数学建模B题钢管订购和运输

合集下载

管道订购与运输问题-2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题-2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题1 问题重述2 基本假设(1)只考虑订购费用和运输费用,不考虑装卸等其它费用. (2)钢管单价与订购量、订购次数、订购日期无关.(3)订购汁划是指对每个厂商的定货数量;运输方案是指具有如下属性的一批记录:管道区间,供应厂商,具体运输路线.(4)将每一单位的管道所在地看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.3 符号说明M :钢厂总数. n :单位管道总数.:i S 第i 个钢厂 :i S 第i 个钢厂的产量上限。

:i p 第i 个钢厂单位钢管的销售价 i A 管道线上第i 个站点。

i d 管道线上第i 个单位管道的位置。

F :总费用。

:ij C 从钢厂(1,2,,)i S i m =到点(1,2,,)j d j n =的最低单位费用。

4 问题的简化求 S AP 矩阵的基本思路是图的最短路算法 . 由于铁路的运输费用与线路的长度不是线性关系 ,必须对铁路网做一些预处理才能套用图的标准最短路算法 . 下面叙述求 S AP 矩阵的过程:1.利用图的标准最短路算法 ,从铁路网络得出图中任两个点之间的最短路径表 T (如果两个点之间不连通 ,认为它们之间的最短路长度为+ ∞ ) .2.利用题中的铁路运价表将 T 中的每个元素 (即最短距离 )转化为运输费用 ,将运输费用表记为 C.3.将公路的长度换算为运输费用 ,由公路路程图 (包括要沿线铺设管道的公路 )得出公路费用图 G,若 i, j 不连通 ,则令 Gij = + ∞ .4.对于任一组 ( i , j)∈ { 1,… n }× { 1,… m } 如果 Cij <+ ∞ ,且小于 Gij ,那么就在公路费用图中加一条边. 即令 Gij = min{Cij , Gij } .5.利用图的标准最短路算法 ,求公路费用图中任一个 S 点到任一个 A 点的最小费用路径 ,得出 S AP 矩阵. 如表 1所示:SAP 矩阵A123 4 5 6 7 8 9 10 11 12 13 14 15 S1 170716031402986 380 205 31 212 642 920 960 1060 1212 1280 14202 215720531902 1716 1110 955 860 712 1142 1420 1460 1560 1712 1780 19203 230722032002 1816 1210 1055 960 862 482 820 860 960 1112 1180 13204 260725032352 2166 1560 1405 1310 1162 842 620 510 610 762 830 9705 255724532252 2066 1460 1305 1210 1112 792 570 330 510 712 730 8706 265725532352 2166 1560 1405 1310 1212 842 620 510 450 262 110 2807 275726532452 2266 1660 1505 1410 1312 992 760 660 560 382 260 205问题分析运输费用等价转换法则:按单位运费相等原则将任意两点间的最短铁路线转换为公路 线.对于铁路线上的任意两点,i j V V ,用F1oyd 算法找出两点间最短铁路路线的长度ij L 查铁路运价表求得ij L ,对应的铁路单位运费ij f ;又设与该段铁路等费用的公路长度为ij l ,则:0.1ij ij f l =⨯由此,我们就在,i j V V 之间用一条等价的公路线来代替,i j V V 间的最短铁路线.如果,i j V V 之间原来就有公路,就选择新旧公路中较短的一条.这样,我们就把铁路运输网络转换成了公路运输网络.销价等价转换法则:按单位费用相等将任意钢厂的单位销价转换为公路单位运价.对于钢厂S i 的销售单价P i ,我们可以虚设一条公路线,连接钢厂S i 及另一虚拟钢厂'i s ,其长度为i l ,并且满足0.1i i l p =⨯;从而将钢厂的销售单价转换成公路运输单价,而新钢厂'i s 的销售价为0.将铁路和销价转换为公路的过程可以由计算机编程实现. 通过上述的分析,我们可以将原问题化为一个相对简单的产量未定的运输问题,利用115A A 到之间的管道距离和钢厂和站点之间的公路距离建立一个产量未定的运输问题的模型.但是由于1215,A A A ,并不能代表所有的实际需求点(实际需求点是n 个单位管道),因此,我们可以用F1oyd 算法进一步算出7个钢厂到所有实际的n 个需求点(对于问题一,n =5171;对于问题三,n =5903)的最短路径,并由此得出一个具有7个供应点、n 个需求点的产址未定的运输模型.6 模型的建立产量未定的运输模型根据假设4,我们可以将每一单位的管道看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.对每个点,我们可以根据该点的位置和最短等价公路距离,求出各钢厂与该点之间最小单位运输费用ij C (销价已经归人运输费用之中了).设总共有m 个供应点(钢厂),n 个需求点,我们就可以得到一个产量未定的运输模型:有m 个供应点、n 个需求点,每个供应点的供应量{0}{500,}i i u s ∈;每个需求点需要1单位,运输单价矩阵为C ,求使得总运输费用最小的运输方案.其数学规划模型: 11minmnij ij i j F C x ===∑∑11{0}{500,}1,2,,..11,2,01nij i j mij i ij x S i ms tx j n x ==⎧∈=⎪⎪⎪==⎨⎪⎪=⎪⎪⎩∑∑或其中: 1112112n m m mn C C C C CC C ⎛⎫⎪=⎪ ⎪⎝⎭为单位费用矩阵 1112112n m m mn x x x X x x x⎛⎫⎪=⎪ ⎪⎝⎭为决策矩阵,也为0-1矩阵 代码如下7 模型的求解对于本题,上述0-1规划规模宏大,现有的一些算法不能胜任,我们必须具体问题具体分析,结合本题实际情况,寻找行之有效的算法.(1)初始方案的改进的最小元素法和改进的伏格尔法 *改进的最小元素法改进的最小元素法又称为贪婪法或瞎子爬山法,它的宗旨是每一步都取当前的最优值算法步骤为,对费用矩阵C 作n 次下列循环:①C 中找一个最小值ij C ; ②令1;ij x =③C 的第j 的所有数据改为+∞;④如果1nij i j x s ==∑,第i 个供应点的供应量已达上限,将C 的第i 行数据全改为+∞。

数学建模案例分析管道运输与订购优化模型(cai)

数学建模案例分析管道运输与订购优化模型(cai)

