电力系统继电保护技术的现状与发展
电力系统继电保护技术的现状和发展趋势
电力系统继电保护技术的现状和发展趋势摘要:随着电力系统的飞速发展,对继电保护不断提出了新的要求,电子技术、计算机技术与通信技术的飞速发展,又为继电保护技术不断地注入了新的活力。
本文主要介绍了电力系统继电保护的现状并对其的发展趋势以及继电保护所面临的问题作了简要的分析与研究。
关键词:电力系统;继电保护技术;现状;发展趋势1.引言电力系统运行状态会对社会生产生活秩序、经济发展有着直接的影响,当今社会,经济高速发展,社会各领域的生产用电、生活用电的总量开始持续上升,导致电力系统在运行的过程中需要面临更严重的过载,短路,如安全事故风险,因此,只有促进继电保护技术的快速发展和不断创新,才能够推动更高水平的电力系统安全生产水平。
2.继电保护技术的应用及分析继电保护的主要功能是清除故障组件和限制事故的影响范围。
变电站继电保护的应用主要包括以下四个方面:第一,线路保护。
一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护;第二,母联保护。
需同时装设限时电流速断保护和过电流保护;第三,主变保护。
主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护;第四,电容器保护。
对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。
此外,电力系统继电保护技术,确保整个系统的安全稳定运行。
这就要求继电保护装置能够得到足够的系统故障信息,可以极大地改善保护性能和可靠性。
因此,今后继电保护中每个保护单元都应能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。
3.电力系统继电保护技术现状分析我国电力系统技术体系的起步较晚、发展水平滞后于国外经济发达国家,但是在经济高速发展的今天我国不仅实现了电力系统的出口,同时在电力系统技术体系发展水平上也开始赶超经济发达国家,其中继电保护技术的发展受到了国内外各领域的广泛关注。
电力系统继电保护的现状与发展前景
电力系统继电保护的现状与发展前景电力系统继电保护作为电力系统安全稳定运行的重要保障,直接关系到电力系统的可靠性和安全性。
随着电力系统规模的不断扩大和技术的不断进步,继电保护技术也在不断发展和完善。
本文将就电力系统继电保护的现状与发展前景进行探讨,希望能够对该领域的研究与应用提供一些参考。
一、电力系统继电保护的现状1. 继电保护的基本概念和作用继电保护是指在电力系统中,通过对各种故障情况进行监测和诊断,及时采取必要的保护措施,以防止故障的扩大和蔓延,保护电力设备和系统的安全稳定运行。
继电保护的作用主要包括对电力设备进行过载、短路等故障的保护,对系统发生故障时进行快速隔离和恢复,以及对违规操作和外部干扰进行检测和保护。
2. 继电保护技术的现状随着电力系统的规模不断扩大和复杂程度的不断增加,继电保护技术也在不断发展和完善。
目前,电力系统继电保护技术主要包括基于保护装置的数字化继电保护技术、保护装置之间的通信联动技术、基于人工智能和模糊逻辑的故障诊断技术等。
这些技术的应用大大提高了继电保护的准确性、及时性和可靠性。
3. 继电保护的存在问题目前电力系统继电保护仍然存在一些问题。
一是传统的继电保护技术难以满足复杂电力系统的要求。
随着电力系统的不断发展,传统的基于电流、电压等参数的继电保护技术已经无法满足对电力系统安全可靠运行的要求。
二是电力系统继电保护设备之间的互联互通问题。
目前,继电保护设备之间的通信联动技术还不够成熟,存在着系统间通信不畅、数据传输不准确等问题。
三是继电保护与其他智能化技术的融合问题。
随着物联网、大数据、人工智能等技术的快速发展,电力系统继电保护与这些技术的融合应用还存在一定困难。
1. 基于数字化技术的继电保护随着数字化技术的不断发展和普及,数字化继电保护技术将成为未来的发展方向。
数字化继电保护技术不仅可以提高保护装置的精度和可靠性,还可以实现对系统状态、故障信息等数据的实时监测和管理,为电力系统的智能化、自动化运行提供支持。
电力系统继电保护的现状与发展
电力系统继电保护的现状与发展【关键词】电力系统;继电保护;现状1.当前电力系统继电保护现状分析回顾我国电力系统继电保护装置的使用与发展历程,在1960年代起,晶体管继电保护器初步应用于电力系统的运行之中,随着之后所开发出的集成运算放大器为基础的集成电路保护技术的应用,晶体管继电保护器逐渐为之所替代。
1990年后,微机保护继电保护器在电力系统的运行与维护中得到了推广与应用。
随着我国社会科技技术的快速发展,加上网络化、科技化、计算机化、自动化等技术的不断推广,现针对电力系统继电保护技术的应用现状进行分析,如下所述。
1.1继电保护与先进技术相结合由于我国的电网系统正处于不断发展与完善的过程之中,加上当前微机化水平的不断发展,电力系统对于继电保护技术具有更高的要求。
其中,继电保护技术必须确保各个保护单元可以有效、快速的共享电力系统中的各项系统运行及故障信息、数据,确保各个保护单元在电力系统的运行与维护过程中具备高度协调性。
当前,我国的继电保护技术逐步与其他先进技术相结合,包括网络化、计算机化、一体化、虚拟化、智能化技术等方面,促使继电保护技术不断发展与完善。
