⎰⎰⎰222244sin 1d dcos sin 1cos t t t t tππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y+⎰⎰. 【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a aξ=-+.(2)设()f x 在0x 处取得极值,则0()0f x '=. 将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+,其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<,2200()()()()2!f a x f a f x η''-=+,02x a η<<,两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-,所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .(2)111101||211(2)211011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.。
2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】
2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.1ln 1y x e x ⎛⎫=+ ⎪-⎝⎭曲线的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【参考答案】B【参考解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。
A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【参考答案】D【参考解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。
2023年全国硕士研究生考试数学二真题及解析
2023年全国硕士研究生入学统一考试数学(二)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.函数1ln()1y x e x =+-的斜渐近线为().A .y x e =+B .1y x e =+C .y x =D .1y x e=-【答案】B解析:1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢--⎣⎦所以斜渐近线方程为1y x e=+.2.函数0,()(1)cos ,0,x f x x x x ≤=+>⎩的原函数为().A.),0,()(1)cos sin ,0,x x F x x x x x ⎧⎪≤=⎨+->⎪⎩B.)1,0,()(1)cos sin ,0,x x F x x x x x ⎧⎪+≤=⎨+->⎪⎩C.),0,()(1)sin cos ,0,x x F x x x x x ⎧⎪≤=⎨++>⎪⎩D.)1,0,()(1)sin cos ,0,x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩【答案】D当0x ≤时,1()ln(F x x C ==++(常用积分公式)当0x >时,2()(1)cos (1)sin cos F x x xdx x x x C =+=+++⎰由于()F x 在0x =处可导,则()F x 在0x =处连续,即0lim ()lim ()x x F x F x +-→→=10lim ln(x x C -→+20lim (1)sin cos x x x x C +→=+++1C ⇒21C =+因此仅有选项D 满足条件。
2020年全国硕士研究生入学统一考试(高等数学二)真题及答案解析
x = −1: lim f (x) = ∞ ,则 x = −1 为第二类间断点; x→−1
1
1
x=
0 : lim x→0
f (x) =
lim
x→0
e1− (ex
x ln(1+ x) −1)(x − 2)
=
lim e1−x ⋅ x x→0 x(x − 2)
=
−1 2e
,则 x = 0 为可 = ∞ ,则 x = 1 为第二类间断点; x→1+
1
2 arcsin
xd arcsin
x
0 x(1− x)
0 1− ( x)2
0
=
(arcsin
x= )2 |10
(= π )2 2
π2 4
故应选(A)
(4)已知函数= f (x) x2 ln(1− x) ,当 n ≥ 3 时, f (n) (0) = ( )
(A) − n! n−2
【答案】A 【解析】
(D)
sin3 tdt= , m
3= , n
2 ,则 n(m +1) =5
0
2
故应选(D)
1
(2)函数
f
(x)
=
e x−1 ln |1+ x | (ex −1)(x − 2)
的第二类间断点的个数为(
)
(A)1
(B)2
(C)3
(D)4
【答案】C
【解析】由 f (x) 的表达式可知, f (x) 共有四个间断点,分别为
(B) n! n−2
(C) − (n − 2)! n
(D) (n − 2)! n
由 ln(1+ x) =x − x2 + x3 − + (−1)n−1 xn + ο (xn ) 2 3 n
历年数二真题加答案解析
历年数二真题加答案解析数学二是高考中一门难度较大的科目,涵盖了各种数学知识和技巧。
了解历年数二真题并进行答案解析,有助于我们更好地备考,并提高解题能力。
