高压屏蔽电缆截面图

合集下载

配电柜图纸电缆标注详解

配电柜图纸电缆标注详解

电缆型号电缆型号是指电缆的各种型号。

目录1电力电缆2电力电缆型号各部分的代号及其含义3常见耐火电缆型号介绍及用途说明2电力电缆型号各部分的代号及其含义1.绝缘种类:V代表聚氯乙烯;X代表橡胶;Y代表聚乙烯;YJ代表交联聚乙烯;Z代表纸。

2.导体材料:L代表铝;T(省略)代表铜。

3.内护层:V代表聚氯乙烯护套;Y聚乙烯护套;L铝护套;Q铅护套;H橡胶护套;F氯丁橡胶护套。

4.特征:D不滴流;F分相;CY充油;P贫油干绝缘;P屏蔽;Z直流。

5.控制层:0无;2双钢带;3细钢丝;4粗钢丝。

6.外被层:0无;1纤维外被;2聚氯乙烯护套;3聚乙烯护套。

7.阻燃电缆在代号前加ZR;耐火电缆在代号前加NH。

充油电缆型号及产品表示方法充油电缆型号由产品系列代号和电缆结构各部分代号组成。

自容式充油电缆产品系列代号CY。

外护套结构从里到外用加强层、铠装层、外被层的代号组合表示。

绝缘种类、导体材料、内护层代号及各代号的排列次序以及产品的表示方法与35kV及以下电力电缆相同。

如CYZQ102 220/1×4表示铜芯、纸绝缘、铅护套、铜带径向加强、无铠装、聚氯乙烯护套、额定电压220kV、单芯、标称截面积400mm2的自容式充油电缆。

充油电缆外护层代号含义为1.加强层:1代表铜带径向加强;2代表不锈钢带径向加强;3钢带径向加强;4不锈钢带径向、窄不锈钢带纵向加强。

2.铠装层:0无铠装;2钢带铠装;4粗钢丝铠装。

3.外被层:1纤维层;2聚氯乙烯护套;3聚乙烯护套。

3常见耐火电缆型号介绍及用途说明控制电缆适用于工矿企业、能源交通部门、供交流额定电压450/750伏以下控制、保护线路等场合使用的聚氯乙烯绝缘,聚氯乙烯护套控制电缆。

目录1概述1. 1.1 使用特性2. 1.2 产品说明2前景展望1. 2.1 综述2. 2.2 发展前景3. 2.3 金融危机3维修成本1. 3.1 价格2. 3.2 故障维修4性能区别1. 4.1 性能特点2. 4.2 性能区别5安装措施1. 5.1 干扰措施2. 5.2 布线安装1概述使用特性额定电压:U0/U为450/750V。

各种规格电缆电缆外径

各种规格电缆电缆外径

煤矿用移动电缆MY电缆,1.14KV橡皮电缆1、电缆绝缘主线芯之间及主线芯与地线之间的绝缘电阻,换算到+20℃时不低于100MΩ·km。

2、主线芯屏蔽层的过渡电阻换算到20℃时不高于3kΩ。

3、产品标准:MT818.5-1999。

4、MYP型电缆有3个带绝缘屏蔽的主线芯和一个包覆半导电橡皮层的地线组成,围绕半导电橡皮层垫芯绞合成缆。

外面挤包黑色氯化聚乙烯橡皮护套或黑色氯丁橡皮护套。

5、导电线芯:采用软铜线,其性能符合 GB/T3956-1997。

6、绝缘:采用GB7594.2-1987中XJ-00A型橡皮。

7、线芯识别:采用绝缘分色识别,主线芯红、绿、白。

8、地线:采用半导电橡皮包覆。

9、绝缘屏蔽:在绝缘表面包半导电带。

10、成缆:3个主线芯1个地线围绕半导电橡皮垫芯按右向绞合成缆。

11、护套:采用GB7594.7-1987中XH-03A型橡皮。

护套橡皮的氧指数≥40。

12、成品电缆的阻燃性能满足MT386-1995的要求。

13、电缆标志:电缆表面印有型号、电压、规格及制造厂名称。

我橡塑电缆厂的野外用橡套电缆(YCW电缆,YZW电缆)是为适应野外用工矿企业调整发展的需要,生产性能优良的橡皮绝缘,橡皮护套和延燃重型橡套软电缆。

野外用橡套电缆产品结构图一、通用橡套软电缆用途本产品用于交流额定电压为450/750V及以下的家用电器、电动工具和各类移动电器设备。

二、使用特性(1) YZ型额定电压Uo/U为300/500V,YC型为450/750V。

(2)线芯的长期允许工作温度不超过65℃。

(3) W型电缆具有耐气候和一定的耐油性能,适宜于在户外或接触油污的场合使用。

(4) ZR型电缆具有阻燃性能。

本厂生产的聚氯乙烯绝缘电力电缆采用IEC标准,适用于3.6/6KV及以下输配电系统,近年来又开发了阻燃电缆、耐火电缆、低烟无卢电缆及五芯系列电力电缆。

执行标准:GB/T 12706-2002(等效采用IEC502),阻燃电缆、耐火电缆还符合IE332-3,IEC331,亦可按用户所需的技术需求生产。

变频电缆、电力屏蔽电缆和同心电缆

变频电缆、电力屏蔽电缆和同心电缆

引言•引言变频电缆、屏蔽电缆、同心电缆都具有金属屏蔽层,都作为电力传输之用,但它们的应用场合、屏蔽层的结构形式、接地要求还是存在较大差异。

不过因为这三种电缆的屏蔽方式有很大的类似性,因此市场上经常出现混乱:明明是屏蔽电缆,但标示的却是变频电缆的型号;而至于将同心电缆误为屏蔽电缆的也屡见不鲜。

这样就会给电缆供需双方带来不必要的麻烦。

在笔者工作实践中,经常会碰到电缆型号和屏蔽要求矛盾的情况,甚至于在有些电力部门的招标文件中也出现此种差错。

本文就这三种电缆的型号、结构、屏蔽层等分别作一些阐述。

变频电缆变频电缆典型型号:BPYJV变频电缆主要是与变频调速交流电机配用。

由于变频电机所具有的体积小、成本低、节能优点,以及调速范围大、恒功率、恒转速等特性,因此大量被应用到矿山、冶金、造纸、化工等等行业。

在当今倡导节能的社会大背景下,其前景将非常宽广。

如今,在电线电缆行业,变频器也得到了广泛应用,例如利用变频器控制异步电机的同步运行,通过控制收线的张力,达到生产速度保持一致。

而与此同带来的问题是,工业变频电机的功率相对较大,该变频设备启动后,连接变频电机和变频电源的变频电缆就是一个高频电磁波向外发射的载体,由此会对周围的其它设备造成干扰和破坏。

所以,变频电缆的屏蔽层就承担了既抵抗外界电磁干扰、又抑制其本身对外的高频干扰其它的这样双重角色。

那么,变频电缆又有哪些特征呢?1.首先,产品型号以“BP”作字首,电缆往往是3+3芯,即有三根主线芯和三根副线芯,例如BPYJV 3×185 mm2+3×35 mm2。

副线芯截面不是通常的1/2主线芯截面,而是将其分割成三个同样截面的小芯。

这里就是将副线芯95 mm2分割成三个同样截面的小芯,故取35 mm2,以期电缆的对称性好。

这里值得指出的是:在市场上,有人将4芯电缆,如标以BPYJV 3×185 +1×35 mm2归为变频电缆,笔者认为不妥,因为其并不是对称结构;将其划为屏蔽电缆更合适。