钢管订购和运输优化模型要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图1所示(见反面).经挑选后可以消费这种主管道钢管的钢厂有127,,,S S S .图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位:km).为方便计,1km 主管道钢管称为1单位钢管.一个钢厂假设承担制造这种钢管,至少需要消费500个单位.钢厂i S 在指定期限内能消费该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:i1 2 3 4 5 6 7 i s800 800 1000 2000 2000 2000 3000 i p1601551551601551501601单位钢管的铁路运价如下表:里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600 601~700 701~800 801~900 901~1000运价(万元) 37445055601000km 以上每增加1至100km 运价增加5万元.公路运输费用为1单位钢管每千米万元〔缺乏整千米部分按整千米计算〕. 钢管可由铁路、公路运往铺设地点〔不只是运到点1521,,,A A A ,而是管道全线〕.问题:〔1〕请制定一个主管道钢管的订购和运输方案,使总费用最小〔给出总费用).考虑题:〔2〕请就〔1〕的模型分析:哪个钢厂钢管的销价的变化对购运方案和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运方案和总费用的影响最大,并给出相应的数字结果.〔3〕假设要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决方法,并对图2按〔1〕的要求给出模型和结果.71一、 根本假设1. 沿铺设的主管道以有公路或者有施工公路. 2. 在主管道上,每千米卸1单位的钢管.3. 公路运输费用为1单位钢管每千米万元〔缺乏整千米部分按整千米计算〕 4. 在计算总费用时,只考虑运输费和购置钢管的费用,而不考虑其他费用. 5. 在计算钢厂的产量对购运方案影响时,只考虑钢厂的产量足够满足需要的情况,即钢厂的产量不受限制.6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管17的运价增加5万元.二、符号说明:i S :第i 个钢厂; 7,,2,1 =i i s :第i 个钢厂的最大产量; 7,,2,1 =ij A :输送管道〔主管道〕上的第j 个点; 15,,2,1 =j i p :第i 个钢厂1单位钢管的销价; 7,,2,1 =iij x :钢厂i S 向点j A 运输的钢管量; 7,,2,1 =i 15,,2,1 =jj t :在点j A 与点1+j A 之间的公路上,运输点j A 向点1+j A 方向铺设的钢管量;14,,3,2,1 =j (01=t )ij a :1单位钢管从钢厂i S 运到结点j A 的最少总费用,即公路运费﹑铁路运费和钢管销价之和; 7,,2,1 =i 15,,2,1 =jj b :与点j A 相连的公路和铁路的相交点; 15,,3,2 =j1.+j j A :相邻点j A 与1+j A 之间的间隔 ; 14,,2,1 =j三、模型的建立与求解问题一:讨论如何调整主管道钢管的订购和运输方案使总费用最小由题意可知,钢管从钢厂i S 到运输结点j A 的费用ij a 包括钢管的销价﹑钢管的铁路运输费用和钢管的公路运输费用.在费用ij a 最小时,对钢管的订购和运输进展分配,可得出本问题的最正确方案.1. 求钢管从钢厂i S 运到运输点j A 的最小费用1〕将图1转换为一系列以单位钢管的运输费用为权的赋权图.由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总间隔 有关.又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短途径.如图3图3 铁路网络图根据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边.再将与j b 相连的公路、运输点i A 及其与之相连的要铺设管道的线路〔也是公路〕添加到图上,根据单位钢管在公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边.以1S 为例得图4.图4 钢管从钢厂1S 运到各运输点j A 的铁路运输与公路运输费用权值图2〕计算单位钢管从1S 到j A 的最少运输费用根据图4,借助图论软件包中求最短路的方法求出单位钢管从1S 到j A 的最少运输费用依次为:170.7,160.3,140.2,98.6,38,20.5,3.1,21.2,64.2,92,96,106,121.2,128,142〔单位:万元〕.加上单位钢管的销售价i p ,得出从钢厂1S 购置单位钢管运输到点j A 的最小费用j a 1依次为:330.3,320.3,300.2,258.6,198,180.5,163.1,181.2,224.2,252,256,266,281.2,288,302〔单位:万元〕.同理,可用同样的方法求出钢厂2S ﹑3S ﹑4S ﹑5S ﹑6S ﹑7S 到点j A 的最小费用,从而得出钢厂到点的最小总费用〔单位:万元〕为:表1 i S 到点j A 最小费用A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 A 13 A 14 A 15 S 1198 163 252 256 266 288 302 2S266 241 297 301 311 333 347 3S 276 251 237 241 251 273 287 4S316 291 222 211 221 243 257 5S 301 276 212 188 206 228 242 6S306281212 201 195161 1782. 建立模型运输总费用可分为两部分:运输总费用=钢厂到各点的运输费用+铺设费用.运输费用:假设运输点j A 向钢厂i S 订购ij x 单位钢管,那么钢管从钢厂i S 运到运输点j A 所需的费用为ij ij x a .由于钢管运到1A 必须经过2A ,所以可不考虑1A ,那么所有钢管从各钢厂运到各运输点上的总费用为:∑∑==15271j i ijij a x.铺设费用:当钢管从钢厂i S 运到点j A 后,钢管就要向运输点j A 的两边1+j j A A 段和j j A A 1-段运输〔铺设〕管道.设j A 向1+j j A A 段铺设的管道长度为j y ,那么j A 向1+j j A A 段的运输费用为()201)21(1.0+=+++⨯j j j t t y 〔万元〕;由于相邻运输点j A 与1+j A 之间的间隔 为1.+j j A ,那么1+j A 向1+j j A A 段铺设的管道长为j j j t A -+1.,所对应的铺设费用为()()2011.1.jj j j j j t A t A-+-++〔万元〕.所以,主管道上的铺设费用为:()()()∑=++⎪⎪⎭⎫⎝⎛-+-++1411.1.201201j j j j j j j j j t A t A t t总费用为:()()()∑∑∑===++⎪⎪⎭⎫⎝⎛-+-+++=711521411.1.201201i j j j j j j j j j j ij ij t A t A t t a x f又因为一个钢厂假设承担制造钢管任务,至少需要消费500个单位,钢厂i S 在指定期限内最大消费量为i s 个单位,故i j ijs x≤≤∑=152500 或0152=∑=j ij x 因此本问题可建立如下的非线性规划模型:14157.1.112171151522.1(1)()(1)min (2020j 2,3,,15500 0s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij i ij j j ij j j j t t A t A t f x a x n x s x x i j t A ++======++-+-=++⋅⎧==⎪⎪⎪⎪≤≤=⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑∑或3. 模型求解:由于MATLAB 不能直接处理约束条件:i j ijs x≤≤∑=152500或0152=∑=j ij x ,我们可先将此条件改为i j ijs x≤∑=152,得到如下模型:用MATLAB 求解,分析结果后发现购运方案中钢厂7S 的消费量缺乏500单位,下面我们采用不让钢厂7S 消费和要求钢厂7S 的产量不小于500个单位两种方法计算:1〕不让钢厂7S 消费计算结果:=1f 1278632〔万元〕〔此时每个钢厂的产量都满足条件〕. 2〕要求钢厂7S 的产量不小于500个单位计算结果:=2f 1279664 〔万元〕 〔此时每个钢厂的产量都满足条件〕. 比较这两种情况,得最优解为, 121),min(min f f f f ===1278632〔万元〕 详细的购运方案如表2:表2 问题一的订购和调运方案14157.1.112171152.1(1)()(1)min (2020j 2,3,,15 s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij ij ij j j j t t A t A t f x a x n x s x i j t A ++=====++-+-=++⋅⎧==⎪⎪⎪⎪≤⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑。