1.2继电保护与微机技术相结合众所周知,微机技术的数学运算能力与逻辑处理能力、速度是极高的,通过结合其相应的理论知识与数据信息,可以有效的提高继电保护技术的应用效果。
因此,近几年来我国逐渐将微机技术与继电保护技术相结合,电力系统中继电保护中的微机化程度越来越高,其效果也是极其显著的。
2.电力系统继电保护技术的发展趋势2.1网络化由于相应的数据资源共享程度不高,大部分继电保护装置只可以反应保护安装处的实际电气量,而且只可以在电力系统发生故障时通过将其故障元件切除掉来避免故障范围的扩大。
随着当前我国及世界上网络化技术的不断发展,加上网络化技术对我国其他科技信息技术的强大影响力,为了便于各个保护单元可以及时与重合闸装置对电力系统运行中的各项数据与故障信息进行分析、协调处置,从而保证电力系统运行的稳定性与安全性,必须确保各个保护单元可以有效、快速的共享相关的数据与信息。
电力系统继电保护技术的现状与发展张华峰
电力系统继电保护技术的现状与发展张华峰发布时间:2021-09-30T06:53:40.090Z 来源:《福光技术》2021年14期作者:张华峰[导读] 及时查找出问题、果断采取应对措施,是对一个电工维修技术的考验。
国网长治供电公司电力调度控制中心山西长治 046000摘要:当前,电力资源是人们生产生活中不可或缺的重要资源,供电系统也成为保证人们正常生活和稳定生产的主要能源系统,电力系统中的任何部位出现安全隐患都会影响整个电力系统的安全运行,甚至引发大面积停电现象。
由此可知,电力系统的继电保护工作十分重要和关键。
但是继电保护装置在实际运行中,会受到各种干扰因素影响,导致装置出现误动、损坏等问题。
所以,发电厂应该针对干扰因素做好防范工作,保证发电的安全。
关键词:电力系统;继电保护技术;发展引言近年来,我国智能电网的建设已经实现了规模化的拓展和延伸,而且也逐步实现了自动化和智能化的技术应用,提高了变电运行的效率和质量,但也正是在这一态势的推动下,智能电网需要兼顾的主客观因素也更加复杂,对变电运行提出的要求也更加严格,不再以简单的量化生产为本位,而是更加强调安全性和稳定性的提升。
此时,继电保护装置就会突然断开,避免故障线路处于工作状态,从而保证其他线路的正常运作,避免大面积停电的情况发生,把停电对生产生活的影响降到最低限度。
及时查找出问题、果断采取应对措施,是对一个电工维修技术的考验。
1、相关概述继电保护技术的应用实质上是继电保护器在发挥作用的过程,继电保护器由开关、电流感应器等构件组成。
在电流感应器感知到电流异常之后,会自动把主回路切断来保证设备不受到损坏和工作过程中不造成人员损伤。
继电保护器主要具有 2 种功能,即过载保护和电流短路保护,一般会在设备产生漏电故障时自动启用保护功能,从而避免意外事故的发生。
同时,继电保护装置也能够识别出变电运行中的异常状况,然后发出警报信息,信息表达的形式可以是声光,也可以是图文,提醒现场的监督人员,及时采取处理和解决的措施。
电力系统继电保护技术的现状与发展
电力系统继电保护技术的现状与发展
电力系统继电保护技术是电力系统的重要组成部分,它对于保障电力系统的安全运行具有至关重要的作用。
目前,随着电力系统的发展和技术的不断进步,继电保护技术也不断发展。
以下是电力系统继电保护技术的现状与发展的相关内容。
目前,电力系统继电保护技术已经出现了许多新的技术和设备,并且不断针对实际应用情况进行改进和完善。
一些新技术包括:数字化与智能化技术的应用、红外线、超声波等无损检测技术、红外热成像技术等,这些技术都大大提高了电力系统继电保护技术的精度和可靠性。
在发展方面,随着电力系统的规模不断扩大,对继电保护技术的要求也越来越高。
传统的继电保护技术已经无法满足现代电力系统的要求,因此需要不断发展先进的继电保护技术。
目前,电力系统继电保护技术的发展主要有以下几个方向:
1.智能化:随着数字化、智能化技术的发展,智能继电保护技术已经成为电力系统继电保护技术发展的一个重要方向。
智能化继电保护技术可以实现更加准确的保护和故障定位,提高电力系统的可靠性和稳定性。
2.多功能化:现代电力系统对继电保护技术的要求不仅是准确、可靠,还需要能够满足多种保护要求。
因此,多功能化继电保护技术成为未来继电保护技术发展的一个重要方向。
3.模块化:模块化继电保护技术可以实现根据实际需求组合不同
的保护模块,从而实现最佳的保护方案。
这种技术可以提高继电保护
系统的灵活性和可维护性。
总之,电力系统继电保护技术的发展与电力系统的发展密切相关,需要不断针对实际应用情况进行改进和完善。
电力系统继电保护技术的现状与发展
电力系统继电保护技术的现状与发展
电力系统继电保护技术是电力系统中的关键技术,其作用是在电力系统发生故障时,迅速将故障部位与周围电力设备分离,保护电力系统的安全运行。
随着电力系统的规模逐渐扩大和技术的不断进步,继电保护技术也在不断发展和完善。
本文将围绕电力系统继电保护技术的现状和发展进行论述。
1. 充电保护技术的发展
在电力系统中,充电保护技术主要用于保护电力设备的运行安全。
随着电力设备的发展和电力系统的规模不断扩大,充电保护技术也得到了广泛应用。
目前,充电保护技术主要采用微机保护装置,具有故障判别速度快、故障定位准确等优点。
2. 特高压继电保护技术的研究
特高压输电技术是电力系统未来发展的重要方向,而特高压继电保护技术是特高压输电技术中的关键技术。
特高压继电保护技术研究的核心问题是如何在特高电压环境下实现快速故障判别和准确故障定位。
目前,相关研究已经取得了一定的进展,但仍面临着技术难题和挑战。