电力电缆结构(图)讲解

电力电缆结构(图)讲解

8.7/15kV 交联聚乙烯绝缘电力电缆参数一
绝缘标 称厚度 (mm)
单芯
YJV YJLV
近似 外径 (mm)
近似重量 (kg/km)
铜芯
铝芯
YJV32 YJLV 32
近似
外径 (mm)
近似重量 (kg/km)
铜芯 铝芯
4.5
22.3
784
28.1
1615
4.5
23.4
881
647
29.1
1741 1508
2228 2536 2990 3420 3908 4433 5017 5948 6994
43.0 45.1 48.7 52.8 56.4 60.0 63.9 67.5 74.6 80.0
3807 4326 5018 5927 6955 8104 9273 10622 13623 16087
3623 4067 4653 5162 5829 6434 7128 9131 10475
6/10kV 交联聚乙烯绝缘电力电缆参数一
标称 截面 (mm2)
25 35 50 70 95 120 150 185 240 300 400 500
绝缘标 称厚度 (mm)
3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
单芯
YJV YJLV
近似外 径 (mm)
4.5
24.7
1042
726
30.4
1941 1625
4.5
26.4
1267
833
33.1
2494 2061
4.5
28.0
1552
956
34.7

ABB 变频器用中压电力电缆样本

ABB 变频器用中压电力电缆样本
ABB 变频驱动系统用中压电力电缆
用途
本产品适用于额定电压6/10KV ABB 公司变频驱动系统的中压
电力传输。
型号名称
表 1 产品型号与命名
产品型号


BPYJ(L)VP12
铜(铝)芯交联聚乙烯绝缘聚氯乙烯护套铜丝缠绕铜带绕 包屏蔽大功率变频驱动系统用电力电缆
ZR-BPYJ(L)VP12
铜(铝)芯交联聚乙烯绝缘聚氯乙烯护套铜丝缠绕铜带绕 包屏蔽大功率变频驱动系统用阻燃电力电缆
铜(铝)芯交联聚乙烯绝缘无卤低烟阻燃聚烯烃护套铜丝
WDZ-BPYJ(L)VP12
缠绕铜带绕包屏蔽大功率变频驱动系统用无卤低烟阻燃
电力电缆
注:阻燃型电缆分 A、B、C 和 D 四类
产品规格
表 2 产品规格
产品型号
BPYJ(L)VP12 ZR-BPYJ(L)VP12
电压等级
芯数
kV 相线+金属屏蔽层截面积+总
95 120 150 185 240 300
表 4 标称截面与使用最大长度
最大长度 m
250 244 238 229 224 217
25
16
185
35
25
240
50
25
300
50
3产品代号用型号、规格表示: 示例:铜芯交联聚乙烯绝缘聚氯乙烯护套铜丝缠绕铜带绕包屏蔽大功 率变频驱动系统用B类阻燃电力电缆、额定电压 6/10kV、3+3+SH芯, 单根相线标称截面为 185mm2,单相金属屏蔽层标称截面为 35mm2,总屏 蔽层标称截面为 25mm2,表示为:ZB- BPYJVP12-6/10kV 3×185+3× 35+1×25

关于高压接地电缆截面的选择与计算

关于高压接地电缆截面的选择与计算
注释:1表示总费用,2表示初始费用,3表示电能损耗费用
二、高压接地电缆截面的选择计算
按经济电流选择高压接地电缆截面的经济选型方法,实际上遵循的是总费用最小法则。总费用公式如公式1所示。
CT=CI+CJ公式1
注释:CT表示总费用,CI表示初始费用(附件费用、主材等费用),CJ表示电能损耗费用。
在总费用计算中,电能损耗费用的计算公式如公式2所示。
关键词:高压接地电缆;接地电缆截面;选择方法;经济选型;技术优势
近年来,我国社会经济迅猛发展,工业化、城市化、城镇化进程日益加快,用电需求越来越大,急需进一步调整和改造当前电网的输电系统,提高输电线路的供电能力及安全性,满足社会经济发展和人们日常生活的用电需求。在这样情况下,高压电缆以其供电可靠、输电走廊占地小、节省地面空间、运行维护费用低、美化城市及对人身安全危害小等显著的技术优势,广泛应用于高压输电系统之中。为了保证高压输电线路运行安全,必须采用科学方法进行电缆截面选择计算,并以其结果为依据,作出高压接地电缆截面选择决策,以提高高压接地电缆截面选择的科学性。
S=Imax/K公式3
三、结语
综上所述,按经济电流选择高压接地电缆截面的经济选型方法是可行的。在采用此种方法进行高压接地电缆截面选择的实践应用中,要尤为注重电能损耗费用计算和最大负载电流确定问题,它们是决定高压接地电缆截面选择决策科学与否、经济效益高低的关键因素。
参考文献:
[1]夏炜.选择导线和电力电缆截面的可靠性计算[J].电子世界,2014(14).
第三,考虑连接电路回路情况下的电压降问题,要求不得超过电路回路允许的数值;
第四,考虑长距离输电情况下的项目经济性问题,要求优先选择经济截面,避免资金浪费。
在满足以上条件的前提下,采用适宜的方法进行高压接地电缆截面的选择计算。目前,我国高压接地电缆截面的选择方法主要分为两大类:一是按技术体选择,包括按允许发热条件选择、按允许电压巡视校验等方法;二是按经济电流选择高压接地电缆截面的经济选型方法。考虑到以上四项条件,这里提倡采用按经济电流选择高压接地电缆截面的经济选型方法,不仅满足供电需求,也便于减少资金支出。