19569-数学建模-钢管订购和运输 (1)

19569-数学建模-钢管订购和运输 (1)

钢管订购和运输张伟 丁林阁 邓小涛 指导教师:数模组 海军航空工程学院摘要 本模型研究了管道铺设过程中钢管的订购和运输问题,它通过图论和非线性规划的知识建立。

模型使总费用达到最小,很好地解决了向哪个钢厂定货,定货多少,如何运输的问题,并且可以推广到更一般的网络。

同时针对模型中涉及的变量多、求解复杂这一问题,我们对模型进行了适当的简化,大大减少了变量的个数,从而减少了计算量。

一、问题重述要铺设一条1521A A A →→→ 的天然气主管道,可以生产这种主管道钢管的钢厂有721,,S S S 七家。

钢厂的位置,管道的铺设路线,以及从钢厂到铺设地的运输网络(运输网络包括沿管道的公路)均已知。

每个钢厂的钢管价格及其生产能力不全一样,且一个钢厂若要生产这种钢管,至少需要生产500个单位(1千米钢管记为1个单位)。

铁路的运价和公路的运价不一样。

要求在这种情况下,(1)制定一个钢管的订购和运输计划,使总费用最小,并给出总费用。

(2)分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,给出相应的数字结果。

(3)如果铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

二、问题的假设在问题所给条件成立的前提下,我们进一步作如下假设: 1. 假设公路运输费用不是整公里的按整公里计算是合理的。

2. 假设沿管道的公路(施工公路)运输费用也为每公里0.1万元(不足整公里部分按整公里计算)。

3. 假设不考虑铁路、公路及施工公路的运输能力限制。

4. 假设运输费用为单程运输的费用,即从出发点到目的地的单程费用,不考虑空车返回的费用。

5. 假设运输费用已包含装卸费用。

关于假设的一点说明:根据上述假设我们认为在铺设管道的过程中每隔一公里,卸下一单位钢管供工人铺设是合理的。

三、符号约定i S :生产主管道钢管的钢厂 ;j A :管道节点 ;1,+j j l :从j A 到1+j A 铺设钢管的路段长度(单位:公里,14,...,1=j ); i s : 钢厂i S 在指定期限内生产钢管的最大数量(单位:单位钢管); i P : 钢厂i S 单位钢管的出厂价格(单位:万元); ij x :从 钢厂i S 运到j A 的钢管数量(单位:单位钢管); ij c :表示1单位钢管从 钢厂i S 到j A 的最小费用(单位:万元); j X :运到j A 的钢管总数(单位:单位钢管); j L : 从j A 往左铺设的钢管总数(单位:单位钢管),j L 为j X 的一部分; j R : 从j A 往右铺设的钢管总数(单位:单位钢管),这里j j j L X R -=; 其中 15,...,1;7,...,1==j i 四、问题分析本问题分两部分:一部分是图论中的最短路径的问题:确定1单位钢管从 钢厂i S 到j A 的最小费用;另一部分是非线性规划问题:求总的最小费用。

大学竞赛数学建模钢管订购和运输优化模型

大学竞赛数学建模钢管订购和运输优化模型

1)将图1转换为一系列以单位钢管的运输费用为权的赋权图. 所以可先求出钢厂 Si
到铁路与公路相交点 b j 的最短路径.如图3
30
290
320 160 160 1200 690 720 1100 202 20 1150 306 450 80 195 462 520 690 170 88 70 70
5.假设钢管在铁路运输路程超过1000km,铁路每增加1 至100km,1单位钢管运输的运价增至5万元.
6.订购的钢管数量刚好等于需要铺设的钢管数量
二.基本假设
7.销售价和运输价不受市场价格变化的影响
三. 符号说明
第 第 个钢厂, 个钢厂的最大产量, 个点,
输送天然气的主管道上的第 第 钢厂 在点
86
333
621
165
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
比较好的方法:引入0-1变量
fi表示钢厂i是否使用;xij是从钢厂i运到节点j的钢管量 yj是从节点j向左铺设的钢管量;zj是向右铺设的钢管量
0.1 15 Min Aij xij [(1 y j ) y j (1 z j ) z j ] i, j 2 j 1 s.t. 500 f i xij si f i ,
非线性规划模型可用LINGO软件包或MATLAB软件包来求解,但这些软件包不能 直接处理约束条件:
可用分支定界法将此条件改为 模型变为
1)不让钢厂S7生产,模型变为:
计算结果: f1 1278632(万元)(此时每个钢厂的产量都满足条件) 2)要求钢厂S7 产量不小于500个单位,模型变为:

钢管订购与运输问题一的数学模型与求解

钢管订购与运输问题一的数学模型与求解

钢管订购与运输问题一的数学模型与求解
钢管订购与运输问题是一种组合优化问题,它涉及到钢管的订购和运输,旨在找到最佳的订购和运输方案,以最小的成本获得最大的收益。

这个问题通常可以用数学模型来表示。

设 n 个工地需要订购 m 根钢管,钢管订购和运输费用分别为
c1(订购费用)、c2(运输费用),订购钢管的最早时间 t0 为早订购时间,最迟时间为 t1 为晚订购时间,运输时间不计费用。

则钢管订购与运输问题的数学模型可以表示为:
minimize Σi=1~n c1(t1-t0) + Σj=i+1~n c2(t2-t1)
subject to:
t1≤t0
t2≥t1
t1+t2≤t0+30
x1=1, x2=1, ..., xnm=1
其中,x1、x2、...、xnm 是订购钢管的数量,1 表示订购,0 表示不订购。