3. 继电保护与通信技术的结合
继电保护与通信技术的结合是电力系统继电保护技术发展的趋势之一。
随着通信技术的不断进步,继电保护装置之间的通信交互将更加便捷,可以实现实时监测、远程控制等功能,提高电力系统的运行效率和安全性。
4. 继电保护技术的智能化发展
继电保护技术的智能化发展是电力系统继电保护技术发展的另一个趋势。
智能继电保护装置具有智能分析故障的能力,可以自动识别和判断故障类型,提供相应的故障处理方案,减少人为干预,提高故障处理效率。
电力系统继电保护技术的现状与发展
电力系统继电保护技术的现状与发展摘要:随着科学技术的迅猛发展,电力系统继电保护技术的发展迅速不容忽视。
电力系统继电保护技术对电力维护起着至关重要的作用,有利于保证电力系统安全并有效的运行。
目前,计算机控制技术成功运用到电力系统继电保护中,为继电保护技术注入了新的活力,继电保护必将向综合自动化技术方向发展。
本文在分析电力系统继电保护技术的现状的基础上,探讨了电力系统继电保护的发展趋势。
关键词:电力系统继电保护技术现状与发展电力作为当今社会的重要能源, 对国民经济的发展和人民生活水平的提高起着不容忽视的重要作用。
电力系统是由电能的产生、输送、分配和使用四个环节共同组成的一个系统。
基于电力在现代社会中的重要性, 则对电力的维护就显得格外重要。
而对电力维护起重要作用的继电保护,则是电力系统能否正常工作的关键。
电力系统继电保护技术作为一种主要的保护手段,有利于提高了系统运行的可靠性。
因此,研究电力系统继电保护技术的现状与发展具有十分重要的现实意义。
鉴于此,笔者对电力系统继电保护技术的现状与发展进行了初步探讨。
1 电力系统继电保护技术的现状就目前而言,电力系统继电保护技术的发展现状主要呈现两个方面的特征,一方面是我国电力系统继电保护技术起步较晚,发展迅速;另一方面是指微型继电,不断发展,其具体内容如下。
1.1 起步较晚发展迅速电力系统继电保护主要研究电力系统故障和危及安全运行的异常工况,国内的研究开始于20 世纪70 年代后期,起步较晚,但发展迅速。
在我国电力系统继电保护技术发展的过程中,微机保护是用微型计算机构成的继电保护,我国首个微机保护在1984 年,以保护电脑的样机试运行后,通过鉴定和大规模生产。
目前,线路保护产品已形成并得到广泛应用。
微机保护取得多年的实际操作,依靠优良的先进技术和极为良好的原则性,则进程已经超越了进口保护。
从20 世纪80 年代及以上的220kV 高压电力系统,以保护使用进口,到现在的基本国内220kV 系统的继电保护,反映了国内继电保护设备和具有明显优势。
电力系统继电保护技术的现状与发展趋势
电力系统继电保护技术的现状与发展趋势随着经济的发展,人们的用电量以迅猛的速度增长,因而电力系统面临着严重的过载、短路等危险。
因此,加强继电保护对于电力系统的稳定运行具有非常重要的作用。
继电保护作为电力系统安全运行的保护方法,在适应电力系统稳定运行需求的过程中技术更新较快,发挥的作用也越来越突出。
基于此,文章对电力系统继电保护技术的现状进行分析,并对其发展趋势做出展望,以期能够提供一个借鉴。
标签:电力系统;继电保护技术;现状;趋势1.我国继电保护技术发展现状1.1我国继电保护技术发展概况(1)机电式继电保护阶段。
1949年以后,我国逐渐意识到电力行业的重要性,因而在50年代,电力工程人员进行了大量的与继电保护技术有关的知识学习,之后,通过工程人员的不懈努力,终于建立了拥有丰富电力系统继电保护技术理论知识和经验的继电保护队伍,为国家电力系统的正常运转做了较大的贡献。
(2)晶体管继电保护阶段。
在机电式继电保护阶段,我国的电力系统线路保护技术完全来自于国外,到了60年代以后,科技的进步使得我国拥有了自行创造的电力系统线路保护技术,并且该技术带领电力系统继电保护技术走向了晶体管继电保护阶段,该阶段最鲜明的标志就是在葛洲坝上应用了晶体管继电保护技术。
(3)集成电路保护阶段。
进入70年代之后,晶体管继电保护出现了较多的问题,对此,电力系统的工程研究人员慢慢对集成电路保护产生浓厚的兴趣,最终使得集成电路保护获得推广,不仅弥补了晶体管继电保护的缺憾,还降低了对电力系统进行继电保护的成本。
(4)计算机继电保护阶段。
随着经济的快速发展,经济得到了迅猛的发展,为了顺应时代发展的潮流,电力系统的工程研究人员开始致力于计算机继电保护的研究,主要的标志就是输电线路微机保护装置的研制成功。
该阶段使得继电保护技术更加完美,为我国开辟了新的继电保护装置市场,充分确保了电力系统的安全运行。
1.2我国继电保护技术发展特点。
随着计算机技术的快速发展,计算机在计算能力、储存能力、数据采集能力等方面得到了快速发展,这为推进微机保护技术向更高品质更新提供了催化剂。
电力系统继电保护技术的现状与发展
电力系统继电保护技术的现状与发展随着电力系统规模的不断扩大和复杂程度的增加,继电保护技术在电力系统中的重要性日益凸显。
继电保护技术是保护电力系统设备安全运行的重要手段,它可以及时发现电力系统故障并采取正确的措施,以保证电网的稳定运行。
本文将对电力系统继电保护技术的现状与发展进行分析和探讨。
1. 整定技术的发展在电力系统的继电保护中,整定技术是非常关键的一项技术。
它决定了保护装置对故障的灵敏程度和动作速度,因此对整定技术的研究和发展一直是继电保护领域的热点。
目前,整定技术已经从传统的基于经验公式和试验调整的方法,逐步发展为基于仿真计算和智能算法的方法,这使得整定技术更加高效和精确。
