二次函数知识点总结及典型例he
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版九年级上册二次函数知识点总结及典型例题
知识点一、二次函数的概念和图像 1、二次函数的概念
一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于a
b
x 2-
=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:
当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
【例1】、已知函数y=x 2
-2x-3,
(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图;
(2)求图象与坐标轴交点构成的三角形的面积:
(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0
知识点二、二次函数的解析式
二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2
≠++=a c b a c bx ax y 是常数,
(2)两根 当抛物线c bx ax y ++=2
与x 轴有交点时,即对应的一元二次方程02
=++c bx ax 有实根1x 和
2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式
))((21x x x x a y --=。如果没有交点,则不能这样表示。
a 的绝对值越大,抛物线的开口越小。
三顶点2
【例1】、抛物线c bx ax y ++=2与x 轴交于A (1,0),B (3,0)两点,且过(-1,16),求抛物线的解析式。
【例2】、如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则(1)abc 0 (>或<或=) (2)a 的取值范围是
【例3】、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( )
A .y = (x − 2)2
+ 1 B .y = (x + 2)2
+ 1 C .y = (x − 2)2
− 3 D .y = (x + 2)2
− 3 知识点三、二次函数的最值
如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a b x 2-=时,a
b a
c y 442-=最值。
【例1】、已知二次函数的图像(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内, 下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3 D .有最小值-1,无最大值
【例2】、某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满. 当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每
天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的正整数倍).
(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;
(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大? 最大利润是多少元?
知识点四、二次函数的性质
2、二次函数)0,,(2
≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:
a 表示开口方向:a >0时,抛物线开口向上 a <0时,抛物线开口向下
b 与对称轴有关:对称轴为x=a
b
2-
c 表示抛物线与y 轴的交点坐标:
(0,c ) 3、二次函数与一元二次方程的关系
一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标。
因此一元二次方程中的ac 4b 2
-=∆,在二次函数中表示图像与x 轴是否有交点。 当∆>0时,图像与x 轴有两个交点;
【例1】、抛物线y=x 2
-2x -3的顶点坐标是 . 【例2】、二次函数522-+=x x y 有( )
A . 最大值5-
B . 最小值5-
C . 最大值6-
D . 最小值6- 【例3】、由二次函数1)3(22+-=x y ,可知( )
A .其图象的开口向下
B .其图象的对称轴为直线3-=x
C .其最小值为1
D .当3 B.4≤k C.4 D.4≤k 且3≠k 【例5】、下列函数中,当x >0时y 值随x 值增大而减小的是( ). A .y = x 2 B .y = x -1 C . y = 3 4 x D .y = 1 x 【例6】、若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l 知识点五、二次函数图象的平移 ① 对于抛物线y=ax 2+bx+c 的平移 通常先将一般式转化成顶点式()2 y a x h k =-+,再遵循左加右减,上加下减的的原则 化为顶点式有两种方法:配方法,顶点坐标公式法。在用顶点坐标公式法求出顶点坐标后,在写顶点式时,要减去顶点的横坐标,加上顶点的纵坐标。 ② c bx ax y ++=2沿y 轴平移:向上(下)平移m (m >0)个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2) ③ 当然,对于抛物线的一般式平移时,也可以不把它化为顶点式 c bx ax y ++=2:向左(右)平移m (m >0)个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 【例1】、将抛物线2 y x =-向左平移2个单位后,得到的抛物线的解析式是( ) A .2(2)y x =-+ B .22y x =-+ C .2(2)y x =-- D .2 2y x =-- 【例2】、将抛物线y=x 2 -2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_______. 【例3】、抛物线2 y x =可以由抛物线()2 23y x =+-平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位