通过这个数学模型,我们可以制定出钢管订购与运输问题的求解方法,以找到最佳的订购和运输方案。

在实际问题中,我们通常需要对求解结果进行评估和优化,以便找到更加优秀的方案。

因此,钢管订购与运输问题的数学模型和求解方法只是问题的第一步,实际应用中还需要进行进一步的分析和优化。

数学建模-历年考题cumcm2000b

数学建模-历年考题cumcm2000b

B 题 钢管订购和运输
要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见下页)。

经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:
1单位钢管的铁路运价如下表:
1000km 以上每增加1至100km 运价增加5
公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。

(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。

(2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。

(3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

7
7。

钢管订购和运输

钢管订购和运输

真实路网示例:节点5696 到节点3006 有三条最短路径。

黑线为第一条,兰线为第二条,红线为第三条,共享部分路段。

利用最短路算法可得最短路(途中红线表示的路径)为:v1→v3→v5→v7。

利用最短路算法可得最短路(途中红线表示的路径)为:v→v→v。

图中各边权值表示相应网线的传输能力。

例如,计算机1与2之间传输信息需要但通过枚举的方法来求解已经很困难了!完整构图为:上图展示了从起点(8,0,0)到终点(4,4,0)不同路径。

两相邻节点之间的边代表一次转移,因此可假设每条边的权值为1。

问题就化成利用最短路算法求得最优解如红线所示。

思考:这个问题仅仅是一个游戏吗?钢厂S 1~S 7节点A 1~A 15铁路公路火车站原有公路施工公路铺设地点管网节点S1→S2的最短距离为1402,路径为S1→S15→S2。

从而S1→S2 的最低运费为85。

S20→S5的最短距离为710,路径为S20→S18→S19→S5。

从而S20→S5 的最低运费为50。

858550铁路线上各节点之间的最低运费示意图新图1.24.21.03.17.01.0于是,我们可以构造出一个新的赋权图 G(V, E),这是一个运输费用图,其中 V 为原图 的顶点集合,E 中每一条边的权值为前面求出 的运费。

图 G 的示意图如下。

对运输费用图 G 再次使用 Floyd 算法,求出 图 G 的最短路。

各 Si 到每个 Aj 的最短路值,就是一个单位 的钢管从钢厂 Si 到管网各个节点 Aj 的最小运输 费用 cij。

最小运价表如表 1 所示。

新图表 1 单位钢管从 Si 到 Aj 的最小运价(单位:万元)S1S2S3S4S5A1170.7000 215.7000 230.7000 260.7000 255.7000A2160.3000 205.3000 220.3000 250.3000 245.3000A3140.2000 190.2000 200.2000 235.2000 225.2000A498.6000171.6000 181.6000 216.6000 206.6000A538.0000111.0000 121.0000 156.0000 146.0000A620.500095.5000105.5000 140.5000 130.5000A73.100086.000096.0000131.0000 121.0000A821.200071.200086.2000116.2000 111.2000A964.2000114.200048.200084.200079.2000A1092.0000142.000082.000062.000057.0000A1196.0000146.000086.000051.000033.0000A12106.0000 156.000096.000061.000051.0000A13121.2000 171.2000 111.200076.200071.2000A14128.0000 178.0000 118.000083.000073.0000A15142.0000 192.0000 132.000097.000087.0000S6 265.7000 255.3000 235.2000 216.6000 156.0000 140.5000 131.0000 121.2000 84.2000 62.0000 51.0000 45.0000 26.2000 11.0000 28.0000S7 275.7000 265.3000 245.2000 226.6000 166.0000 150.5000 141.0000 131.2000 99.2000 76.0000 66.0000 56.0000 38.2000 26.00002.00001.2 整数约束的处理 由于给出的模型是非线性整数规划模型, 因此尚无合适的求解方法。

钢管运输问题模型剖析

钢管运输问题模型剖析

A1 , A2 ,, A15 ,而是管道全线) 。
(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢 管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一 般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。
30
S7 20
690
160
20
A15 500 A14
A13 210 A12
450
A9 11 A1 1
80
3 104 A1
2 750 A4 606
A2 301 A3
图一
290 S3 S2 690 1200 720 A16 202 1100 20 195 306 1150 600 0 5 10 194 A6 606 A5 10 31 S1 12 42 70 170 520 88 S4 A18 160 130 70 190 462 10 320 260 A19 160 A20 100 70 30 S6 (A21) 110 420 A13 210 A12
Hu Junfeng
5
290 S3 S2 690 1200 720 202 1100 20 12 195 306 1150 600 0 10 5 194 A6 A5 A11 10 31 201 A7 11 A1 1 A8 A1 205 1 480 680 A10 S1 42 70 10 170 520 88 462 S5 10 220 300 A11 S4 320 160 70 30 70 62 S6 110 420