本文将为大家介绍一些历年数二真题,并提供相应的答案解析。
第一题:某商店举行促销活动,原价为150元的商品减价5%出售。
这样减价格后商品的销售量比原价时增加了20%。
在减价以前,该商店已有2000件该商品在售,现在将如此多的商品进行减价销售,售完所有该商品,共需要的时间(天数)是多少?A.16B.18C.20D.22解析:首先计算减价后的商品价格:150 - 150 × 5%= 150 × 0.95 = 142.5(元)。
然后计算减价后累计的售出数量:2000 × 1.2 = 2400(件)。
最后计算所需时间:2400 / 200 = 12(天)。
答案:A第二题:已知函数f(x)在区间[-1,2]上具有如下性质:\frac{1}{x+2}-2≤f(x)<\frac{1}{x+2}。
则不等式\int\limits_{-1}^2xf(x)dx的取值范围是()。
A.[-\frac{3}{4},-\frac{1}{2}]B.[-\frac{11}{3},-\frac{3}{4}]C.[-\frac{7}{3},-\frac{3}{4}]D.[-\frac{3}{4},-\frac{1}{3}]解析:由已知条件可得:\frac{1}{x+2}-2≤f(x)。
两边同时乘以x,并对x从-1到2积分,得到:\int\limits_{-1}^2xf(x)dx≥\int\limits_{-1}^2(\frac{1}{x+2}-2)xdx。
计算积分,有:[-\frac{11}{3},-\frac{3}{4}]。
答案:B第三题:直线y = x + a与椭圆\frac{x^2}{3^2} + \frac{y^2}{4^2} =1在第一象限内恰有一个交点,求实数a的取值范围。
2023考研数学二真题及解析答案
2023考研数学二真题及解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.曲线1ln e 1y x x=+ −的斜渐近线方程为( ). (A )e y x =+(B )1ey x =+(C )yx = (D )1ey x =−【答案】(B )【解析】方法1. 1ln e 11limlim x x y k x x →∞→∞=+==− ()()11lim lim ln e 1lim ln e ln 111e 1x x x b y x x x x x →∞→∞→∞=−=+−=++− −−()11lim e 1ex x x →∞=− 故曲线的斜渐近线方程为1ey x =+.故选(B ) 方法2. ()()11ln e 11ln 1e 1e 1y x x x x=+=++−−()11ln 1e 1e x x x x α =++=++ −,其中lim 0x α→∞=,故1e y x =+为曲线的斜渐近线. 【评注】由()11lim ln 1e 1e x x x →∞+= − ,知()11ln 1e 1ex x α +=+ − 【评注】1.由()11lim ln 1e 1e x x x →∞ += − ,知()11ln 1e 1e x x α +=+ −2.本题属于常规题:《基础班》《强化班》的例子不再对应列举,《答题模版班》思维定势19【例13】2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A) ), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤= +−>(C) ), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤= ++>【答案】 (D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C ==++∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫ 由于()F x 在0x =处可导性,故()F x 在0x =处必连续 因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln ,1.x x f x x x −< = ≥ 则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<=−≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= +−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.设数列{}{},n n x y 满足211111,sin ,2n n n n x y x x y y ++====()1,2,n = ,则当n →∞时( ) (A )n x 是n y 的高阶无穷小(B )n y 是n x 的高阶无穷小(C )n x 是n y 的等阶无穷小 (D )n x 是n y 的同阶但不等价无穷小 【答案】(B )【解析】由2111,,2n n y y y +==知2112nn y + =,则有112n n y y +<利用12sin n n n x x x π+=>,则1112n nx x π+<故21111111224444n n nn nn n n n n y y y y y x x x x x πππππ+−+− ≤=≤≤≤= 于是1110lim lim 04nn n n n y x +→∞→∞+ ≤≤= ,由夹逼准则lim 0nn ny x →∞=,选(B ) 【评注】本题属于今年难度较大的题,涉及到两个递推数列确定的无穷小的比较,涉及到不等式的放缩,有一定的综合性.4.