2. 数字化保护装置的广泛应用随着电力系统的数字化和智能化发展,数字化保护装置在电力系统中得到了广泛应用。
数字化保护装置具有响应速度快、可靠性高、功能强大等优点,能够更好地满足电力系统对继电保护技术的需求。
数字化保护装置还具有通信能力,可以与其他设备进行信息交换,从而实现保护与控制的无缝对接。
3. 继电保护一体化系统的推广为了提高电力系统的管理和运行效率,一体化的继电保护系统得到了广泛的应用。
通过一体化系统,可以实现对电力系统全面的监测和管理,提升了保护装置的协同性和响应能力,保证了电网的安全稳定运行。
4. 变流器保护技术的进步随着交流输电技术的发展,变流器在电力系统中的应用越来越广泛,变流器保护技术也得到了迅速的发展。
特别是在大容量、超高压、长距离输电等方面,变流器保护技术的研究和应用成为了继电保护技术领域的一个重要方向。
5. 基于人工智能的继电保护技术随着人工智能技术的不断进步,其在继电保护领域的应用也逐渐增多。
基于人工智能的继电保护技术能够更加准确地识别故障类型和定位故障点,以及智能判断故障的性质和严重程度,对提高电网的安全性和可靠性有着重要的意义。
二、电力系统继电保护技术的发展趋势1. 智能化和数字化未来,继电保护技术将会更加智能化和数字化。
电力系统继电保护的现状与发展前景
电力系统继电保护的现状与发展前景1. 引言1.1 概述电力系统继电保护是电力系统运行中至关重要的一部分,它起着保护电力系统安全稳定运行的关键作用。
随着电力系统规模的不断扩大,电力设备种类的增多,电力负荷的增加,继电保护的重要性也日益凸显。
继电保护系统作为电力系统中的“安全保险”,必须能够对电力系统中发生的各类故障和异常情况作出及时、准确的判断,并做出相应的保护措施,以防止事故的扩大,保护电力设备和人员的安全。
当前,电力系统继电保护技术已经取得了长足的发展,各种保护装置和系统不断完善和更新。
在保护技术不断进步的也暴露出一些问题和挑战。
如何提高继电保护的稳定性、精度和可靠性,如何解决多电源共存的保护问题,如何适应新能源接入的挑战等,都是当前亟待解决的难题。
在未来,随着电力系统的智能化、数字化、高可靠性要求的不断提高,电力系统继电保护将面临更多的变革和挑战。
发展趋势将主要体现在继电保护技术的智能化、柔性化和集成化方面。
通过结合人工智能、大数据分析等先进技术,不断提高继电保护的智能化水平,实现继电保护系统的远程监控和智能诊断,进一步提高继电保护系统的可靠性和准确性。
1.2 问题提出电力系统继电保护是保障电力系统安全稳定运行的关键环节,它直接影响着电网的可靠性和供电质量。
在当前电力系统快速发展的背景下,继电保护面临着一系列问题和挑战。
随着电网规模不断扩大和复杂性增加,现有继电保护系统无法满足电力系统的快速发展需求。
传统的继电保护设备往往具有固定的逻辑功能,难以适应电力系统结构的变化和新能源接入的需求。
继电保护系统存在着数据传输速度慢、可靠性不高和对新技术的适应性差等问题,制约了其在电力系统中的应用和发展。
随着电力系统的数字化转型和智能化发展,继电保护系统的安全性、可靠性和智能化水平也面临新的挑战。
网络安全、数据传输速度、设备互联等方面的问题亟待解决,以保障电力系统的安全稳定运行。
电力系统继电保护面临着诸多问题和挑战,需要不断创新和改进以适应电力系统快速发展的需求,提升其在电力系统中的作用和地位。
浅谈电力系统继电保护技术的现状与发展
浅谈电力系统继电保护技术的现状与发展电力系统继电保护技术是电力系统中一项重要的技术,是保证电力系统安全稳定运行的重要保障。
随着电力系统规模的不断扩大和电力负荷的不断增加,电力系统的安全稳定运行面临着越来越多的挑战。
因此,电力系统继电保护技术的研究和应用变得越来越重要。
本文将围绕电力系统继电保护技术的现状和发展进行探讨。
一、电力系统继电保护技术的现状1.技术水平提高,保护精度不断提升随着微电子技术和数字信号处理技术的发展,电力系统继电保护技术的精度和可靠性得到了大幅提高。
传统的电力系统继电保护技术采用机械式、电磁式或静电式保护装置,这种保护装置具有精度低、可靠性不高等缺点。
而现代电力系统继电保护技术采用了数字信号处理、微处理器、FPGA等技术,具有更高的保护精度和可靠性。
2.保护对象广泛,保护模式多样电力系统继电保护技术的保护对象已经由传统的输电线路和变电站扩展到了新能源发电、智能配电网、直流输电等多个领域。
同时,电力系统继电保护技术的保护模式也在不断发展和完善,如过电流保护、差动保护、绕组保护、方向保护等多种保护模式,不断适应着电力系统的发展需求。
3.自动化程度提高,智能化水平不断提升电力系统继电保护技术的自动化程度不断提高,保护系统能够自动进行故障诊断、自动切换、自动重合闸等一系列操作,从而提高了电力系统的可靠性和稳定性。
同时,电力系统继电保护技术的智能化水平也不断提升,采用人工智能、模糊逻辑控制等技术,实现自动化控制和优化决策,提高了电力系统的运行效率。
二、电力系统继电保护技术的发展趋势1.智能化、数字化、网络化水平不断提高未来电力系统继电保护技术的发展趋势将是智能化、数字化、网络化和信息化。
随着新技术的不断应用,电力系统继电保护将会更智能、数字化和网络化,未来可能会出现更加智能化的保护装置,例如使用人工智能技术实现故障自适应保护、数据挖掘技术实现故障预测等。