数学建模---钢管订购和运输优化

数学建模---钢管订购和运输优化

数学建模---钢管订购和运输优化要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图1所示(见反面).经筛选后可以生产这种主管道钢管的钢厂有127,,,S S S .图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位:km).为方便计,1km 主管道钢管称为1单位钢管.一个钢厂如果承担制造这种钢管,至少需要生产500个单位.钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:i1 2 3 4 5 6 7 i s800 800 1000 2000 2000 2000 3000 i p1601551551601551501601单位钢管的铁路运价如下表:里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600 601~700 701~800 801~900 901~1000运价(万元) 37445055601000km 以上每增加1至100km 运价增加5万元.公路运输费用为1单位钢管每千米0.1万元(不足整千米部分按整千米计算). 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线).问题:(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用).思考题:(2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果.(3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图2按(1)的要求给出模型和结果.71一、 基本假设1. 沿铺设的主管道以有公路或者有施工公路. 2. 在主管道上,每千米卸1单位的钢管.3. 公路运输费用为1单位钢管每千米0.1万元(不足整千米部分按整千米计算) 4. 在计算总费用时,只考虑运输费和购买钢管的费用,而不考虑其他费用. 5. 在计算钢厂的产量对购运计划影响时,只考虑钢厂的产量足够满足需要的情况,即钢厂的产量不受限制.6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管17的运价增加5万元.二、符号说明:i S :第i 个钢厂; 7,,2,1 =i i s :第i 个钢厂的最大产量; 7,,2,1 =i j A :输送管道(主管道)上的第j 个点; 15,,2,1 =ji p :第i 个钢厂1单位钢管的销价; 7,,2,1 =iij x :钢厂i S 向点j A 运输的钢管量; 7,,2,1 =i 15,,2,1 =jj t :在点j A 与点1+j A 之间的公路上,运输点j A 向点1+j A 方向铺设的钢管量;14,,3,2,1 =j (01=t )ij a :1单位钢管从钢厂i S 运到结点j A 的最少总费用,即公路运费﹑铁路运费和钢管销价之和; 7,,2,1 =i 15,,2,1 =jj b :与点j A 相连的公路和铁路的相交点; 15,,3,2 =j1.+j j A :相邻点j A 与1+j A 之间的距离; 14,,2,1 =j三、模型的建立与求解问题一:讨论如何调整主管道钢管的订购和运输方案使总费用最小由题意可知,钢管从钢厂i S 到运输结点j A 的费用ij a 包括钢管的销价﹑钢管的铁路运输费用和钢管的公路运输费用.在费用ij a 最小时,对钢管的订购和运输进行分配,可得出本问题的最佳方案.1. 求钢管从钢厂i S 运到运输点j A 的最小费用1)将图1转换为一系列以单位钢管的运输费用为权的赋权图.由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总距离有关.又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短路径.如图3图3 铁路网络图依据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边.再将与j b 相连的公路、运输点i A 及其与之相连的要铺设管道的线路(也是公路)添加到图上,根据单位钢管在公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边.以1S 为例得图4.图4 钢管从钢厂1S 运到各运输点j A 的铁路运输与公路运输费用权值图2)计算单位钢管从1S 到j A 的最少运输费用根据图4,借助图论软件包中求最短路的方法求出单位钢管从1S 到j A 的最少运输费用依次为:170.7,160.3,140.2,98.6,38,20.5,3.1,21.2,64.2,92,96,106,121.2,128,142(单位:万元).加上单位钢管的销售价i p ,得出从钢厂1S 购买单位钢管运输到点j A 的最小费用j a 1依次为:330.3,320.3,300.2,258.6,198,180.5,163.1,181.2,224.2,252,256,266,281.2,288,302(单位:万元).同理,可用同样的方法求出钢厂2S ﹑3S ﹑4S ﹑5S ﹑6S ﹑7S 到点j A 的最小费用,从而得出钢厂到点的最小总费用(单位:万元)为:表1 i S 到点j A 最小费用A 2A 3A 4 A 5A 6A 7 A 8A 9A 10 A 11 A 12 A 13A 14 A 15S 1 320.3 300.2 258.6 198 180.5 163 181.2 224.2 252 256 266 281.2 288 3022S 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 3S 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 2874S 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 5S 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 6S 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 1782. 建立模型运输总费用可分为两部分:运输总费用=钢厂到各点的运输费用+铺设费用.运输费用:若运输点j A 向钢厂i S 订购ij x 单位钢管,则钢管从钢厂i S 运到运输点j A 所需的费用为ij ij x a .由于钢管运到1A 必须经过2A ,所以可不考虑1A ,那么所有钢管从各钢厂运到各运输点上的总费用为:∑∑==15271j i ijijax .铺设费用:当钢管从钢厂i S 运到点j A 后,钢管就要向运输点j A 的两边1+j j A A 段和j j A A 1-段运输(铺设)管道.设j A 向1+j j A A 段铺设的管道长度为j y ,则j A 向1+j j A A 段的运输费用为()201)21(1.0+=+++⨯j j j t t y (万元);由于相邻运输点j A 与1+j A 之间的距离为1.+j j A ,那么1+j A 向1+j j A A 段铺设的管道长为j j j t A -+1.,所对应的铺设费用为()()2011.1.jj j j j j t A t A-+-++(万元).所以,主管道上的铺设费用为:()()()∑=++⎪⎪⎭⎫⎝⎛-+-++1411.1.201201j j j j j j j j j t A t A t t 总费用为:()()()∑∑∑===++⎪⎪⎭⎫⎝⎛-+-+++=711521411.1.201201i j j j j j j j j j j ij ij t A t A t t a x f 又因为一个钢厂如果承担制造钢管任务,至少需要生产500个单位,钢厂i S 在指定期限内最大生产量为i s 个单位,故i j ijs x≤≤∑=152500 或0152=∑=j ij x 因此本问题可建立如下的非线性规划模型:14157.1.112171151522.1(1)()(1)min (2020j 2,3,,15500 0s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij i ij j j ij j j j t t A t A t f x a x n x s x x i j t A ++======++-+-=++⋅⎧==⎪⎪⎪⎪≤≤=⎨⎪⎪≥==⎪≤≤⎪∑∑∑∑∑∑或3. 模型求解:由于MATLAB 不能直接处理约束条件:i j ijs x≤≤∑=152500或0152=∑=j ij x ,我们可先将此条件改为i j ijs x≤∑=152,得到如下模型:用MATLAB 求解,分析结果后发现购运方案中钢厂7S 的生产量不足500单位,下面我们采用不让钢厂7S 生产和要求钢厂7S 的产量不小于500个单位两种方法计算:1)不让钢厂7S 生产计算结果:=1f 1278632(万元)(此时每个钢厂的产量都满足条件). 2)要求钢厂7S 的产量不小于500个单位计算结果:=2f 1279664 (万元) (此时每个钢厂的产量都满足条件). 比较这两种情况,得最优解为, 121),m in(m in f f f f ===1278632(万元) 具体的购运计划如表2:表2 问题一的订购和调运方案14157.1.112171152.1(1)()(1)min (2020j 2,3,,15 s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij ij ij j j j t t A t A t f x a x n x s x i j t A ++=====++-+-=++⋅⎧==⎪⎪⎪⎪≤⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑。

钢管的订购及运输优化方案

钢管的订购及运输优化方案

钢管的订购及运输优化方案承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林省建筑工程学院建筑装饰学院参赛队员(打印并签名) :1. 姜磊2. 魏文超3. 张晓斌指导教师或指导教师组负责人(打印并签名):杨雪日期: 2009 年 9 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):2009高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):摘要:从本题中可以看出我们要解决的问题是钢管怎样订购,怎样运输,才能使得总费用最少。