电缆参数表

电缆参数表

江苏中煤电缆集团有限公司额定电压1.9/3.3kV及以下采煤机金属屏蔽软电缆产品使用说明书●电缆结构图及部件名称MCPT-0.66/1.14;MCPT-1.9/3.3 MCPTJ-0.66/1.14;MCPTJ-1.9/3.31—动力线芯导体;2—动力线芯绝缘;3—金属/纤维编织屏蔽;4—地线芯导体;5—监视线芯导体;6—控制线芯导体;7—监视线芯绝缘;8—控制线芯绝缘;9—控制线芯包覆层;10—护套●电缆的型号、规格●技术参数MCPT-0.66/1.14MCPTJ-0.66/1.14MCPT-1.9/3.3MCPTJ-1.9/3.3煤矿用移动轻型软电缆产品使用说明书●电缆结构图及部件名称11—导体;2—绝缘;3—填芯;4—护套●电缆的型号、规格●技术参数MYQ-0.3/0.5额定电压0.66/1.14kV及以下移动橡套软电缆产品使用说明书●电缆结构图及部件名称MYP—0.38/0.66 MYP—0.66/1.14 MY—0.38/0.66 1—动力线芯导体;2—填充;3—绝缘;4—绝缘屏蔽;5—地线芯导体;6—护套●电缆的型号、规格●技术参数MY、MYP-0.38/0.66MYP-0.66/1.14额定电压1.9/3.3kV及以下采煤机用软电缆产品使用说明书●电缆结构图及部件名称●电缆的型号、规格型号芯数标称截面(mm²)MC—0.38/0.66 3+1 16~185MCP—0.38/0.66 3+1 16~185MCP—0.66/1.14 3+1 35~185MCP—0.66/1.14 3+3/3 50~185MCP—1.9/3.3 3+1 35~185MCP—1.9/3.3 3+3/3 35~185●技术参数MC、MCP-0.38/0.66芯数×导体标称截面(mm2) 标称厚度(mm) 动力线芯地线芯动力线芯绝缘护套3×16 1×4 1.6 4.53×25 1×6 1.8 5.53×35 1×6 1.8 5.53×50 1×10 2.0 5.53×70 1×16 2.0 6.0MCP-0.66/1.14MCP-1.9/3.3额定电压8.7/10kV及以下煤矿用移动金属屏蔽橡套软电缆产品使用说明书●电缆结构图及部件名称●电缆的型号、规格●技术参数续表煤矿用聚氯乙烯绝缘电力电缆产品使用说明书●电缆的型号、规格●技术参数●电缆结构图及部件名称煤矿用三芯聚氯乙烯绝缘聚氯乙烯护套电力电缆煤矿用四芯聚氯乙烯绝缘聚氯乙烯护套电力电缆煤矿用3+1芯聚氯乙烯绝缘聚氯乙烯护套电力电缆煤矿用四芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆煤矿用3+1芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆煤矿用交联聚乙烯绝缘电力电缆产品使用说明书●电缆的型号、规格型号芯数额定电压(kV)0.6/1 1.8/3 3.6/6、6/6 6/10、8.7/10标称截面(mm²)MYJV MYJV22 MYJV32 MYJV4233331.5~3004~3004~3004~30010~30010~30010~30010~30025~30025~30025~30025~30025~30025~30025~30025~300●技术参数导体标称截面mm2额定电压(kV)0.6/1 1.8/3 3.6/6 6/6、6/10 8.7/10绝缘标称厚度mm1.5 0.7 ————2.5 0.7 ————4 0.7 ————6 0.7 ————10 0.7 2.0 2.5 ——16 0.7 2.0 2.53.4 —25 0.9 2.0 2.5 3.44.5 35 0.9 2.0 2.5 3.4 4.5 50 1.0 2.0 2.5 3.4 4.5 70 1.1 2.0 2.5 3.4 4.595 1.1 2.0 2.5 3.4 4.5120 1.2 2.0 2.5 3.4 4.5 150 1.4 2.0 2.5 3.4 4.5 185 1.6 2.0 2.5 3.4 4.5 240 1.7 2.0 2.6 3.4 4.5 300 1.8 2.0 2.8 3.4 4.5●电缆结构图及部件名称见下图。