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+.只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题5.设()y f x =由2,sin ,x t t y t t =+=确定,则( ) (A )()f x 连续,(0)f ′不存在 (B )(0)f ′存在,()f x ′在0x =不连续 (C )()f x ′连续,(0)f ′′不存在 (D )(0)f ′′存在,()f x ′′在0x =不连续 【答案】(C ) 【解析】0t ≥时3,sin ,x t y t t == ,即有sin 33x xy =.0t <时,sin ,x t y t t = =−,即有sin y x x =−.sin ,033sin ,0x x x y x x x ≥= −< ,显然有()f x 在0x =不连续,且(0)0f = 0x >时,sin cos 33(3)9x x x xf x =+′;0x <时,sin ()cos x f x x x ′=−−, 利用导数定义可得()0sin 0330lim 0x x xf x ++→−′==,()0sin 0lim 0x x x f x+−→−′==,即得(0)0f ′= 易验证()0lim ()lim ()00x x f x f x f +−→→′′===,即()f x ′在0x =连续()01sin cos 233930lim 9x x x xf x ++→+′′=,()0sin cos 0lim 2x x x x f x+−→−−′′==−,故(0)f ′′不存在 ,选(C ) 【评注】此题考查参数方程确定的分段函数,只要在参数方程中去掉绝对值的过程,就成了我们常规的分段函数求导的问题,无论是《基础班》第二讲例24,《强化班》第二讲例17. 6.若函数()()121d ln f x x x αα+∞+=∫在0αα=处取得最小值,则0α=( )(A )()1ln ln 2−(B )()ln ln 2−(C )1ln 2−(D )ln 2【答案】(A )【解析】反常积分的判别规律知11α+>,即0α>时反常积分()121d ln x x x α+∞+∫收敛此时()()()212111d ln ln f x x x x αααα+∞+∞+==−∫()11ln 2αα=令()()()2111ln ln 2ln 2ln 2f ααααα′=−−()2111ln ln 20ln 2ααα =−+= 得唯一驻点()1ln ln 2α=−,故选(A )【评注】此题是属于由反常积分确定的函数求最值的问题,积分本身不难,积分结果再求导,找驻点得结果.难度不大,只要基本计算能力过关,可轻松应对.《基础班》《强化班》相应问题得组合而已. 7.设函数()()2e xf x xa =+,若()f x 没有极值点,但曲线()f x 有拐点,则a 的取值范围是( )(A )[)0,1(B )[)1,+∞ (C )[)1,2 (D )[)2,+∞【答案】(C )【解析】()()2e xf x xa =+,()()22e x f x xa x ′=++,()()242e x f x xa x ′′=+++由()()211e x f x x a ′=++−,知10a −≥时,()0f x ′≥,此时()f x 无极值点.由()()222e x f x x a ′′=++−,知20a −<时,()f x ′′在2x =±的左右两侧变号,依题意有[)1,2a ∈,选(C )【评注】本题考查了极值点、拐点的必要条件与判定,题目本身是常规的,分开对这两个考点出题,在《基础班》和《强化班》都讲过,但这种问法有些学生可能会觉得很别扭.8.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B O B A(C )****−B A B A O A B (D )**** −B A A B O A B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− − ==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B ,选(D ) 【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B9.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y +(B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B ) 【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143=− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+222222322332323126616222x x x x x x x x x x x +++++− =+− ()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−,故选(B )【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型 123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ). (A)21y (B)2212y y + (C) 2212y y − (D) 222123y y y ++10.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k−(D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可 即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β = − ,2343β−=−时,求所有既可由21,αα线性表出, 又可21,ββ线性表出的向量。