所以,我们从两个方面着手考虑这个问题,首先我们考虑怎样从钢厂订购货物,接下来我们考虑在订购好货物后我们怎样把货物运输到目的地。

对于这两个问题,从题目可知,订购和运输联系密切,所以,我们必须同时考虑考虑钢管的订购与运输。

再由题中给的钢厂与天然气管道路线分布图可以看出,该问题等同于把起点的信息通过最优路(即就是花费最少的路径)径送到目的地,在送往的途中可以有信息的流失,流失的信息即就是用于铺设道路的货物,但不管流失多少信息,到达目的地时,总还有剩余的信息。

所以,我们就把钢管的运输看成了最小费用最大流问题。

所以,我们通过对线路的标号,我们利用floyd算出最大流问题算出每一个钢厂到每个点的单位最优路径,然后,再算出在运送途中钢管用于铺设管道所花费的费用,我们把这两种费用相加,就得到了总的费用。

钢管的订购与运输讲述

钢管的订购与运输讲述
如以S1 为例:S1到bi的最小费用为:
A j 1
y j1
Aj
yj
A j 1

y 是结点 j
A 向右铺设与 j
A 向左铺设之间的交点( j 1
y 1
0,
y15
0 )。
第二方案:也可以考虑在Aj左右各设一个变量!
j 2,3, ,14
2.求单位钢钢管的运输费 用为权的赋权图,再求最短路的权。
d j :相邻点 Aj 与 Aj1 之间的距离;
j 1,2,,14
四、模型的分析、建立、求解
1. 模型的分析与决策变量的设置 根据题目要求,要制定一个主管道钢管的订购
和运输计划,使总费用最小。 先看总费用:总费用由三部分组成: 1) 钢管的订购费。 支付钢厂订购钢管的费用。因为钢厂生产单位钢 管的出厂销价为常量,所以在运费相同的情况下, 应从销价低的钢厂订购钢管。
二、模型假设
1.沿铺设的主管道以有公路或者有施工公路。 2.在主管道上,每公里卸1单位的钢管。 3.公路运输费用为1单位钢管每公里0.1万元(不足整公
里部分按整公里计算) 4.在计算总费用时,只考虑运输费和购买钢管的费用,
而不考虑其他费用。 5.假设钢管在铁路运输路程超过1000km时,铁路每增
加1至100km,1单位钢管的运价增加5万元。
37
44
50
55
60
可考虑将铁路与公路分开考虑。
1) 将铁路图转化成费用图(与Ai对应编号)
将铁路与公路交界的点编号 bj:
图一 中去掉公路得铁路图:
1) 由于钢厂 Si 直接与铁路相连,所以可先求出钢厂 Si 到铁路与公路相交点 bj(对应于 Aj)的最短路径。
计算Si 到bi 的最小费用(与Ai对应编号)

数学建模B题钢管订购和运输

数学建模B题钢管订购和运输

关于下面3个问题(可以是其中某个小问题),试分别建立模型。

包括给出问题分析和建模思路、模型假设、变量说明、模型建立。

不需要求解。

1 B 题 钢管订购和运输要铺设一条1521A A A →→→Λ的输送天然气的主管道, 如图一所示(见反面)。

经筛选后可以生产这种主管道钢管的钢厂有721,,S S S Λ。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:i1 2 3 4 5 6 7 i s800 800 1000 2000 2000 2000 3000 i p1601551551601551501601单位钢管的铁路运价如下表:里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600 601~700 701~800 801~900 901~1000运价(万元)37445055601000km 以上每增加1至100km 运价增加5万元。

公路运输费用为1单位钢管每公里万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A Λ,而是管道全线)。

(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。

(2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。

(3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

数学建模2000B题

数学建模2000B题


i 1
m
ai

ji
n
bj
从发点A到收点B的距离(或单位运费)是已知的,设为
c ij ( i 1, 2 ,..., m , j 1, 2 ,..., n )

问题:寻求一个调运方案,使总运输费用达到最小。
一个调运方案主要由一组从发点
Ai
到收点 B j 的输
送量来描述。
发点
收点
B1
B2
290 S4 S3 S2 320 160 70 30 70 170 720 202 1100 20 12 195 1150 600 306 0 10 31 201 A8 480 680 A10 S1 70 42 10 520 88 462 S5 10 220 300 A11 S2 S6 110
30
70
A1
480
31
1150
A9 680
A10
300
A11
201
205 A7
A8
450
80 2 750 A4 606
图二
3
104 A1 301 A2
A3
问题
所属类型 做题 思路和关键点 结果 表示形式
优化模型
1、问题的分析
优化问题
1)优化模型的数学描述
求函数
u f (x)
x ( x 1 , x 2 , x 3 ,..., x n )
在约束条件 h i ( x ) 0 , i 1, 2 ,..., m . 和
g i ( x ) 0 ( g i ( x ) 0 ), i 1, 2 ,..., p .
下的最大值或最小值,其中 设计变量(决策变量) x

2000年数学建模B题解答

2000年数学建模B题解答
2)用Floyd算法求公路最短距离,以15个铺设节点、17个中转点和S1、S6、S7三个钢管厂建立初始距离矩阵 ,对于任意两点之间的距离,如果两点之间有公路直接连接,其值为两点间公路的距离;如果两点之间没有公路直接连接,则其值为inf。
3)用Floyd算法求铁路和公路最少费用,编程如下:
%距离转换为费用的程序
601~700
701~800
801~900
901~1000
运价(万元)
37
44
50
55
60
1000km以上每增加1至100km运价增加5万元。
公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。
钢管可由铁路、公路运往铺设地点(不只是运到点,而是管道全线)。
(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。
200002000020000 20000 20000 2000020000 20000 20000 20000 20000 20000 20000 20000 20000;
200002000020000 20000 20000 2000020000 20000 20000 20000 20000 20000 20000 20000 20000;
casem4
D(i,j)=29;
casem5
D(i,j)=32;
casem6
D(i,j)=37;
casem7
D(i,j)=44;
casem8
D(i,j)=50;
casem9
D(i,j)=55;
casem0
D(i,j)=60;
otherwise
D(i,j)=ceil((D(i,j)-1000)/100)*5+60;