高压电缆热机械效应分析与弧幅滑移量计算研究

高压电缆热机械效应分析与弧幅滑移量计算研究

第27卷㊀第12期2023年12月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.12Dec.2023㊀㊀㊀㊀㊀㊀高压电缆热机械效应分析与弧幅滑移量计算研究倪一铭,㊀马宏忠,㊀段大卫,㊀薛健侗,㊀王健,㊀迮恒鹏,㊀万可力(河海大学能源与电气学院,江苏南京211100)摘㊀要:针对现有方法无法准确计算热机械效应下高压电缆应变和弧幅滑移量,首先分析热机械效应机理,提出高压电缆应变计算方法和基于悬链线方程的弧幅滑移量计算方法㊂其次以高压单芯交流XLPE 电缆为研究对象,通过有限元仿真分析热机械效应下高压电缆的温度场㊁应力和应变㊁弧幅滑移量㊂最后进行现场应变试验与弧幅滑移量测量试验㊂应变试验结果表明:应变片测量结果分别为1.84㊁1.19㊁1.12㊁2.16mm ,高压电缆最大应变理论计算值达到2.33mm ,根据测量和计算可判断高压电缆最大应变位置㊂弧幅滑移量测量试验结果表明:弧幅滑移量计算结果符合试验测量值和有限元仿真值,比现行标准计算值的相对误差减小了18.65%㊂上述试验结果验证了应变计算方法㊁弧幅滑移量计算方法符合高压电缆实际工况且便捷准确,为高压电缆蛇形敷设参数提供了有效的工程计算方法㊂关键词:高压电缆;热机械效应;应变;弧幅滑移量;有限元;悬链线方程DOI :10.15938/j.emc.2023.12.007中图分类号:TM247文献标志码:A文章编号:1007-449X(2023)12-0062-12㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-10-18基金项目:国家自然科学基金(51577050);国家电网有限公司科技项目(J2022009)作者简介:倪一铭(1998 ),男,硕士研究生,研究方向为高压电缆故障分析与诊断;马宏忠(1962 ),男,博士,教授,博士生导师,研究方向为电力设备状态监测㊁故障诊断与健康预警;段大卫(1987 ),男,博士研究生,研究方向为电力设备故障诊断与治理㊂通信作者:倪一铭Analysis of thermo-mechanical effect of high-voltage cables andcalculation of arc slipNI Yiming,㊀MA Hongzhong,㊀DUAN Dawei,㊀XUE Jiantong,㊀WANG Jian,㊀ZE Hengpeng,㊀WAN Keli(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)Abstract :In view of the inability of existing methods to accurately calculate the strain and arc slip of high-voltage cables under the thermo-mechanical effect,firstly,the mechanism of the thermo-mechanical effect was analyzed,and the method of calculating the strain for high-voltage cables and the method of calculating the arc slip based on the catenary equation were proposed.Secondly,a high-voltage single-core AC XLPE cable was used as the research object.The temperature field,stress,strain,and arc slip under thermo-mechanical effect were analyzed by finite element simulation.Finally,a field strain test and an arc slip measurement test were carried out on the high-voltage cable.The strain test results show that the strain gauges are measured 1.84,1.19,1.12and 2.16mm respectively,and the maximum strain of the high-voltage cable is calculated to be 2.33mm.The location of the maximum strain in the high-volt-age cables can be determined from measurements and calculations.The results of the arc slip measure-ment tests show that the calculated arc slip is in accordance with the test measurements and finite elementsimulation results,and the relative error is reduced by 18.65%compared to the current standard calcula-tion results.The above test results verify that the strain calculation method and the arc slip calculation method are in line with the actual working conditions of high-voltage cables and are convenient and accu-rate,providing an effective engineering calculation method for the snake laying of high-voltage cables. Keywords:high-voltage cables;thermo-mechanical effect;strain;arc slip;finite element;catenary e-quation0㊀引㊀言随着 双碳 政策的实施,高压电缆的建设快速发展,在城市输电设备中占据了重要地位㊂为了减少热机械应力的影响,大多数高压电缆采用蛇形敷设的方式[1],该方式在一定程度上可以减少热机械应力的影响㊂但由于弧幅滑移量参数选择不当或弧幅打弯半径缺少有效的标准等原因,蛇形敷设下的高压电缆表现出显著的热机械效应问题[2],例如绝缘层击穿㊁绝缘材料老化变质㊁接头破损等故障[3-4]㊂统计数据表明,2016~2021年,由于热机械效应导致的高压电缆故障约占总故障数量的60%㊂事后故障分析表明:高压电缆的热机械应力具有作用区域广㊁隐蔽性强㊁故障后果严重等特点[5-9]㊂针对高压电缆的热机械效应,目前的研究集中在电缆材料的电气特性㊁物理场仿真等方面㊂文献[10]与文献[11]等研究了电缆在应力作用下绝缘层的性能,得出了绝缘性能与温度场㊁电场数值呈负相关的结论;文献[12]等通过高压XLPE电缆的热老化实验,研究了不同时间下的热机械振动产生的应力对绝缘层的损伤情况,得出了热机械振动会加速XLPE绝缘层老化的结论;文献[13]和文献[14]等通过建立电-热耦合模型,对故障电缆接头处的电场㊁温度场㊁应力场进行研究,分析了电缆接头处的物理场与接头结构损伤机理㊂综上,现阶段的研究集中于电缆热机械应力的宏观分析㊁绝缘层局部微观结构损伤㊁电缆及其接头物理场仿真等方面,在热机械效应下高压电缆应变的具体情况研究和能够用于实际工程敷设的参数计算方法等方面仍处于空白阶段㊂本文首先分析高压电缆热机械效应与热机械应力机理,提出高压电缆应变计算方法和基于悬链线方程的弧幅滑移量计算方法;同时针对电压应变片的参数转化计算,提出一种基于直流电桥的电压应变片应变计算方法;其次采用有限元软件对高压单芯交流XLPE电缆进行建模,对热机械效应下温度场㊁应力和应变㊁弧幅滑移量进行仿真分析;再次通过高压电缆应变试验对其径向应变进行研究,验证应变计算方法的有效性,且热机械应力会使内部结构发生严重相互挤压;最后通过弧幅滑移量测量试验验证弧幅滑移量计算的结果,以试验测量值为基准,将新方法计算结果与有限元仿真结果㊁‘城市电力电缆线路设计技术规定“(下文简称‘规定“)计算结果进行对比分析,证明弧幅滑移量计算方法的准确性,为高压电缆敷设工程应用提供理论与数据支撑㊂1㊀高压电缆热机械应力计算常见的高压单芯交流XLPE电缆由内到外依次为导体㊁导体屏蔽㊁绝缘层㊁绝缘屏蔽㊁缓冲层㊁金属护层㊁电缆沥青和外护层组成[15],具体的截面示意图如图1所示㊂图1㊀高压电缆截面图Fig.1㊀High-voltage cable cross section运行中的高压电缆由于内部材料性质不同,在负荷电流和环境温度的影响下,电缆会热胀冷缩产生热机械应力,使内部材料发生应变,称为热机械效应㊂考虑到高压电缆中导体㊁金属护层的密度㊁硬度远大于绝缘层等非金属材料,绝缘层等非金属部分材质产生的热机械应力可忽略不计[16],故重点研究导体㊁金属护层在负荷电流和环境温度影响下产生36第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究的热机械应力㊂1.1㊀导体的热机械应力计算负荷电流变化产生的导体热机械应力为σC1=αCΔθC1E C A C㊂(1)式中:αC为导体的线膨胀系数,ħ-1;ΔθC1为高压电缆正常运行时,导体的实际最高温度相对于当时环境温度的温升,ħ;E C为导体的等值弹性模量, N/m2;A C为导体的横截面积,m2㊂环境温度变化产生的导体热机械应力为σC2=αCΔθC2E C A C㊂(2)式中:ΔθC2为高压电缆正常运行时,导体额定最高温度相对于当时环境温度的温升,ħ;其余符号意义与式(1)中相同㊂1.2㊀金属护层的热机械应力计算负荷电流变化产生的金属护层热机械应力为σM1=αMΔθM1E M A M㊂(3)式中:σM为金属护层的线膨胀系数,ħ-1;ΔθM1为高压电缆正常运行时,金属护层的实际最高温度相对于当时环境温度的温升,ħ;E M为金属护层的等值弹性模量,N/m2;A M为金属护层的横截面积,m2㊂环境温度变化产生的金属护层热机械应力为σM2=αMΔθM2E M A M㊂(4)式中:ΔθM2为高压电缆正常运行时,金属护层额定最高温度相对于当时环境温度的温升,ħ;其余符号意义与式(3)中相同㊂因此,高压电缆的热机械应力为σ=ð2i=1σCi+ð2i=1σMi㊂(5) 