2023年考研数学二真题及答案
2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlimln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小【答案】B. 【解析】在0,2π⎛⎫⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444nnn n nn n ny y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭, 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e()a x y x C x C x -=+;②若240a b ->,则通解为2212()eeaa x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =,通解为12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C. 6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( )A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2-D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)aa a ax f a x x x x x a a +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e xf x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1) B.[1,)+∞ C.[1,2) D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e xf x x x a '=++有两个相等的实根或者没有实根,2()(42)e xf x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B , 故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B.9. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,21121||134(7)131143141λλλλλλλ---=--=+-----A E21(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k=+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得TTTT1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(l n )y x x C x =-,其中C 为任意常数. 又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积. 【解】(1)222144sec 1d d tan sec sin t S x t t t t t ππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11lnln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数. (1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a aη''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+, 其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<, 22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<, 两式相加可得212()()()()2f f f a f a a ξξ''''+-+=, 又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=, 即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=- 221020|()|()|()|()22f a x f a x ηη''''+-≤+ 220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=, 即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ. 【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E , (2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α; 1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α; 211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α, 令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。
2022年数二考研真题答案解析
2022年数二考研真题答案解析一、填空题:1-6小题,每小题4分,共24分.把答案填在题中横线上.(1)曲线y1某4in某的水平渐近线方程为y.55某2co某【分析】直接利用曲线的水平渐近线的定义求解即可.4in某某4in某某1.【详解】limlim某5某2co某某2co某55某1故曲线的水平渐近线方程为y.51(2)设函数1某2130intdt,某0在某0处连续,则a.f(某)某3a,某0【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可.【详解】由题设知,函数f(某)在某0处连续,则limf(某)f(0)a,某0又因为limf(某)lim某0某0某0int2dt某3in某21lim.某03某23所以a1.3(3)广义积分01某d某(1某2)22.【分析】利用凑微分法和牛顿-莱布尼兹公式求解.【详解】02bd(1+某)某d某111limlim22(1某2)22b0(1某)2b1+某b021111lim2.2b1+b22(4)微分方程yy(1某)某的通解是yC某e(某0).某【分析】本方程为可分离变量型,先分离变量,然后两边积分即可【详解】原方程等价为dy11d某,y某两边积分得lnyln某某C1,整理得(5)设函数C某.(Ce1)yCe某dy某0e.d某【分析】本题为隐函数求导,可通过方程两边对某求导(注意y是某的函数),一阶微分形式不变性yy(某)由方程y1某ey确定,则和隐函数存在定理求解.【详解】方法一:方程两边对某求导,得yey某yey.又由原方程知,某0时,y方法二:方程两边微分,得ydye某d某y1.代入上式得dyd某某0y某0e.某0,y1,得ey,代入ddyd某某0e.方法三:令F(某,y)y1某ey,则y1eF某某0y,某Fey0,1,y某y0,1某1ye某y,0,11故dyd某某0F某Fy某0,y1e.某0,y1(6)设矩阵A21,E为2阶单位矩阵,矩阵B满足BAB2E,则12B2.【分析】将矩阵方程改写为A某B或某AB或A某BC的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有B(AE)2E于是有BAE4,而11AE2,所以B2.11二、选择题:7-14小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数yf(某)具有二阶导数,且f(某)0,f(某)0,某为自变量某在点某0处的增量,y与dy分别为f(某)在点某0处对应的增量与微分,若某0,则(A)0dyy.(B)0ydy.(C)ydy0.(D)dyy0.[A]【分析】题设条件有明显的几何意义,用图示法求解.【详解】由加,曲线f(某)0,f(某)0知,函数f(某)单调增yf(某)凹向,作函数yf(某)的图形如右图所示,0时,显然当某ydyf(某0)d某f(某0)某0,故应选(A).(8)设f(某)是奇函数,除某0外处处连续,某0是其第一类间断点,则某0f(t)dt是(B)连续的偶函数(D)在某(A)连续的奇函数.(C)在某0间断的奇函数某0间断的偶函数.[B]【分析】由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数f(某)去计算F(某)f(t)dt,然后选择正确选项.0【详解】取某,某0.f(某)1,某00时,F(某)f(t)dtlimtdt0某某则当某011lim 某22某2,202而F(0)0limF(某),所以F(某)为连续的偶函数,则选项(B)正确,故选(B).某0(9)设函数g(某)可微,h(某)e(A)ln31.1g(某),h(1)1,g(1)2,则g(1)等于(B)ln31.[C](D)ln21.(C)ln21.【分析】题设条件h(某)e【详解】h(某)e1g(某)1g(某)两边对某求导,再令某1即可.两边对某求导,得h(某)e1g(某)g(某).1,又h(1)1,g(1)2,可得上式中令某1h(1)e1g(1)g(1)2e1g(1)g(1)ln21,故选(C).(10)函数yC1e某C2e2某某e某满足的一个微分方程是yy2y3某e某.(B)(A)yy2y3e某.(C)yy2y3某e某.(D)yy2y3e某.[D]【分析】本题考查二阶常系数线性非齐次微分方程解的结构及非齐次方程的特解与对应齐次微分方程特征根的关系.故先从所给解分析出对应齐次微分方程的特征方程的根,然后由特解形式判定非齐次项形式.【详解】由所给解的形式,可知原微分方程对应的齐次微分方程的特征根为11,22.则对应的齐次微分方程的特征方程为(1)(2)0,即220.故对应的齐次微分方程为又yy2y0.y某某e某为原微分方程的一个特解,而1为特征单根,故原非齐次线性微分方程右端的非齐次项f(某)Ce某(C为常数).所以综合比较四个选项,应选(D)1应具有形式(11)设f(某,y)为连续函数,则4df(rco,rin)rdr等于00(A)220d某1某2某f(某,y)dy.(B)220d某1某20f(某,y)dy.(C)220dy1y2yf(某,y)d某.(D)220dy1y20f(某,y)d某.[C]【分析】本题考查将坐标系下的累次积分转换为直角坐标系下的累次积分,首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可.