数学建模:钢管订购和运输

数学建模:钢管订购和运输

钢管订购和运输摘要:本文运用线性规划理论建立了钢管订购和运输计划问题的数学模型。

在求解时分别利用了图论中求最短路长的算法、整数规划中的0—1规划的解法及运输问题的表上作业法。

关键词:线性规划,运输问题一、问题重述有一条从A1→A2→ →A15的天然气管道需要铺设,如图1。

经筛选,只有7家厂商获得认可,分别记为S1,S2, ,S7。

图中粗线表示铁路,单细线表示公路,双细线表示管道(假设管道沿线有公路或建有施工公路)。

圆圈表示公路,每段铁路公路和管道旁的数字表示管道的里程(单位km),记1km为一个单位。

一个钢厂如果承担这种钢管的生产,则最少需要500个单位。

钢厂Si在制定期内最多能生产钢管的数量记为si个单位,钢管出场售价为每单位Pi万元,如下表。

一单位钢管的铁路运价如下表:1000km每增加100km运费增加5万元公路运输费为每公里0.1万元(不足整公里部分按1公里计算)。

1:制定一个主管道的订购和运输计划,市总费用最小(给出总费用)。

2:就问题1的模型进行分析,那个钢管厂的钢管销售价格变化对够运计划和总费用影响最大;哪个钢管厂钢管的产量上限的变化对够运计划和总费用的影响最大,并给出相应的数字结果。

3:如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,对这种更一般的情形给出一种解决办法,并对图2按问题1的要求给出模型和结果。

二、基本假设假设铺设钢管可从Aj向前后两个方向铺设或向同一方向铺设和不考虑火车运载与汽车运载的装卸费。

三、符号说明1 第Si 个钢管厂承担制造钢管的任务。

0 - 1变量Ri, Ri=0 第Si 个钢管厂不承担制造钢管的任务。

ai 表示向第Si 个钢管厂订购的钢管的数量。

xij 表示从钢管厂Si 沿着费用最小的路线运输到火车站Aj 点的钢管的数量。

bj 表示从各个钢管厂运输到Aj 点的钢管的总数。

cij 表示从钢管厂Si 运输单位钢管到Aj 的最小费用。

管道订购与运输问题-2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题-2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题1 问题重述2 基本假设(1)只考虑订购费用和运输费用,不考虑装卸等其它费用. (2)钢管单价与订购量、订购次数、订购日期无关.(3)订购汁划是指对每个厂商的定货数量;运输方案是指具有如下属性的一批记录:管道区间,供应厂商,具体运输路线.(4)将每一单位的管道所在地看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.3 符号说明M :钢厂总数. n :单位管道总数.:i S 第i 个钢厂 :i S 第i 个钢厂的产量上限。

:i p 第i 个钢厂单位钢管的销售价 i A 管道线上第i 个站点。

i d 管道线上第i 个单位管道的位置。

F :总费用。

:ij C 从钢厂(1,2,,)i S i m =到点(1,2,,)j d j n =的最低单位费用。

4 问题的简化求 S AP 矩阵的基本思路是图的最短路算法 . 由于铁路的运输费用与线路的长度不是线性关系 ,必须对铁路网做一些预处理才能套用图的标准最短路算法 . 下面叙述求 S AP 矩阵的过程:1.利用图的标准最短路算法 ,从铁路网络得出图中任两个点之间的最短路径表 T (如果两个点之间不连通 ,认为它们之间的最短路长度为+ ∞ ) .2.利用题中的铁路运价表将 T 中的每个元素 (即最短距离 )转化为运输费用 ,将运输费用表记为 C.3.将公路的长度换算为运输费用 ,由公路路程图 (包括要沿线铺设管道的公路 )得出公路费用图 G,若 i, j 不连通 ,则令 Gij = + ∞ .4.对于任一组 ( i , j)∈ { 1,… n }× { 1,… m } 如果 Cij <+ ∞ ,且小于 Gij ,那么就在公路费用图中加一条边. 即令 Gij = min{Cij , Gij } .5.利用图的标准最短路算法 ,求公路费用图中任一个 S 点到任一个 A 点的最小费用路径 ,得出 S AP 矩阵. 如表 1所示:SAP 矩阵A123 4 5 6 7 8 9 10 11 12 13 14 15 S1 170716031402986 380 205 31 212 642 920 960 1060 1212 1280 14202 215720531902 1716 1110 955 860 712 1142 1420 1460 1560 1712 1780 19203 230722032002 1816 1210 1055 960 862 482 820 860 960 1112 1180 13204 260725032352 2166 1560 1405 1310 1162 842 620 510 610 762 830 9705 255724532252 2066 1460 1305 1210 1112 792 570 330 510 712 730 8706 265725532352 2166 1560 1405 1310 1212 842 620 510 450 262 110 2807 275726532452 2266 1660 1505 1410 1312 992 760 660 560 382 260 205问题分析运输费用等价转换法则:按单位运费相等原则将任意两点间的最短铁路线转换为公路 线.对于铁路线上的任意两点,i j V V ,用F1oyd 算法找出两点间最短铁路路线的长度ij L 查铁路运价表求得ij L ,对应的铁路单位运费ij f ;又设与该段铁路等费用的公路长度为ij l ,则:0.1ij ij f l =⨯由此,我们就在,i j V V 之间用一条等价的公路线来代替,i j V V 间的最短铁路线.如果,i j V V 之间原来就有公路,就选择新旧公路中较短的一条.这样,我们就把铁路运输网络转换成了公路运输网络.销价等价转换法则:按单位费用相等将任意钢厂的单位销价转换为公路单位运价.对于钢厂S i 的销售单价P i ,我们可以虚设一条公路线,连接钢厂S i 及另一虚拟钢厂'i s ,其长度为i l ,并且满足0.1i i l p =⨯;从而将钢厂的销售单价转换成公路运输单价,而新钢厂'i s 的销售价为0.将铁路和销价转换为公路的过程可以由计算机编程实现. 通过上述的分析,我们可以将原问题化为一个相对简单的产量未定的运输问题,利用115A A 到之间的管道距离和钢厂和站点之间的公路距离建立一个产量未定的运输问题的模型.但是由于1215,A A A ,并不能代表所有的实际需求点(实际需求点是n 个单位管道),因此,我们可以用F1oyd 算法进一步算出7个钢厂到所有实际的n 个需求点(对于问题一,n =5171;对于问题三,n =5903)的最短路径,并由此得出一个具有7个供应点、n 个需求点的产址未定的运输模型.6 模型的建立产量未定的运输模型根据假设4,我们可以将每一单位的管道看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.对每个点,我们可以根据该点的位置和最短等价公路距离,求出各钢厂与该点之间最小单位运输费用ij C (销价已经归人运输费用之中了).设总共有m 个供应点(钢厂),n 个需求点,我们就可以得到一个产量未定的运输模型:有m 个供应点、n 个需求点,每个供应点的供应量{0}{500,}i i u s ∈;每个需求点需要1单位,运输单价矩阵为C ,求使得总运输费用最小的运输方案.其数学规划模型: 11minmnij ij i j F C x ===∑∑11{0}{500,}1,2,,..11,2,01nij i j mij i ij x S i ms tx j n x ==⎧∈=⎪⎪⎪==⎨⎪⎪=⎪⎪⎩∑∑或其中: 1112112n m m mn C C C C CC C ⎛⎫⎪=⎪ ⎪⎝⎭为单位费用矩阵 1112112n m m mn x x x X x x x⎛⎫⎪=⎪ ⎪⎝⎭为决策矩阵,也为0-1矩阵 代码如下7 模型的求解对于本题,上述0-1规划规模宏大,现有的一些算法不能胜任,我们必须具体问题具体分析,结合本题实际情况,寻找行之有效的算法.(1)初始方案的改进的最小元素法和改进的伏格尔法 *改进的最小元素法改进的最小元素法又称为贪婪法或瞎子爬山法,它的宗旨是每一步都取当前的最优值算法步骤为,对费用矩阵C 作n 次下列循环:①C 中找一个最小值ij C ; ②令1;ij x =③C 的第j 的所有数据改为+∞;④如果1nij i j x s ==∑,第i 个供应点的供应量已达上限,将C 的第i 行数据全改为+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于下面3个问题(可以就是其中某个小问题),试分别建立模型.包括给出问题分析与建模思路、模型假设、变量说明、模型建立。