2㊀高压电缆应变计算测量应变是将应变片直接与被测物体接触,根据应变片的电阻-应变效应以及相关计算公式推出物体的应变值㊂但现有公式在计算应变片面积变化时采用的是经验值估算[17],存在较大的估计误差㊂针对现有方法的不足和高压电缆热机械效应中产生的应变,结合式(5)热机械应力的计算方法,提出一种基于直流电桥的电压应变片应变计算方法㊂2.1㊀基于广义胡克定律的高压电缆应变计算高压电缆内部各层结构可视为连续均匀的固体,且满足各向同性的假设条件[18]㊂根据广义胡克定律[19],各向同性材料的应变分量与应力分量之间满足方程:εx=1E[σx-μ(σy+σz)];εy=1E[σy-μ(σx+σz)];εz=1E[σz-μ(σx+σy)]㊂üþýïïïïïï(6)γxy=τxy G;γyz=τyz G;γxz=τxz G㊂üþýïïïïïïï(7)G=E2(1+μ)㊂(8)式(6)~式(8)中:εx,εy,εz为线应变分量;E为等值弹性模量,N/m2;μ为泊松比;σx,σy,σz为正应力分量;τxy,τyz,τxz为切应力分量;γxy,γyz,γxz为切应变分量;G为切变模量,N/m2㊂高压电缆产生的热机械应力在同一平面内,切应力分量为零[20],即τxy=τyz=τxz=0,故切应变分量为零㊂高压电缆由于温度升高产生应变,但高压电缆需满足安全运行要求,故应变不能无休止发生㊂考虑到高压电缆内部各结构间相互紧密约束,此时的应变量为εmax=1E[σ-μ(σC2+σM2)]+αΔθ㊂(9)式中:α为外护层的线膨胀系数,ħ-1;Δθ为高压电缆正常运行时,外护层的最高温度相对于当时环境温度的温升,ħ㊂2.2㊀基于直流电桥的电压应变片应变计算直流电桥测量应变电路图如图2所示㊂当电压应变片发生如图3所示应变时,其电阻值会发生改变,此时该电桥的电压差值为ΔU1=ΔRR c U(R+ΔR+R a)(R b+R c)㊂(10)式中:ΔU1为电压差值,V;R为应变片电阻,Ω;ΔR 为应变片电阻的变化值,Ω;R a㊁R b㊁R c为外接电阻,Ω;U为外接电源,V㊂应变片电阻的计算公式为R=ρL S㊂(11)式中:ρ为电阻率,Ω㊃mm;L为应变片长度,mm;S 为应变片的面积,mm2㊂式(11)两边同时取对数并微分:d RR=dρρ+d LL-d SS㊂(12)46电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀式中d L /L 为应变片长度的相对变化,可用应变ε表示,即ε=d L /L㊂图2㊀直流电桥测量应变电路图Fig.2㊀Schematic of strain measurement based onDCbridge图3㊀应变片发生应变示意图Fig.3㊀Diagram of strain generation in strain gaugesd S /S 为应变片截面积的相对变化,即d S S =μDMS A d LAL=μDMS ε㊂(13)式中μDMS 为应变片的泊松比㊂应变片的电阻率在测量过程中基本保持不变,即d ρ/ρ=0㊂根据式(12)㊁式(13)可得,应变片的应变ε与电阻变化值ΔR 近似满足:ΔR ʈd R =(1-μDMS )εR ㊂(14)根据式(10)可求得ΔR ,代入式(15)中即可求得应变:ε=ΔR(1-μDMS )R㊂(15)3㊀高压电缆弧幅滑移量计算蛇形敷设下的高压电缆在选择敷设参数时须考虑蛇形弧幅的滑移量,‘规定“中提供了电缆的蛇形弧幅滑移量n 的计算公式[21]:n =B 2+1.6lm -B ㊂(16)式中:B 为蛇形弧幅,mm;l 为蛇形弧幅的水平长度,mm;m 为电缆的热伸缩量,mm㊂式(16)计算时需要已知电缆热伸缩量m ,现有的测量仪器无法精确测出m 的数值,且热伸缩量m 涉及到摩擦系数,该系数是通过经验值进行估计,导致滑移量n 的计算误差较大㊂针对现有计算方法的不足,提出基于悬链线方程的高压电缆弧幅滑移量的新计算方法㊂3.1㊀悬链线方程悬链线是一种常见的曲线,其物理意义为同一平面内,固定在水平两点间且受重力作用自然下垂的链条的形状[22],例如悬索桥等㊂以悬链线弧幅最低点为原点,建立如图4所示的平面直角坐标系,故可将悬链线方程设为y =f (x ),固定悬链线的两点分别为点A 和点B ;设点D (x ,y )为悬链线上任意一点,该点的切线方向与水平方向的夹角设为ϕ㊂图4㊀悬链线Fig.4㊀Catenary对点D 进行受力分析可知,点D 受到沿其切线方向的拉力F ,铅锤方向上的重力G 以及水平向左的拉力T ,如图5所示㊂图5㊀受力分析Fig.5㊀Analysis of forces由受力分析可知:tan ϕ=G T㊂(17)重力G 和拉力T 可表示为:G =kSL x ;T =ψ0S ㊂}(18)k =9.8ˑM 0Sˑ10-3㊂(19)式中:k 为链的自重比载,N /m㊃mm 2;S 为链的截面积,mm 2;L x 为点O 与点D 间的弧长,m;ψ0为链中的压强,MPa;M 0为每公里链的质量,kg /km㊂任意点D 的斜率可由tan ϕ表示,结合式(16)得tan ϕ=k ψ0L x =d y d x㊂(20)式(20)两边取微分可得d(tan ϕ)=k ψ0d(L x )=k ψ0(d x )2+(d y )2=k ψ01+tan 2ϕd x ㊂(21)56第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究式(21)两边整理并积分可得ʏd(tan ϕ)1+tan 2ϕ=ʏkψ0d x ㊂(22)由双曲函数积分公式并结合式(22)化简,代入初始条件x =0,y =0时,tan ϕ=0可得悬链线方程为y =f (x )=ψ0k cosh k ψ0x ()-1[]㊂(23)3.2㊀基于悬链线方程的高压电缆弧幅滑移量计算蛇形敷设下的高压电缆两端受到夹具的固定,弧幅自然下垂,故可近似等效为一条悬链线,如图6所示㊂在热机械应力的作用下,蛇形弧幅会向下发生一定量的滑移㊂由于蛇形敷设下的高压电缆可看作是水平对称的,高压电缆的蛇形弧幅滑移即为图中的点O 处产生的滑移量n ㊂图6㊀蛇形敷设的高压电缆Fig.6㊀Snake laying high-voltage cable计算高压电缆的滑移量时,悬链线方程中的压强ψ0(MPa)可用式(24)的热机械应力σ(N)计算得到:ψ0=σS㊂(24)为计算点O 处的滑移量,将式(24)代入式(23)并展开为x =0的麦克劳林级数:y =f (x )=kS 2σx 2+k 3S 324σ3x 4+k 5S 5720σ5x 6+ +k 2n -1S 2n -1(2n )!σ2n -1x 2n+ο(x 2n +1)㊂(25)考虑到实际蛇形敷设下的高压电缆夹具处电缆存在一定的弯曲半径且其水平长度远大于弧幅(d /l ɤ0.1),可略去式(25)中的高次项式[23],其精度可以满足敷设工程的需要,即n (x )=kS 2σx 2+k 3S 324σ3x 4㊂(26)将x =l /2代入上式,可得高压电缆蛇形弧幅滑移量n =kSl 28σ1+k 2S 2l 248σ2()㊂(27)式中l 为高压电缆的水平长度,单位m㊂4㊀高压电缆有限元仿真分析4.1㊀高压电缆有限元建模仿真高压电缆中的导体屏蔽㊁绝缘屏蔽以及电缆沥青厚度相对较小且材质与相邻层近似,考虑到建模中有限元网格划分,故将导体屏蔽㊁绝缘屏蔽与绝缘层合并,电缆沥青与外护层合并[24],故内部具体结构由内到外依次为:导体㊁绝缘层㊁缓冲层㊁金属护层㊁外护层,各结构具体参数如表1所示㊂在COM-SOL Multiphysics 中建立上述高压电缆的实物模型,相邻夹具之间的水平距离约为4m,高压电缆弧幅约为0.20m;在建模时高压电缆两端向外侧延伸1cm 并设置为固定约束,模拟高压电缆两端的夹具固定,如图7所示㊂表1㊀电缆结构参数Table 1㊀Cable construction parameters结构外半径/mm 厚度/mm ㊀导体㊀㊀19.5㊀绝缘㊀㊀37.217.7㊀缓冲层㊀41.1 3.9㊀金属护层42.9 1.8㊀外护层㊀46.13.2图7㊀有限元模型Fig.7㊀Finite element modelling为了研究高压电缆的热机械效应与弧幅滑移量,模拟高压电缆在负荷电流下运行,但须确保导体的最高温度不超过90ħ[25]㊂高压电缆产生的热量主要通过热传导方式传递到外护层表面[26],电缆外护层与外界换热主要通过热对流方式实现[27]㊂因此,在模型中设定边界条件:外护层与空气接触面传热系数10W /(m 2㊃K),外部温度与高压电缆初始温度均设置为293.15K㊂66电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀4.2㊀温度场仿真模拟高压电缆实际运行后,高压电缆温度截面图和曲线图分别如图8㊁图9所示,其最高温度达到了68.1ħ㊂由于导体㊁金属护层是高压电缆中的热源,金属材料具有良好的导热性,电缆温度在导体㊁金属护层区域无明显变化㊂高压电缆的整体温度随运行时间递增,绝缘层等非金属部分温度由内向外递减,近似呈线性减少趋势㊂图8㊀高压电缆温度截面图Fig.8㊀High-voltage cable temperature crosssection图9㊀不同运行时间下高压电缆温度图Fig.9㊀Temperature diagram for high-voltage cables atdifferent operating times4.3㊀应力与应变仿真高压电缆中导体㊁金属护层产生的热机械应力远大于绝缘层等非金属部分产生的热机械应力如图10~图12所示㊂夹具处的热机械应力的最大值存在于金属护层与缓冲层的接触面,仿真中该接触面的压强已接近于金属护层材质铝的屈服强度最大值,金属护层可能会发生损坏㊂图10㊀金属护层应力分布图Fig.10㊀Metal sheathing stress distributiondiagram图11㊀导体应力分布图Fig.11㊀Conductor stress distributiondiagram图12㊀非金属部分应力分布图Fig.12㊀Stress distribution diagrams for non-metallicparts高压电缆在热机械应力下会产生应变,选取高压电缆的应变截面图如图13所示㊂绝缘层㊁外护层会发生较为明显的热膨胀,其中绝缘层受热膨胀约1.4%,外护层受热膨胀约0.6%㊂导体产生的热量和热机械应力直接施加在导体与绝缘层的接触面上,在两者的共同作用下,该接触面的应变值最大㊂在这种情况下运行,绝缘层将加速老化,长时间后其内部结构将造成不可逆的热疲劳拉伸,存在安全隐患㊂76第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究图13㊀应变截面图Fig.13㊀Strain section diagram4.4㊀弧幅滑移仿真高压电缆在夹具固定作用下,自身达到一种受力平衡的状态㊂但热机械应力打破了该平衡状态,高压电缆在热机械应力下产生滑移,滑移较大的部分集中于蛇形弧幅,夹具处的电缆几乎不发生滑移,如图14所示㊂图14㊀电缆滑移分布图Fig.14㊀Cable