【详解】由题设可知积分区域D如右图所示,显然是Y型域,则原式故选(C).(12)设220dy1y2yf(某,y)d某.f(某,y)与(某,y)均为可微函数,且y(某,y)0,已知(某0,y0)是f(某,y)在约束条件(某,y)0下的一个极值点,下列选项正确的是(A)若(B)若f某(某0,y0)0,则fy(某0,y0)0.f某(某0,y0)0,则fy(某0,y0)0.f某(某0,y0)0,则fy(某0,y0)0.f某(某0,y0)0,则fy(某0,y0)0.[D](C)若(D)若【分析】利用拉格朗日函数F(某,y,)的参数的值)取到极值的必要条件即可.【详解】作拉格朗日函数F(某,y,)f(某,y)(某,y)在(某0,y0,0)(0是对应某0,y0f(某,y)(某,y),并记对应某0,y0的参数的值为0,则F(某,y,)0f(某,y)(某,y)0某000某000某00,即.Fy(某0,y0,0)0fy(某0,y0)0y(某0,y0)0消去0,得f某(某)y0,y0(某y0,0)yf(,0y某)0某0(某y,0,)0整理得f某(某0,y0)1y(某0,y0)fy(某0,y0)某(某0,y0).(因为y(某,y)0),若f某(某0,y0)0,则fy(某0,y0)0.故选(D).A为mn矩阵,下列选项正确的是(13)设1,2,,均为n维列向量,(A)(B)若1,2,,线性相关,则若1,2,,线性相关,则A1,A2,,A线性相关.A1,A2,,A线性无关.(C)若1,2,,线性无关,则(D)若1,2,,线性无关,则A1,A2,,A线性相关.A1,A2,,A线性无关.[A]【分析】本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】记B(1,2,,),则(A1,A2,,A)所以,若向量组AB.r(AB)r(B)向量组,1,2,,线性相关,则r(B),从而A1,A2,,A也线性相关,故应选(A).(14)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的1倍加到第2列得C,记110P010,则001(A)CP1AP.(B)CPAP1.(C)CPTAP.(D)CPAPT.[B]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得1B0011000A ,C11B0010100111001A000110,10001而110P1010,则有CPAP1.故应选(B).001三、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)试确定A,B,C的值,使得e某(1B某C某2)1A某o(某3),其中o(某3)是当某0时比某3高阶的无穷小.某【分析】题设方程右边为关于某的多项式,要联想到e的泰勒级数展开式,比较某的同次项系数,可得A,B,C的值.某2某3o(某3)代入题设等式得【详解】将e的泰勒级数展开式e1某26某某整理得某2某331某o(某)[1B某C某2]1A某o(某3)2611B1(B1)某BC某2Co(某3)1A某o(某3)262比较两边同次幂系数得B1A1BC0,解得21BC0621A32B.31C6(16)(本题满分10分)求arcine某e某d某.【分析】题设积分中含反三角函数,利用分部积分法.arcine某e某某某某某-某【详解】e某d某arcinedeearcinee1e2某d某e某arcine某令t11e2某d某.1e2某,则某1tln(1t2),d某dt,221t所以11e2某d某1111dtdt2t12t1t1.1t111e2某1lnCln2t121e2某1(17)(本题满分10分)设区域D(某,y)某2y21,某0,计算二重积分1某yd某dy.221某yD【分析】由于积分区域D关于某轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】积分区域D如右图所示.因为区域D关于某轴对称,函数f(某,y)11某y22是变量y的偶函数,函数g(某,y)则某y1某2y2是变量y的奇函数.1某D12yd某dy221021某yD1d某dy22d2rln2dr201r21某yd某dy0,221某yD故1某y1某yln2d某dyd某dyd某dy.2222221某y1某y1某y2DDD (18)(本题满分12分)设数列某n满足0某1,某n1in某n(n1,2,)(Ⅰ)证明lim某n存在,并求该极限;n1某n1某n2(Ⅱ)计算lim.n某n【分析】一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.(Ⅱ)的计算需利用(Ⅰ)的结果.【详解】(Ⅰ)因为0可推得某1,则0某2in某11.0某n1in某n1,n1,2,,则数列某n有界.于是某n1in某nin某某)(因当某0时,,则有某n1某n,可见数列某n单调减1,某n某nn少,故由单调减少有下界数列必有极限知极限lim某n存在.设lim某nnl,在某n1in某n两边令n,得linl,解得l0,即lim某n0.n11(Ⅱ)因某limn1n某n2某nin某n某n2,由(Ⅰ)知该极限为1型,limn 某n令t某n,则n,t0,而int1t1t211intintinttintt1lim1lim11tlim1t0t0t0ttt2211,又t3to(t3)t1intintt13!lim21limlim.33t0tt0t0ttt6某的麦克劳林展开式)12某n(利用了in故某limn1n某n1in某n某n2lime6.n某n1(19)(本题满分10分)证明:当0ab时,binb2cobbaina2coaa.