不需要求解。

1B题钢管订购与运输
要铺设一条得输送天然气得主管道,如图一所示(见反面)。

经筛选后可以生产这种主管道钢管得钢厂有.图中粗线表示铁路,单细线表示公路,双细线表示要铺设得管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路与管道旁得阿拉伯数字表示里程(单位km)。

为方便计,1km主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位.钢厂在指定期限内能生产该钢管
1 2 3 4 5 67
8000
16 5 150 160
1
里程(km) ≤300 301~350 351~400 401~450 451~500
运价(万元)20 2326 2932
里程(km)501~600601~700 701~800 801~900 901~1000
运价(万元) 3744 505560
公路运输费用为1单位钢管每公里0、1万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只就是运到点,而就是管道全线)。

(1)请制定一个主管道钢管得订购与运输计划,使总费用最小(给出总费用).
(2)请就(1)得模型分析:哪个钢厂钢管得销价得变化对购运计划与总费用影响最大,哪个钢厂钢管得产量得上限得变化对购运计划与总费用得影响最大,并给出相应得数字结果。

(3)如果要铺设得管道不就是一条线,而就是一个树形图,铁路、公路与管道构成网络,请就这种更一般得情形给出一种解决办法,并对图二按(1)得要求给出模型与结果。

7
7
问题分析
问题一,首先,所有钢管必须运到天然气主管道铺设路线上得节点,然后才能向左或右铺设。

必须求出每个钢管厂到每个节点得每单位钢管得最小运输费用.
问题二,通过问题一里面Lingo编程运行得出得结果,分析哪个钢厂钢管得销价得变化对购运计划与总费用影响最大,哪个钢厂钢管得产量得上限得变化对购运计划与总费用得影响最大。

问题三,利用同问题一一样得方法,从而可求出某钢厂到某某铺设点运输单位钢管得最少运输费用。

(具体算法及程序见附录)
1)基本假设:
错误!要铺设得管道侧有公路,可运送所需钢管。

错误!钢管在运输中由铁路运转为公路运时不计中转(换车)费用;
错误!所需钢管均由钢厂提供;
④假设运送得钢管路途中没有损耗。

2)符号说明:
:钢厂得最大生产能力;
:钢厂得出厂钢管单位价格(单位:万元);
: 公路上一单位钢管得每公里运费( = 0、1万元) ;
: 铁路上一单位钢管得运费(分段函数见表1) ;
: 1 单位钢管从钢厂运到得最小费用(单位:万元) ;
: 从到之间得距离(单位:千米);
:钢厂运到得钢管数;
:运到地得钢管向左铺设得数目;
:运到地得钢管向右铺设得数目;
: =
:所求钢管订购、运输得总费用(单位: 万元) ;
模型得建立与求解
问题一得模型:
目标函数就是总费用W ,它包含三项: 钢管出厂总价Q ,运输费P ,及铺
设费T 、 即
W = Q + P + T
其中 , ,
铺设费T 可以如下来确定:开始从左右两个方向铺设,与单位长钢管得费用为与
故 目标函数为:
()()7
15
7
15
15
11
11
1
11min 22j j j j i ij ij ij i j i j j y y z z W p x c x d =====⎡⎤
++=•+•++⎢⎥⎢⎥⎣⎦
∑∑∑∑∑
约束条件为:
① 生产能力得限制: , ② 运到得钢管用完: , ③与之间得钢管: , ④ 变量非负性限制:, ⑤ 运到得钢管整数限制: 模型一
()()71571515
11
11
1
11min 22j j j j i ij ij ij i j i j j y y z z W p x c x d =====⎡⎤
++=•+•++⎢⎥⎢⎥⎣⎦
∑∑∑∑∑
s 、t 、 , , ,
=0 , =0 ,
=0或1 (i=1,、、,7) d=0、05; 问题三得模型
由于树形图得出现,则某些管道处会出现多支路。

则模型一中模型得 ,不再适用,此时可考虑多增加一些支路变量,并增加约束,在目标函数中增加相应得铺设费。

ﻫ目标函数:
()()721721
11
11
1514
99171711112
1
min 111(1)12
2
222i ij ij ij i j i j j j
j j
j j W p x c x y y z z m m m m d =======•+•+
⎡⎤+++++++++⎢⎥
⎢⎥⎣⎦
∑∑∑∑∑∑
(m )(m )
约束条件:
① 生产能力得限制: ② 运到得钢管用完:
③ 与之间得钢管:
④ 变量非负性限制: , ⑤ 运到得钢管整数限制: 模型二
()()7
21
7
21
11
11
15
14
99171711112
1
min 111(1)12
2
222i ij ij ij i j i j j j
j j
j j W p x c x y y z z m m m m d =======•+•+
⎡⎤+++++++++⎢⎥
⎢⎥⎣⎦
∑∑∑∑∑∑
(m )(m )
s 、t、

(i=1,、、,7) d=0、05;。

相关文档
最新文档