slip distribution map不同运行时间下电缆全长的滑移分布曲线如图15所示,所有时间下的滑移分布曲线均关于x =0对称且最大值出现在该处,故可判断最大滑移发生在蛇形弧幅的最低点㊂图15㊀不同运行时间下电缆全长滑移分布图Fig.15㊀Slip distribution of the full length of the cableat different operating times5㊀试验验证与分析国内某市高压单芯交流XLPE 电缆实际敷设现场如图16所示㊂高压电缆敷设于专用的电缆隧道中,夹具之间水平距离为4.04m,高压电缆处于自然下垂状态,初始弧幅最大处约为0.18m㊂该隧道中的电缆规格为1200mm 2的单芯电缆,具体结构参数同表1㊂为分析高压电缆热机械效应下电缆产生的应变与弧幅滑移量,在高压电缆敷设现场进行应变试验与弧幅滑移量测量试验㊂图16㊀高压电缆敷设现场Fig.16㊀High-voltage cables laying site5.1㊀应变试验与分析高压电缆的应变在负荷电流较小时不易测量,为了确保试验分析的准确性,本次试验选择在日负荷电流较大的时段研究应变情况㊂当地的供电公司后台长期监测0~24时运行负荷电流的数值,日负荷电流较大时段约为10~14时,平均值约为550A,故选取该时段进行应变试验㊂在不改变高压电缆任何敷设参数的情况下,选取高压电缆蛇形弧幅段外表面上的某个位置进行应变测量㊂如图17所示,在该位置上布置四个应变片,该应变片可将应变量转化为电压值输出;应变量与始末输出电压差值成正比,可通过式(15)计算出应变值,并可判断高压电缆内部结构的应变状况,试验示意图如图18所示,试验现场如图19所示㊂图17㊀应变片布置示意图Fig.17㊀Strain gauge arrangement diagram试验开始测量时间选择为9时55分,结束测量时间为14时05分,当天0~24时的负荷电流如图20所示,试验测量时段的平均电流为551.69A㊂不同位置上的应变片都要达到电压平衡的状态,所86电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀以应变信号接收仪中的调零电位器自动设置的初始输出电压值不同㊂测量结束后导出接收仪中记录的输出电压值,经小波降噪后得到输出电压波形如图21所示㊂图18㊀试验示意图Fig.18㊀Schematic diagram of theexperiment图19㊀试验现场图Fig.19㊀Experimental siteplan图20㊀当天0~24时的负荷电流Fig.20㊀Load current from 0to 24hours of the day与图13仿真得到的应变图对比,在理想化的运行条件下,高压电缆运行会发生热膨胀,其内部各层均产生了应变㊂但试验过程中存在负荷波动㊁温度变化等因素,根据应变测量结果可以看出:高压电缆沿径向发生了不同程度的热膨胀,导致了内部各层发生了不同的应变㊂图21㊀应变片输出电压Fig.21㊀Output voltage of strain gauges通过试验分析和数据计算,各应变片的应变的数据如表2㊁3所示㊂根据式(15)计算得到应变片1~4的应变量为1.84㊁1.19㊁1.12㊁2.16mm,试验中应变片4的位置发生了较大的应变㊂表2㊀应变片数据Table 2㊀Strain gauge data单位:V应变片初始时刻电压结束时刻电压电压差值10.6780.7930.11520.6070.6880.08130.6080.6870.07940.4140.5610.147表3㊀测量与计算数据Table 3㊀Measurement and calculation data单位:mm数据来源测量数据最大应变应变片1 1.84 应变片2 1.19 应变片3 1.12 应变片42.16 基于广义胡克定律的应变计算2.33式(9)基于广义胡克定律的高压电缆应变计算结果为2.33mm,结合应变片1和4产生的应变量相近,且两者明显大于应变片2和3的结果,可以推出由于高压电缆内部材料属性不同,导体㊁金属护层在热机械应力作用下在径向平面向左下方发生了相对偏移,即应变片1和4的中间位置,该位置存在应变量最大值,如图22所示㊂高压电缆是一个密封的整体,导体㊁金属护层产生的热机械应力直接作用于绝缘层㊁缓冲层㊁外护层96第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究产生应变,然后被外护层上布置的应变片测量得到㊂该试验结果表明:在热机械效应中,热机械应力会使高压电缆发生不均匀的应变,电缆内部的金属部分会严重向下挤压非金属部分㊂热机械应力长时间作用于绝缘层上,会造成绝缘的热拉伸㊁热老化等现象[4],导致分子键的断裂㊁绝缘击穿电压降低[12],可能造成高压电缆的运行事故㊂图22㊀内部结构偏移图Fig.22㊀Internal structure offset diagram5.2㊀弧幅滑移量测量试验与分析本试验采用2个激光测距传感器,测量高压电缆产生的滑移量㊂通过测量不同时刻高压电缆蛇形弧幅距离传感器的高度可以得到滑移量的具体数值,试验示意图如图23所示㊂本试验采用的激光测距传感器测量精度较高,需在地面上架设一个辅助支架,从而将测量距离控制在传感器量程范围内,试验现场如图24所示㊂图23㊀试验示意图Fig.23㊀Schematic diagram of theexperiment图24㊀试验现场图Fig.24㊀Experimental site plan激光测距传感器测量了当天0~24时的高压电缆蛇形弧幅距离传感器的高度H 的数值,如图25所示㊂设前一天运行结束24h 的H 值为初始高度H 0,经测量初始高度H 0为17.90cm㊂结合图17分析,0~7h 处于谷时用电阶段,负荷电流较小,此时高压电缆中产生的热量会相较于前一天晚上峰时用电时产生的热量大幅减少,电缆会因此向上 收缩 ㊂随着8h 开始负荷电流的增大,H 值开始减小,即蛇形弧幅开始向下产生滑移;在负荷电流增幅较大的7时30分~13时19分,H 值减幅较大,并在15时42分时出现最小值H min 为16.49cm,即相对于初始高度H 0滑移了1.41cm㊂表4提供了部分时间点的负荷电流数与H 值,表中滑移数值为正表示向下滑移,数值为负表示向上滑移㊂图25㊀当天0~24时的高度Fig.23㊀Height of the day from 0to 24hours 表4㊀部分时间点的负荷电流数与H 值Table 4㊀Number of load currents and H at sometime points时间/h负荷电流/A H /cm 滑移/cm 0286.4117.903214.1518.17-0.276211.8318.26-0.369426.4017.650.2512544.9916.940.9615463.6916.51 1.3918402.8116.81 1.0921409.7616.83 1.0724267.4517.220.68从上述试验过程中测得的数据可以得出,高压电缆在运行过程中产生的热机械效应会使高压电缆发生滑移,如图26所示,可以得出以下结论:负荷电流越大,产生的热机械效应越大,高压电缆在热机械应力作用下产生向下滑移,滑移量的大小会随着负荷电流的变化趋势产生相同的变化;瞬时的负荷电流波动不能产生明显的滑移,只有负荷电流大幅增大且持续一段时间后才发生滑移,说明高压电缆存07电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀在热惯性与机械惯性,热机械效应不是一个瞬时的过程,会随运行时间持续 叠加㊂图26㊀时间-负荷电流-滑移图Fig.26㊀Time-load current-slip diagram根据‘规定“中的相关滑移量计算公式(16),计算得到弧幅滑移量为11.21mm;用有限元软件对敷设隧道中的高压电缆进行1ʒ1建模仿真计算,其弧幅滑移量为14.43mm,如图27所示㊂图27㊀有限元仿真结果Fig.27㊀Finite element simulation results针对第3节中计算高压电缆弧幅滑移量所需参数如表5和表6所示,当时隧道内的温度约为21.2ħ,该电缆的自重比载为0.38N /m㊃mm 2㊂将参数代入式(26),可得该电缆在热机械应力下产生的弧幅滑移理论计算值为14.26mm㊂表5㊀导体参数Table 5㊀Conductor parameters㊀㊀㊀参数数值线膨胀系数αC /ħ-117ˑ10-6等值弹性模量E C /(N /m 2)119ˑ109运行最高温度/ħ69.1额定最高温度/ħ90表6㊀金属护层参数Table 6㊀Metal sheathing parameters㊀㊀㊀参数数值线膨胀系数αM /ħ-123ˑ10-6等值弹性模量E M /(N /m 2)71.9ˑ109运行最高温度/ħ47.2额定最高温度/ħ68㊀㊀表7列出了不同方法得到的高压电缆弧幅滑移计算结果,以试验测量数据为基准值进行对比误差分析:由于有限元仿真中,高压电缆中流过的负荷电流的无法模拟实际运行中电流的数值波动,故存在一定量的仿真误差;基于悬链线方程的高压电缆弧幅滑移量计算方法的相对误差小于‘规定“中的相对误差,且计算结果符合有限元仿真结果与试验测量数据,证明了本文提出的弧幅滑移量计算方法是较为准确的㊂表7㊀不同计算方法及结果Table 7㊀Different calculation methods and results㊀方法弧幅滑移量/mm误差/mm相对误差/%试验测量14.10 有限元仿真14.430.33 2.34‘规定“11.21 2.8920.49本文计算14.360.261.846㊀总㊀结本文对高压电缆的热机械效应进行研究,提出了热机械应力㊁应变和弧幅滑移量的计算方法,通过有限元仿真,分析了热机械应力下高压电缆的应变和弧幅滑移量,并通过现场试验验证了本文计算方法的有效性,总结如下:1)基于广义胡克定律提出了一种适用于高压电缆热机械效应的最大应变计算方法,该应变计算方法符合高压电缆热机械效应的实际情况,且通过应变试验验证了本方法的可行性㊂2)基于直流电桥的电压应变片应变计算方法详细分析了应变片的实际应变情况,对应变片面积的变化采用微分计算,该方法计算简便且具有良好的现场适用性,可用于其他电力设备的应变测量㊂3)通过分析高压电缆径向平面的应变量,热机械效应下的导体和金属护层会严重向下挤压绝缘层㊁缓冲层㊁外护层,二者长期挤压会对高压电缆绝缘层㊁缓冲层㊁外护层产生不可逆的损伤㊂4)基于悬链线方程的高压电缆弧幅滑移计算方法与有限元仿真㊁试验测量㊁‘规定“进行结果对比分析,该方法符合实际运行情况且相对误差较小㊁计算便捷,为高压电缆的弧幅滑移量计算提供了理论支撑㊂此外滑移量也可作为高压电缆运行状态的监测量,可及时预防热机械效应下的潜在故障㊂17第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究。