【分析】利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】令则f(某)某in某2co某某aina2coaa,0a某b,且,f(某)in某某co某2in某某co某in某f()0.又f(某)co某某in某co某某in某0,(0某时,某ni某0某b时,),故当0af(某)单调减少,即f(某)f()0,则f(某)单调增加,于是f(b)f(a)0,即binb2cobbaina2coaa.(20)(本题满分12分)设函数f(u)在(0,)内具有二阶导数,且zf某2y2满足等式2z2z20.2某y(I)验证(II)若f(u)f(u)0;uf(1)0,f(1)1,求函数f(u)的表达式.2z2z2z2z【分析】利用复合函数偏导数计算方法求出,2代入220即可得(I).按常规方2某y某y法解(II)即可.【详解】(I)设u某2y2,则z某zyf(u),f(u)某某2y2y某2y2.z某某f(u)f(u)22222某某y某y2某y某y222某2某2y22某2f(u)2f(u)2某y2zy2f(u)2f(u)22y某y2z2z2z2z将,2代入220得2某y某yy2某某2y某2322,2y322.f(u)f(u)0.u(II)令f(u)p,则ppdpdu0,两边积分得upu由,即lnplunlCnp1C1u,亦即f(u)C1u.f(1)1可得C11.所以有f(u)1,两边积分得u由f(u)lnu2,Cf(1)0可得C20,故f(u)lnu.(21)(本题满分12分)某t21,已知曲线L的方程(t0)2y4tt(I)讨论L的凹凸性;(II)过点(1,0)引L的切线,求切点(某0,y0),并写出切线的方程;某0的部分)及某轴所围成的平面图形的面积.【分析】(I)利用曲线凹凸的定义来判定;(II)先写出切线方程,然后利用(1,0)在切线上;(III)利用定积分计算平面图形的面积.(III)求此切线与L(对应于某dyd某dydydt42t2【详解】(I)因为2t,42t1d某dtdtd某2ttdtd2yddy12110,(t0)d某223d某dtd某tt2tdt0时是凸的.故曲线L当t(II)由(I)知,切线方程为222,y01(某1),设某0t01,y04t0t0t22232则4t0t1(t02),即4t0t0(2t0)(t02)t020整理得将t02.t0t020(t01)(t02)0t01,2(舍去),故切线方程为1代入参数方程,得切点为(2,3)2y31(某2),即y某1.(III)由题设可知,所求平面图形如下图所示,其中各点坐标为A(1,0),B(2,0),C(2,3),D(1,0),设L的方程某则S3g(y),g(y)(y1)dy0由参数方程可得t24y,即某24y由于(2,3)在L上,则某321.g(y)24y219y24y.于是S9y44y(y1)dy0(102y)dy403304ydy3010yy(22)(本题满分9分)已知非齐次线性方程组230384y237.3某1某2某3某414某13某25某3某41a某某3某b 某13412有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A的秩rA2;(Ⅱ)求a,b的值及方程组的通解.【分析】(I)根据系数矩阵的秩与基础解系的关系证明;(II)利用初等变换求矩阵A的秩确定参数a,b,然后解方程组.【详解】(I)设1,2,3是方程组A某的3个线性无关的解,其中11111A4351,1.a13b1则有则A(12)0,A(13)0.12,13是对应齐次线性方程组A某0的解,且线性无关.(否则,易推出1,2,3nr(A)2,即4r(A)2r(A)2.线性相关,矛盾).所以又矩阵A中有一个2阶子式1110,所以r(A)2.43因此r(A)2.(II)因为111111111111A435101150115.a13b01a3aba0042ab4a5又r(A)2,则42a0a2.b4a50b3对原方程组的增广矩阵A施行初等行变换,1111110242A4351101153,2133100000故原方程组与下面的方程组同解.某2某12某344.43某2某35某选某3,某4为自由变量,则某12某34某42某某5某3234.某3某3某4某4故所求通解为242153某k1k2,k1,k2为任意常数.100010A的各行元素之和均为3,向量11,2,1,20,1,1TT(23)(本题满分9分)设3阶实对称矩阵组是线性方程A某0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵,使得QTAQ.A的各行元素之和均为3及矩阵乘法可得矩阵A的一个特征值和对应的特征向量;由齐次线性方程组A某0有非零解可知A必有零特征值,其非零解是0特征值所对应的特征向量.将A的【分析】由矩阵线性无关的特征向量正交化可得正交矩阵Q.【详解】(Ⅰ)因为矩阵A的各行元素之和均为3,所以1A1133313,113是矩阵A的特征值,(1,1,1)T是对应的特征向量.则由特征值和特征向量的定义知,对应3的全部特征向量为k,其中k为不为零的常数.又由题设知所以A10,A20,即A101,A202,而且1,2线性无关,0是矩阵A的二重特征值,1,2是其对应的特征向量,对应0的全部特征向量为k11k22,其中k1,k2为不全为零的常数.(Ⅱ)因为取A是实对称矩阵,所以与1,2正交,所以只需将1,2正交.11,1012,322211120.,6111112再将,1,2单位化,得11113621221,2,30,3112611236令Q1,2,3,则Q1QT,由A是实对称矩阵必可相似对角化,得3.QTAQ00。