2.多元化技术融合,综合保护系统将逐步发展未来电力系统继电保护技术将逐渐由传统的单一保护模式向多元化发展,例如综合保护等,结合了多种保护模式,实现了更加全面、完善的保护。
浅谈电力系统继电保护技术的现状与发展
浅谈电力系统继电保护技术的现状与发展电力系统继电保护技术是电力系统中至关重要的一项技术,它主要是负责保护电力系统的各种设备,以保证电力系统的稳定运行和安全使用。
近年来,随着电力系统规模的不断扩大和电力设备的不断更新换代,电力系统继电保护技术也在不断发展和进步。
本文将从电力系统继电保护技术的现状和发展两方面进行浅谈。
一、现状分析1.技术水平不断提高随着电力设备的不断升级和电力系统的规模不断扩大,电力系统继电保护的技术水平也在不断提高。
目前,国内外广泛应用的微机继电保护技术,已经可以实现各种电力系统设备的远距离控制、信息传输、自动化检测和诊断等功能。
同时,数字保护技术等新一代继电保护技术也成为电力保护的主流技术,这些技术的应用对于提高电力系统负荷能力、保证电力系统的稳定安全运行、提升电力系统能源利用效率有着极其重要的作用。
2.继电保护设备多样化随着电力系统的不断发展,继电保护设备的种类也在不断增加,从传统的电流、电压继电保护到新型数字继电保护和差动保护等,继电保护设备已经成为电力系统的重要部分,影响着电力系统的安全运行。
3.设备智能化程度不断提高在继电保护技术的发展中,随着智能化技术的不断进步,设备智能化程度也在不断提高。
目前,继电保护设备已经可以实现自动遥控,智能诊断及辅助决策等功能,为电力系统的运行和管理带来极大的便利。
二、发展趋势1.数字化技术的应用数字化技术是未来电力系统发展的重要方向,未来继电保护技术的发展也将越来越倾向于数字化应用。
数字化继电保护将采用数字保护方式和新型数字保护器,实现数字化决策、自我诊断和机器学习等功能。
2.智能化未来继电保护设备的智能化程度将进一步提高,实现了自动控制、智能化诊断、故障定位、数据分析等功能,大大提高了电力系统管理效率和安全性。
3.物联网技术的应用未来继电保护技术将会逐渐利用物联网技术实现设备之间的连接和交换数据,实现设备之间的自动协调和配合。
这一技术将有助于提高电力系统运行的稳定性和可靠性。
电力系统继电保护技术的现状与发展建议
电力系统继电保护技术的现状与发展建议随着社会经济的不断发展和电力需求的日益增长,电力系统的可靠性和安全性问题变得越来越重要。
作为电力系统的安全守护者,继电保护技术在其中扮演着重要的角色。
本文将对电力系统继电保护技术的现状进行简要分析,同时针对目前存在的问题提出一些建设性的发展建议。
一、继电保护技术的现状目前,我国电力系统继电保护技术已经取得了显著的进展,但在实际应用中仍然存在一些问题。
以数字化技术为代表的先进技术的快速发展,给传统的继电保护技术带来了挑战。
电力系统的规模越来越大,复杂度也越来越高,对继电保护的要求也越来越高。
继电保护技术的故障诊断能力和自适应能力也需要进一步提升。
二、发展建议1. 加强继电保护技术研发在当前数字化技术的大背景下,我们应加强对继电保护技术的研发,推动继电保护技术向数字化、智能化方向发展。
可以开展数字化继电保护装置的研发,提高设备的智能化水平和故障诊断能力,以适应电力系统规模越来越大、复杂度越来越高的趋势。
2. 完善继电保护设备的通信接口在电力系统中,继电保护装置需要与其它设备进行通信,以便实时获取系统的运行状态。
需要完善继电保护设备的通信接口,以期实现各种设备的信息共享和智能化控制。
应加大对网络通信安全性的研究,确保通信过程中数据的安全传输。
3. 强化继电保护技术的自适应能力随着电力系统的规模和复杂度不断增加,继电保护技术需要具备更高的自适应能力,能够适应各种不同工况下的运行状态。
应加强对继电保护技术自适应性的研究,提高其对系统运行状态的感知能力和对各种异常情况的快速响应能力。
4. 推动继电保护技术与智能技术的融合随着人工智能、大数据等先进技术的快速发展,我们应该推动继电保护技术与智能技术的融合,发展智能化的继电保护系统。
通过引入智能算法和大数据分析技术,可以提高继电保护系统的自学习能力和预测能力,进一步提高系统的安全性和可靠性。
继电保护技术在电力系统中具有重要的地位,因此应该加强对继电保护技术人才的培养。
电力系统继电保护技术现状与发展
电力系统继电保护技术现状与发展1 引言电力作为当今社会的重要能源,对国民经济的发展和人民生活水平的提高起着不容忽视的重要作用。
电力系统是由电能的产生、输送、分配和使用四个环节共同组成的一个系统。
基于电力在现代社会中的重要性,则对电力的维护就显得格外重要。
而对电力维护起重要作用的继电保护,则是电力系统能否正常工作的关键。
因此,研宄电力系统继电保护技术的现状与发展具有十分重要的现实意义。
2继电保护技术发展现状电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技木的发展不断地注入新的活力。
继电保护技术完成了 4个发展的阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业从无到有,在大约 10 年的时间里走过了先进国家半个世纪走过的道路。
•20 世纪50 年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术。
20 世纪60年代至 80 年代是晶体管继电保护蓬勃发展和广泛运用的时代。