电缆截面图

电缆截面图

金世纪电缆集团有限公司煤矿用额定电压3kV及以下聚氯乙烯绝缘电力电缆结构示意图执行标准图号JSJ-101KV、3KV(3芯)1KV、3KV(3芯)1导体;2绝缘; 3填充;4垫层或绕包带;5铠装层; 6护套。

1KV、3KV(4芯、3+1芯) 1KV、3KV(4芯、3+1芯)1-导体;2-绝缘;3-包带;4-外护套 1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套设计:审核:批准:日期:年月日金世纪电缆集团有限公司煤矿用额定电压10kV及以下交联聚乙烯绝缘电力电缆结构示意图执行标准图号JSJ-111、3 、1 、3 、1、3、1、3、6、MYJV-6/6、MYJV-6/10、10、6、MYJV22-6/6、MYJV22-6/10、10、6、MYJV32-6/6、MYJV32-6/10、10、6、MYJV42-6/6、MYJV42-6/10、10(3芯)1-导体;2-导体屏蔽;3-绝缘;4-绝缘屏蔽及铜带;5-填充;6-包带及内护套;7-铠装层;8-外护套1、3(4芯、3+1 芯) 3 、1、3、1-导体;2-绝缘;3-包带;4-外护套 1、3(4芯、3+1 芯)1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套设计:审核:批准:日期:年月日金世纪电缆集团有限公司额定电压450/750V煤矿用塑料绝缘控制电缆结构示意图执行标准Q/JSJ 08-2011图号JSJ-01MKVV、MKYJV、MKVVR、MKYJVR MKVVP、MKYJVP、MKVVP2、MKYJVP21、导体2、绝缘层3、包带4、护套 MKVVP3、MKYJVP3、MKVVRP、MKYJVRP1、导体2、绝缘层3、包带4、屏蔽层5、护套MKVV22、MKVV32、MKYJV22、MKYJV32 MKVV2-22、MKYJV2-221、导体2、绝缘层3、内衬层4、铠装层5、护套 1、导体 2、绝缘层 3、屏蔽层4、内垫层 5、铠装层6、护套设计:审核:批准:日期:年月日。

10KV高压电缆解析(课堂PPT)

10KV高压电缆解析(课堂PPT)

热收 缩式
浇筑 式
预制 式
螺旋 式
插入 式
冷收 缩式
热收 缩式
带电 插拔
不带 电插
拔Байду номын сангаас
预制 式
浇筑 式
干式 (不 带灌 绝缘 油)
铸铁 盒式
浇铸 式
塑料 套管

塑料 手套

热收 缩式
冷收 缩式
热收 缩式
冷收 缩式
浇铸 式
环氧 树脂 浇铸

聚氨 酯浇 铸式
烯酸 酯浇 铸式
带负 荷插

不带 负荷 插拔
环氧 树脂 浇铸
4.电缆排列
为了避免电缆间的相互影响,满足安全运行的要求,便于维护,一 般电缆在架上的排列应满足以下要求。
(1)电缆在支架、托架上从上到下排列顺序一般为:从高压到低压,从强电 到弱电,从主回路到次要回路,从近处到远处。
(2)同一支(托)架电缆排列以少交叉为原则,一般为近处在两边,远处放 中间,必须交叉时应尽量在始端处进行。电缆相互间应有一倍电缆外径的空 隙。
2.电缆弯曲半径要求 交联电缆在敷设时涉及到方向的改变,其转弯半径应满
足电缆允许弯曲半径要求。电缆材料和结构特性决定了电 缆承受弯曲有一定的限度,过度的弯曲将造成绝缘层和护 套的损伤,甚至使该段电缆完全被破坏。因此,在电缆敷 设规程中,根据电缆绝缘材料和护层结构不同,规定了以 电缆外径的倍数作为最小弯曲半径,对交联聚乙烯电缆, 其允许弯曲半径如下表:
12
各类护层(套)常用材料特性
聚氯乙烯(PVC) 优点:采用聚氯乙烯做外护套,加工方便;
电缆柔软,容易弯曲; 阻燃性能优良; 耐气候和耐化学腐蚀性好 缺点:燃烧时释放HCL等有毒气体,并伴有浓烟

线缆产品中的屏蔽

线缆产品中的屏蔽

线缆产品中的屏蔽、填芯与抗拉元件在前面几篇基础知识讲座中已经论述,在近2000 种线缆产品中,导线是必不可少的结构元件而绝缘层是保护导线传递信息或传输电力的另一结构元件(裸导线类产品是在安装时才设置外部绝缘器件的)。

为了保证产品能在各种外部环境中长期安全运行,大多数的产品还必须配置各种结构组成的保护层。

除此之外,不少产品还应该根据产品结构的需要,分别配置有屏蔽结构、填充芯结构或抗拉结构元件,以保证产品能达到其设计的功能要求或保证其在使用中自身的机械防护性能。

本文将分别介绍。

必须指出,这三种结构元件虽然不是全部产品品种需要,而且似乎与导线的传输性和绝缘层的绝缘性能无直接关系,但是绝不应把它们看作是不重要的元件,对于设计应具有这三种结构元件的产品来说,它们也是必须的主要结构元件,且这些品种的产品多数是十分主要的产品。

、屏蔽结构与材料在线缆产品中所采用的屏蔽层,实际上有两种完全不同的概念。

一类是传输高频电磁波(如数据传输用的电话线缆、电子线缆、射频线缆等)或微弱电流(如信号、计测、控制用电缆)的产品,为了阻拦外界电磁波的干扰,或者防止线缆产品中的高频对外界产生干扰,以及各线对之间相互干扰或防止外界窃听产品中传输的信息,因此而设置了各种屏蔽结构。

此类结构可称为电磁屏蔽。

另一类是在中高电压下传输大电流的电力电缆、矿用电缆、机车车辆电缆等,为了均衡导线表面的绝缘外表面的电场而设置的结构,可称为电场屏蔽。

严格来说,电场屏蔽层没有“屏蔽”的作用,仅是设置在导线表面或绝缘外表面的电场均衡层(等电位面),以保证导线与绝缘间的空隙中,或绝缘外表面与外包的结构件中的空隙中不会发生局部放电。

实际上,电场均衡层虽然也是必须的,有严格的技术要求,但其结构比较单一。

一)电磁屏蔽的结构与材料1,电磁屏蔽层对于来自外部的干扰电磁波起着三方面的作用。

即吸收能量涡流损耗)、反射能量(电磁波在屏蔽层的界面反射)和抵消能量(电磁波在屏蔽层上产生反向电磁场,能抵消部分干扰电磁波)的作用,从而起着减弱干扰电磁波的作用。

电缆截面图

电缆截面图

金世纪电缆集团有限公司煤矿用额定电压3kV及以下聚氯乙烯绝缘电力电缆结构示意图执行标准图号JSJ-101KV、3KV(3芯)1KV、3KV(3芯)1导体;2绝缘; 3填充;4垫层或绕包带;5铠装层; 6护套。

1KV、3KV(4芯、3+1芯) 1KV、3KV(4芯、3+1芯)1-导体;2-绝缘;3-包带;4-外护套 1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套设计:审核:批准:日期:年月日金世纪电缆集团有限公司煤矿用额定电压10kV及以下交联聚乙烯绝缘电力电缆结构示意图执行标准图号JSJ-111、3 、1 、3 、1、3、1、3、6、MYJV-6/6、MYJV-6/10、10、6、MYJV22-6/6、MYJV22-6/10、10、6、MYJV32-6/6、MYJV32-6/10、10、6、MYJV42-6/6、MYJV42-6/10、10(3芯)1-导体;2-导体屏蔽;3-绝缘;4-绝缘屏蔽及铜带;5-填充;6-包带及内护套;7-铠装层;8-外护套1、3(4芯、3+1 芯) 3 、1、3、1-导体;2-绝缘;3-包带;4-外护套 1、3(4芯、3+1 芯)1-导体;2-绝缘;3-包带;4-内垫层;5-铠装层;6-外护套设计:审核:批准:日期:年月日金世纪电缆集团有限公司额定电压450/750V煤矿用塑料绝缘控制电缆结构示意图执行标准Q/JSJ 08-2011图号JSJ-01MKVV、MKYJV、MKVVR、MKYJVR MKVVP、MKYJVP、MKVVP2、MKYJVP21、导体2、绝缘层3、包带4、护套 MKVVP3、MKYJVP3、MKVVRP、MKYJVRP1、导体2、绝缘层3、包带4、屏蔽层5、护套MKVV22、MKVV32、MKYJV22、MKYJV32 MKVV2-22、MKYJV2-221、导体2、绝缘层3、内衬层4、铠装层5、护套 1、导体 2、绝缘层 3、屏蔽层4、内垫层 5、铠装层6、护套设计:审核:批准:日期:年月日。

高压电缆参数

高压电缆参数

一、用途
适用于交流额定电压(UO/U)0.6/1KV及以下输配电线路
二、使用特性
a)最高允许工作温度为70℃,短路时(5S)导体最高温度为160℃。

b)电缆敷设时环境温度应不低于0℃,弯曲半径应不小于电缆外径的10倍。

注:还可以生产耐温等级90℃和120℃的电力电缆。

三、型号及名称
电缆型号如表1
表1
四、规格
电缆规格表如表2
表2
3+1、3+2、4+1芯电缆中性线芯的截面如表3
表3
五、结构简图
1、导体
2、绝缘
3、包带
4、护套
5、铠甲
六、技术特性
1、缆线芯为圆形,多芯电缆线芯,截面为35mm2及以下为圆形,50mm2及以上为扇形或半圆形。

(3+1)芯电缆的中性线芯为圆形或紧压圆形,(3+2)芯、(4+1)芯电缆的中性线和保护线芯分别为:圆形、扇形和圆形。

电缆线芯根数符合表4规定
表4
2、电缆绝缘线芯结构及导体20℃时直流电阻如表5
表5
3、电缆参考外径及重量如表6
表6。

220kV-2500mm2电缆载流量计算书-

220kV-2500mm2电缆载流量计算书-

YJLW02-Z 1×2500mm2 127/220kV 电缆载流量一、电缆截面图及说明YJLW02-Z 1×2500mm2 127/220kV序号电缆结构厚度(mm)尺寸(mm)①导体60.4 60.4±0.5②半导电特多龙带0.8 62.0③导体屏蔽 1.5 65.0④XLPE绝缘24.0 113.0±1.5⑤绝缘屏蔽 1.0 115.0±1.5⑥半导电缓冲阻水带 4.2 123.4⑦皱纹铝护套 2.8 143.1±2.0⑧半硬质阻燃PVC护套(含沥青防护层及石墨半导电层)5.0 153.1±2.0二、载流量计算书 使用条件及必要系数:按照IEC 60287具体计算公式如下:()[]()()()43212114321115.0T T nR T nR RT T T T n T W I d +++++++++-∆=λλλθ其中:I:载流量 (A)△θ:导体温度与环境温度之差(℃) R :90℃时导体交流电阻(Ω/m)n : 电缆中载流导体数量 W d :绝缘介质损耗 λ1:护套和屏蔽损耗因数 λ2:金属铠装损耗因数T 1:导体与金属护套间绝缘层热阻 (K ·m/W) T 2:金属护套与铠装层之间内衬层热阻(K ·m/W) T 3:电缆外护层热阻 (K ·m/W)T:电缆表面与周围媒介之间热阻(K·m/W)4电缆连续载流量主要计算参数数据表注:有效散热周长是指方函的底部宽加上两个高,因为方函顶部可能暴露于阳光下,所以不算在内。

沈阳古河电缆有限公司提供2011.8.23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档