在此期间,20 世纪70年代,基于集成运算放大器的集成电路保护己开始研究。
到20世纪 80 年代末集成电路保护己形成完整系列,逐渐取代晶体管保护。
到20世纪 90年代初,集成电路保护的研制、生产、应用处于主导地位,进入了集成电路保护时代。
比如天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护以及西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护相继于1993、1996 年通过鉴定。
至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。
随着微机保护装置的研究,在徽机保护软件、算法等方面也取得了很多理论成果。
可以说从 20世纪 90 年代开始我国继电保护技术己进入了微机保护的时代。
3 继电保护技术的发展趋势3.1 数字化随着计算机技术的迅猛发展,微机保护技术也在不断发展。
谈谈电力系统继电保护技术现状及发展趋势
谈谈电力系统继电保护技术的现状及发展趋势摘要:电力系统的安全运行关系到千家万户、工厂企业的用电安全,可以说,如果电力系统发生故障,整个城市几乎会处于瘫痪状态。
继电保护装置正是保障电力系统正常运行的关键,虽然近年来,我国的继电保护技术有了很大进步,但是在实际应用中还是会经常出现故障,造成大范围的停断电现象,因此提高电力系统继电保护技术水平是电力企业重点研究的内容之一。
关键词:电力系统;继电保护;问题;技术措施中图分类号: tm715文献标识码:a 文章编号:电力系统运行中,继电保护装置的作用是当电力系统运行中出现故障时,根据捕捉到的故障信号采取相应的措施,尽可能的减小由于故障对电力系统造成的损害,将损失降到最低。
但是我国的继电保护技术水平还相对比较落后,在当前信息化技术高速发展的时期,运用现代的科学技术,提高继电保护技术水平是今后发展的方向。
一、当前继电保护技术的应用现状1、继电保护的装置落后当前一些电力系统继电保护装置老化、陈旧,逐渐失去了安全的意义,还有些本身质量就存在问题,不能真正起到继电保护的作用,更谈不上反措施等新技术的应用,另外一些必要的保护设施不完善,正常的保护作用发挥不出来,空有摆设。
2、缺乏完善的继电保护管理制度。
在继电保护工作中,有些继电器回路或者保护装置存在自身固有的一些问题和缺陷。
例如,有些回路的功能不正常,缺乏相应的接线;保护装置的跳闸矩阵控制所显示的数据不能同现场的试验结果保持一致等。
通常情况下,当出现这些问题时,工作人员只是通过简单的口头传达告知有关人员,而没有具体的管理制度和流程对这些问题进行规范,以致造成事后查找、咨询的困难。
同时,由于继电保护档案不能及时更新二次设备的建档工作,使其管理过程中常常存在错、漏、缺现象,其二次设备的建档工作不细致、不规范、不系统,尤其是工程项目竣工后在移交资料的环节管理上更是缺乏有效的监督和管理。
3、管理人员的素质不高。
在有些县级管理单位中,缺乏专业的电网继电保护管理人员,并且其在职人员的业务水平参差不齐,阻碍了继电保护工作整体水平的提高。
电力系统继电保护技术的现状与发展
电力系统继电保护技术的现状与发展电力系统继电保护技术是电力系统安全运行和保障的重要组成部分,其功能是在电力系统出现故障时,通过对故障点进行快速定位和切除,保护电力设备和电力系统的安全运行。
随着电力系统的规模不断扩大和技术的不断进步,电力系统继电保护技术也在不断发展和完善。
目前,电力系统继电保护技术的发展主要体现在以下几个方面。
数字化继电保护技术的应用正在逐渐普及。
传统的继电保护技术多采用电磁式继电保护装置,而数字继电保护装置通过将模拟信号转换为数字信号进行处理,具有更高的精度、抗干扰能力和可靠性。
数字继电保护装置还可以通过通讯网络与其他装置进行联动,实现继电保护装置之间的信息交换和数据共享,提高系统的继电保护水平。
智能化继电保护技术的发展也取得了重要进展。
智能化继电保护装置具有自动故障定位、故障信息记录、状态监测和自检测等功能,可以实现对电力系统的实时监控和管理。
智能化继电保护装置还具有自适应性能,可以根据电力系统的运行状态和负荷变化,自动调整继电保护装置的参数和设置,提高电力系统的可靠性和稳定性。
继电保护技术在故障检测和故障处理方面也有新的突破。
传统的继电保护技术主要通过电流、电压、功率等信号进行故障判断和保护动作,而新型继电保护技术则采用多种故障判断方法,如相电流互相关、频率变化监测、相位差分析等,能够有效地识别和判断电力系统中的各种故障类型和故障位置。
新型继电保护技术还结合了智能算法和模型推断技术,能够对故障进行精确定位和快速处理,提高继电保护的响应速度和动作准确性。
继电保护技术的发展还离不开通讯网络和互联网技术的支持。
随着物联网、云计算和大数据技术的发展,电力系统继电保护装置可以通过电力信息网络与其他设备进行数据交互和信息共享,实现对电力系统的集中管理和远程监控。
这不仅提高了电力系统继电保护的智能化水平,也为电力系统的运行优化和故障处理提供了更多的便利。
电力系统继电保护技术在数字化、智能化、故障检测和通讯网络等方面都取得了可喜的进展,在提高电力系统的稳定性、可靠性和安全性方面发挥着越来越重要的作用。
电力系统继电保护技术的现状与发展赵秀蕾
电力系统继电保护技术的现状与发展赵秀蕾发布时间:2021-10-24T13:31:16.260Z 来源:《中国电力企业管理》2021年7月作者:赵秀蕾[导读] 近年来,经济快速发展,社会不断进步,在科学技术水平提高和现代化社会发展的共同作用下,电力资源成为我国生产生活各个领域发展中不可或缺的资源之一。
南京国电南自自动化有限公司赵秀蕾江苏南京 211100摘要:近年来,经济快速发展,社会不断进步,在科学技术水平提高和现代化社会发展的共同作用下,电力资源成为我国生产生活各个领域发展中不可或缺的资源之一,电力系统也因此被视作重要的供应系统。
电力系统本身就是大型且安全隐患较多的作业系统,因此,对电力系统的继电保护十分关键,并且难度很大。
基于此,论文分析了继电保护技术的相关概念,汇总了电力工程继电保护故障的成因,随后探究了电力工程继电保护技术的运用原则,最后分析了电力系统继电保护技术的未来发展趋势,以供相关人士交流参考。
关键词:电力系统;继电保护;技术;现状;发展引言我国电力事业发展迅速,人们越来越关注用电安全。
电力系统运行过程中,各种元件和设备都发挥了重要作用,其中继电保护装置是非常重要的保护系统,它可以及时发现电力系统中存在的异常情况,实现电力系统故障检测和自动报警,让工作人员尽快找到故障位置,恢复电力系统正常运行。
为避免异常情况对系统造成影响,其可以自主切断线路,保护系统。
继电保护装置主要对电力系统中的电压和电流进行检测,电流电压增大或减小都说明系统中出现了异常情况,需及时进行处理,消除故障。
实际运行中,由于工作人员操作不规范或日常巡视工作不到位,会使继电保护装置出现故障,导致其不能及时发现故障,影响系统稳定运行。
为提升供电稳定性,要深入分析继电保护装置常见故障原因及有效处理措施,结合电网运行实际情况,采用先进技术维护电力系统稳定运行,防止故障发生,进一步促进我国电力行业发展。
1继电保护的概述在电力系统运行过程中,随时会发生各种故障或者系统发生异常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统继电保护技术的现状与发展【摘要】回顾了我国电力系统继电保护技术发展的过程,概述了微机继电保护技术的成就,提出了未来继电保护技术发展的趋势是:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。
【关键词】继电保护现状发展1继电保护发展现状电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。
50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。
阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。
因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。
这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。
60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。
其中天津大学与南京电力自动化设备厂合作研究的500kV 晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500 kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。
到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。
到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。
在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。
我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。
华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。
1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。
在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。
南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。
天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。
至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。
随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。
可以说从90年代开始我国继电保护技术已进入了微机保护的时代。
2继电保护的未来发展继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
2.1计算机化随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。
原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。
华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。
东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。
天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。
采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。
CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。
这就要求微机保护装置具有相当于一台PC机的功能。
在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。
由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。
现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。
天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。
这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。
(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。
(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。
但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。
\2.2网络化计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。
它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。
到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。
继电保护的作用也只限于切除故障元件,缩小事故影响范围。
这主要是由于缺乏强有力的数据通信手段。
国外早已提出过系统保护的概念,这在当时主要指安全自动装置。
因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。
这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。
显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。
这在当前的技术条件下是完全可能的。
对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。
继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。
对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
对于某些保护装置实现计算机联网,也能提高保护的可靠性。
天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。
其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。
在母线区外故障时,各保护单元都计算为外部故障均不动作。
这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。
因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。
由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
2.3保护、控制、测量、数据通信一体化在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。
它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。
因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。
所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。
但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。
如果用光纤作为网络的传输介质,还可免除电磁干扰。
现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。
在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。
OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。
从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。
1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。
2.4智能化近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。